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Abstract. Objects in the RoboCup scenario(soccer playing robots) are identi�ed by their unique color. Thesevisual
cueswill be removed in the near future so that new vision algorithms are neededto cope with this. In this paper we
present a method for detecting and tracking the ball in a RoboCup scenario without the need for color information.
We use Haar-lik e features trained by an adaboost algorithm to get a colorlessrepresentation of the ball. Tracking is
performed by a particle �lter. It is shown that our algorithm is able to track the ball in real-time with 25 fps even in
a cluttered environment.

1 In tro duction

The RoboCup world until now is designedto be very simple. Unique colors are usedfor visual identi�cation
of di�eren t objects like the ball, goals,opponents, etc. Fast and robust color segmentation algorithms have
beendeveloped to detect and track objects in this scenarioin real-time [4][7].
In the future, visual cueslike color will be removed to come to a more realistic setup with robots playing
with a \normal" soccer ball. This brings up a new challengefor vision algorithms.
Until now the only approach known to us to deal with the new scenario is presented by Hanek et. al. [6].
They describe a so called Contracting Curve Density (CCD) algorithm which usesshape information and a
local statistics of RGB valuescomputed on both sidesof the expectedball contour. Given a vagueestimate of
the ball's position, this method is able to extract the contour of the ball even in cluttered environments with
di�eren t illumination conditions. However, Hanek et. al. do not deal with the problem of global detection.
In this paper, we describe a method to detect and track the ball basedon simple gray-value features.Inspired
by the work of Viola and Jones[5], who developed an algorithm to detect facesin real-time, we implemented
their adaboost learning procedure to train ball-detectors. The algorithm used for learning a ball-detector
is described in section 2. To track the ball we use a variant of the condensation algorithm described by
Isard and Blake[3]. The learned classi�er from section 2 is usedin section 3 as a measurement model in the
condensationalgorithm for evaluation of possibleball positions. A similar approach that is usedfor tracking
facesin the �eld of face detection and recognition can be found in [2]. Di�eren t experiments that show the
robustnessand real-time performanceof our ball tracker are presented in section 4. Section 5 concludesthe
paper and points out topics for future research.

2 Mo delling the ball

Recently , Viola and Jones developed a realiable method to detect faces within pictures in real-time [5].
We adopted their algorithm to come to a feature-baseddescription of the ball that does not need color
information. An object is described by a combination of a set of simple Haar wavelet like featuresshown in
�gure 1.

The advantage of using thesesimple features is that they can be calculated very quickly with the useof
a so called \in tegral image". An integral image I I over an image I is de�ned as follows:

I I (x; y) =
X

x 0� x;y 0� y

I (x0; y0) (1)



Fig. 1. Four di�eren t typesof rectangle features within their bounding box. The sum of pixels in the white
boxes are subtracted from the sum of pixels in the black areas.

In [5] it is shown that every rectangular sum within an image can be computed with the useof an integral
image by four array references.In our implementation the total integral image of the size320x240is calcu-
lated in lessthan 2ms on an AMD Athlon XP 1600processor.

To detect an object, a classi�er has to be trained consisting of several discriminating features within a
subwindow. Remembering that the number of features within a box sized24x24 is greater than 160000(far
more than the number of pixels!), one has to selecta small set of features that describe the object that has
to be detected.Adaboost [8] is a mechanism soselecta low number of good classi�cation functions, socalled
\w eak classi�ers" to form a �nal \strong classi�er" which is a linear combination of the weak classi�ers. In
the context of learning features, each weak classi�er hj (x) consistsof one feature f j :

hj (x) =
�

1 : if pj f j (x) < pj � j

0 : otherwise
(2)

where � j is a threshold and pj a parit y indicating if f j has to be greater or less than the threshold for a
positive classi�cation. The algorithm to selecta prede�ned number of featuresgiven a training set of positive
and negative example imagesis shown in �gure 2.

1. Input: Training examples (x i ; yi ); i = 1::N with positive (yi = 1) and negative
(yi = 0) examples.

2. Initalization: weights w1;i = 1
2m ; 1

2l with m negative and l positive examples
3. For t=1,...,T:

(a) Normalize all weights
(b) For each feature j train classi�er h j with error � j =

P
i wt;i jhj (x i � yi )j

(c) Chooseht with lowest error � t

(d) Update weights: wt +1 ;i = wt;i � 1� ei
t with ei =

�
0 : x i correctly classi�ed
1 : otherwise

and � t = � t
1� � t

4. Final strong classi�er: h(x) =

�
1 :

P T
t =1 � t ht (x) � 0:5

P T
t =1 � t

0 : otherwise
with � t = log( 1

� t
)

Fig. 2. Adaboost learning algorithm as proposedin [5].

3 Tracking the ball

Particle �ltering [1], which is known as condensationin the area of computer vision, provides a statistical
framework to the problem of object tracking. Given a history of measurements Z t = f z0; :::; zt g and a vector
X t describing the object-state, the idea of condensationis to approximate the posterior p(X t jZ t ) by a �nite
sampleset

St = f x ( i )
t ; � ( i )

t g; i = 1:::N : (3)



Every x ( i )
t describesa possibleobject-state weighted with

� ( i )
t / p(zt jX t = x ( i )

t ) (observation model): (4)

The samples evolve over time by a resampling mechanism proportional to � ( i ) and a dynamic model
p(x ( t +1) jx ( t ) ) that predicts object states for the next time step. The estimate of the object-state at time
t is the weighted mean over all sample-states:

X̂ t = E(St ) =
NX

i =1

� ( i )
t x ( i )

t : (5)

Due to the sampling mechanism condensationprovides robustnessand is able to deal with multiple state
hypotheses.
In this paper, we apply condensationto the problem of ball-tracking. The object is decribed by the state-
vector

x ( i )
t = [x I ; yI ; sI ; vx ; vy ; vs]T (6)

where the position of the ball in the image is described by (x I ; yI ), the velocity in x- an y-directions is
(vx ; vy ), sI represents the sizeof the ball and vs is the velocity in size.The dynamic model is implemented
as a simple random walk:

x t +1 = Ax t + ut (7)

This is a �rst order processwhere A de�nes a movement with constant velocity. Small random changes
in velocity are modelled by addition of a random vector ut . This motion model is quite simple and can
be extended in the future. However, experiments indicate that robust tracking can be achieved even with
random walk dynamics.
The observation probabilit y of each sample is derived from the results of the learned classi�er described in
section 2. To calculate the weight � ( i ) , the ball-detector is evaluated at the position (x I ; yI ) of the sample.
Instead of using the output of the strong classi�er, which is a binary value, we rate each sample according
to the weighted sum of the weak classi�ers:

� ( i ) / �
TX

j =1

� j hj (x) (8)

where � j ; hj are the weighted weak classi�ers (seesection 2) and � is a penalty factor to penalize samples
that are not classi�ed as the ball (responseof strong classi�er is zero).
The camerason our robots have a �xed �eld of view so that the size of the ball in the image is always
the samefor a special (x; y) position in the image (as long as the ball is on the ground). In a calibration
processwe build a lookup table for each pixel in the image that gives the corresponding size of the ball at
this position. Samplesin the particle �lter are given a zeroweight if their sizedoesnot match the calibrated
sizewithin a given tolerance.
To improve further the robustnessof tracking, we reinitialize 10% of the sampleshaving lowest weights.

4 Exp erimen ts

4.1 Training

First of all we collected a set of positive examplesshowing the ball under di�eren t viewing conditions and
a set of negative examples that was built from random cropped picture regions that do not contain the
ball. To come to a better negative example set yielding lower false positive rates we successivlyincluded
missdetectionsfrom imagesthat do not contain the ball into the negative example set. Most of the images
in the example sets have mirrored counterparts in the same set ending up with 1100 positive and 10000
negative examples.The sets are split randomly into a training and a test set containing 550 positive and
5000 negative exampleseach. Overall we used much more negative than positive examplesto keep a low
false positive rate. All training exampleshad the size19x19 and were normalized to have zero mean and a
standard deviation of 1.0.
We trained a detector with the adaboost algorithm until the resulting strong classi�er labelledall examplesin
the training set correctly, ending up with 137 weak classi�ers. Detection, falsepositive and correct classi�ed
rates over the number of weak classi�ers on the training set are shown in �gure 3. The training of the
137-featureclassi�er required about 80 minutes on an AthlonXP 1600processor.



0 20 40 60 80 100 120 140
0.75

0.8

0.85

0.9

0.95

1

# weak classifier

detection rate
correct classified rate

0 20 40 60 80 100 120 140
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

# weak classifier

false positive rate

Fig. 3. Detection and false positive rates during training

4.2 Detection and trac king results

On our test set with 550 positive and 5000negative examples,we achieved a total detection rate of 91:64%
with a falsepositive rate of 0:015%leading to a total rate of 97:86%of examplesthat werecorrect classi�ed.
The results on the test set are shown in table 1.

truenpredicted positivesnegatives
positives (550) 504 46

negatives (5000) 73 4927

Table 1. Results of 137-featuredetector on test set

To track the ball we used 450 samples so that one timestep of the condensation algorithm required
about 35mson an AthlonXP 1600processorwith a framesizeof 320x240.For each frame, the integral image
and a so called squaredintegral image (required for image normalization) are calculated in about 6ms. We
recorded 12 di�eren t sequencesto test the ball tracker under di�eren t conditions. We were able to track
random movements of the ball up to speedsof 1m/s. The distance of the ball from the cameraranged from
20cm up to 2m. The limitation of 2m is a result of the extreme wide-anglelensemounted on the camera,so
that objects that are far away have an extremly small size in the projected image plane and could not be
tracked. Someof the best tracking results are shown in �gure 4, 5 and 6. The weighted meanof the best 20%
of all particles is consideredto be the answer of the ball tracker and marked with a box. The particles were
initialized randomly in the �rst frame. In one sequence,the initial position of the ball was not found and
the tracker was distracted, but averagedover the remaining 11 test sequences,the ball position was found
within the �rst 8 frames of the sequence(min: 2 frames, max: 25 frames). The initialization phaseis shown
in �gure 7. In our test sequencesthe ball did not move during this phase.
Tracking through occlusionswas also possibleas shown in �gure 5. The tracker is even able to recover from
distraction as one can seein the experiment shown in �gure 6. However, there are situations in which the
tracker is unable to recover due to falsedetectionsof the strong classi�er. Therefore, improving the classi�er
e.g. by incorporating information about shape will be topic of future research. The situation that the ball is
not seenin the image at all is not addressedwithin this paper. In this casethe weighted mean of the n best
particles cannot be treated to be the position of the object. One way to deal with this is to return a positive
answer only if a ball is detected by the strong classi�er within the position suggestedby the particle �lter.
Another possibility is to set a classi�cation threshold for the weighted mean of the detection results from
the best particles.



Fig. 4. Tracking the ball.

Fig. 5. Tracking through occlusion.

Fig. 6. Tracker is distracted by clutter.



Fig. 7. Initialization: Best 20% of all particles.

5 Conclusion and future work

In this paper, we presented a method to detect and track a ball which is not marked with a special color
in a RoboCup environment. The results of the adaboost feature learning algorithm are integrated into a
condensationtracking framework making it possibleto track a learned feature basedrepresentation of the
ball even in cluttered environments in real-time. Besidesthe work of Hanek et. al., who do not cover the
problem of global detection of the ball, it is the �rst approach to deal with the problem of detecting and
tracking objects in the RoboCup domain that do not have unique colors.
Experiments showed that tracking in real time is possibleeven if the ball is occludedby other objects. Before
our robots are able to play with a non-coloredball, somemore attention has to be paid to situations where
no ball is present at all. Strategies for recovering from false detections have to be implemented to improve
robustness.One possible solution is to integrate a measureof shape into the particle and to extend the
detector to a cascadeof detectors.
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