
EvA
A Tool for Optimization with

Evolutionary Algorithms

Jürgen Wakunda and Andreas Zell
Universität Tübingen

Wilhelm-Schickard-Institut f¨ur Informatik, Lehrstuhl Rechnerarchitektur
Köstlinstr. 6, D-72074 T¨ubingen, Germany

fzell,wakundag@informatik.uni-tuebingen.de

Abstract

We describe the EvA software package which consists of
parallel (and sequential) implementations of genetic algo-
rithms (GAs) and evolution strategies (ESs) and a common
graphical user interface. We concentrate on the descrip-
tions of the two distributed implementations of GAs and ESs
which are of most interest for the future.

We present comparisons of different kinds of genetic al-
gorithms and evolution strategies that include implementa-
tions of distributed algorithms on the Intel Paragon, a large
MIMD computer, and massively parallel algorithms on a
16384 processor MasPar MP-1, a large SIMD computer.

The results show that parallelization of evolution strate-
gies not only achieves a speedup in execution time of the
algorithm, but also a higher probability of convergence and
an increase of quality of the achieved solutions. In the
benchmark functions we tested, the distributed ESs have a
better performance than the distributed GAs.

1. Introduction

Evolution strategies are stochastic, derivative-free opti-
mization algorithms for mathematical and engineering op-
timization tasks. For genetic algorithms there exist sev-
eral models of parallelization, which are also suitable for
evolution strategies. Parallelization of evolution strategies
promises not only increased computation speed, but also
new aspects like the finding of better solutions.

Because a MIMD computer is normally built of widely
available standard microprocessors, it can be easily pro-
grammed in a standard programming language and is a
multi purpose computer suitable for almost all kinds of
tasks. In particular, the aspect of evolutionary algorithms

that there can be several relatively isolated populations (is-
land model) matches the granularity of parallelization on a
MIMD computer.

2. Overview of EvA

The EvA project (Evolutionary Algorithms), a system
for optimization by means of evolutionary algorithms, was
originally started at the University of Stuttgart, but has been
continued at the University of Tübingen during the last two
years. EvA consists of different parallel implementations
of evolutionary algorithms – genetic algorithms as well as
evolution strategies – on different parallel computer archi-
tectures – SIMD and MIMD.

There exist three implementations of parallel genetic al-
gorithms and two implementations of Evolution Strategies:

� VEGA - Distributed Genetic Algorithms [2, 14]
(‘VE’ stands for distributed - ‘verteilt’ in german) on
the MIMD computer Intel Paragon and workstation
clusters,

� MPGA - Massively Parallel Genetic Algorithms [9]
on the SIMD computer MasPar MP-1 with 16384
processors,

� CNGA - CNAPS Genetic Algorithms [3] on the
neurocomputer Adaptive Solutions CNAPS, a SIMD
computer with 512 processors,

� VEES - Distributed Evolution Strategies [13] on the
MIMD computer Intel Paragon and workstation clus-
ters,

� MPES - Massively Parallel Evolution Strategies [4]
on the SIMD computer MasPar MP-1 with 16384
processors.

Proceedings of the 23rd EUROMICRO Conference '97 New Frontiers of Information Technology
1089-6503/97 $10.00 © 1997 IEEE

All these programs can be started and controlled either
stand-alone with a text based and menu driven user interface
or by an easy-to-use graphical user interface for X11/Motif
which is described in the next section.

As a special feature the script language Tcl1 [10] is inte-
grated in the EvA programs and the Tcl interpreter parses
the command-line input of the text based user interface.
Thus all the useful features of Tcl, like variables, loops,
conditions, etc. are available. Instead of entering the com-
mands interactively at the prompt, they can also be read
from a batch file. In this case the Tcl commands are espe-
cially useful to write powerful batch scripts. The graphical
user interface provides an edit window to create batch files
which can be sent to the evolutionary algorithm and which
are executed directly.

To get a feedback of how the evolutionary algorithm pro-
gresses, statistical data is produced during a run and written
into several files. The output formats of all programs of
the EvA project are the same and suitable for automated
parsing and further processing by external analyzing tools.
For the whole session a summary file is created, where an
overview of all runs and the names of the additionally gen-
erated two protocol files are stored. In one protocol file the
resulting best individuals ofeach processor are stored and
in the other statistical data is stored, e. g. the three values
of best, average and worst fitness that occur in any popu-
lation. Also the measured time for each part of the algo-
rithm is listed, e. g. the recombination-time, mutation-time,
communication-time, and so on. For visualization of the re-
sults it is possible to follow the progression of fitness with a
graphical gnuplot window. The three values of best, average
and worst fitness are displayed in a customizable interval.

3. The graphical user interface UIEA

The graphical user interface UIEA (User Interface for
Evolutionary Algorithms) is based on X11 and uses Motif
1.2. UIEA is a separate program, which starts the desired
evolutionary algorithm (‘EA module’) via remote-shell on
a remote computer or directly on the local workstation. The
EA-module is then controlled withremote procedure calls
(RPC). With this concept it is possible to run UIEA on the
local workstation and the evolutionary algorithm on a re-
mote parallel computer which therefore need not deal with
graphics.

UIEA is not only a graphical frontend but provides addi-
tional functionality: for example it provides a script editor
where batch scripts can be written and directly be sent to the
EA module. Parameter settings can easily be loaded, stored
and be inserted into a batch script. A hypertext help system
is integrated, which uses HTML2 help pages. Different con-

1Tool Command Language
2hypertext markup language

Figure 1. Screen of a session with VEES.
The upper windows are the main window of
UIEA (left) with the statistical output of the
fitness values and the same data graphically
displayed with gnuplot (right). In the middle
left is the Tcl-Script-Builder and the informa-
tion window of EvA. Some of the windows for
changing the parameter settings of VEES are
placed at the right side and at the lower left
corner we see a viewer which shows the route
for the TSP.

figurations of the EA modules can beaccessed, e. g. VEES
on the Intel Paragon, VEGA on the local workstation, etc.

The most recent feature of UIEA is a software interface
for data transportation from the EA module to external pro-
grams for visualization tasks. Data that emerges during the
run of an evolutionary algorithm, e. g. fitness values or
whole individuals, is sent to UIEA where it is transferred
to one or more “viewers” which can process the data. In
figure 1 there can be seen a viewer which shows the cur-
rent best route of the Travelling Salesman Problem, which
is optimized.

4. VEES – distributed evolution strategies

The program VEES (Verteilte Evolutionsstrategien =
distributed ES) is built according to the master-slave model
(Fig. 2). It uses one master node and a large number of slave

Proceedings of the 23rd EUROMICRO Conference '97 New Frontiers of Information Technology
1089-6503/97 $10.00 © 1997 IEEE

interconnection topology

processor

population

control

migration path

master

slaves

Figure 2. Master-slave architecture of the pro-
gram. The master runs the control algorithm
and on each slave is kept one population on
which the ES is performed.

nodes. The master node deals with the complete program
administration, it runs the text based user interface and co-
ordinates the slave nodes. If only one node is available, this
node performs both tasks, the administration task and the
calculation work. Because VEES is able to run on only one
node, it is also possible to run VEES on a single-processor
workstation. The program is written in ANSI-C and hence
is easily portable to other UNIX systems.

The slave nodes run the actual ES code. They wait in a
receive loop for messages from the master. Depending on
the received message, they perform special actions, like ini-
tialization with all necessary ES-data, computation of some
generations of an ES in isolation, calculation of statistical
data, and so on. On each slavenode a separate population is
kept. All populations have the same number of individuals.
Each slave node performs one or more generations of the
ES independently of all other nodes. The number of gener-
ations calculated independently is determined by the inter-
vals for individual exchange and statistic calculation and is
the same on all slave nodes.

Since all slave nodes are similar, perform similar com-
putations and eachnode only runs one application program,
a generation on each slavenode takes approximately the
same time. This holds at least for the complete set of stan-
dard benchmark functions and for many real world appli-
cations. Thus it is easy to synchronize all slave nodes at
the end of a calculation cycle without long waiting peri-
ods. When all slaves have completed the isolated calcula-
tion, they communicate with the master node and get new
commands. Slave node numbers start with 0, the master
node is assigned the highest logical node number. All com-
munication primitives of the program reside in a separate
module. Thus, it is relatively easy to change the communi-
cation library, e. g. it is currently possible to switch from
the custom NX library to the more portable MPI library.

4.1. Two Parallelization Methods on a MIMD–
Computer

There exist several different ways of how to parallelize
evolutionary algorithms on different computer architec-
tures, which can be classified by the object of parallelization
[6]. For MIMD machines it is best to parallelize on the level
of populations, because of the coarse grained parallelism
of these systems. The communication on MIMD machines
normally has some latency, because it is asynchronous, but
has a high throughput rate. Therefore it is best to communi-
cate infrequently but with possibly big message sizes. This
is suitable for sending whole populations of individuals af-
ter a relatively long calculation step like the computation of
a generation.

In VEES two kinds of parallel, distributed evolution
strategies are realized. A purely distributed strategy, based
on theisland modeland a parallelized version of a nested
(�+; �)–strategy which was proposed by Rechenberg [11].

4.2. Distributed Strategy

The distributed evolution strategy is based on the island
model. On an island a population can develop in isolation.
But sometimes an individual of an other population is able
to reach the island and some individuals are able to leave the
island. This process is calledmigration. Migrated individ-
uals increase the genetic diversity of a population which is
especially important for the local operatorrecombinationor
crossoverand thus for the rate of progress of the population.
But diversity is also important for the whole evolutionary
algorithm considered as dynamical system.

In a distributed evolution strategy (DES) each processor
performs a(�+; �)–strategy for some generations in isola-
tion. Schwefel’s notation [12] of such a strategy is:

(�=�+; �)

where� is the number parent individuals,� the num-
ber of individuals used for recombination,� the number of
offspring individuals,
 the number of generations to cal-
culate and+=; the choice of selection method: parent and
offspring or only offspring individuals.

After the isolation an exchange of the best individuals
between the processors is made. The number of genera-
tions which are calculated in isolation is called theexchange
interval. During the exchange a certain number of individ-
uals, determined by theexchange rate, is sent from each
processor to some other processors. The destination proces-
sors are determined by theexchange topologywhich con-
sists in VEES of bidirectional migration paths between two
populations. Not necessarily all populations are connected
with each other, so that an individual cannot reach every

Proceedings of the 23rd EUROMICRO Conference '97 New Frontiers of Information Technology
1089-6503/97 $10.00 © 1997 IEEE

other population during one exchange period. The longest
distance between two populations is called thediameterof
the topology. The three parameters diameter (given by the
exchange topology), exchange interval and exchange rate
should be attuned well toeach other. If they lead to a short
temporal-spacial distance between the populations, the ad-
vantage of the distributed model of not converging too soon
into local optima is lost.

4.3. Nested Strategy

Rechenberg [11] introduced a type of evolution strategy
on a higher level: the nested ES. The idea is that the same
mechanisms duplication, recombination, mutation and se-
lection can be performed on populations instead of individ-
uals. One or more populations produce several offspring
populations which then have a certain amount of time to
develop in isolation in the same manner like in an(�+; �)–
strategy. After that they have to compete against each other
to determine which populations will be selected for the next
cycle. The notation of this kind of strategy is:

[�0=�0+; �0(�=�+; �)
]

0

Here we have the same parameters�0, �0, �0 and
0 on
population level indicated by a stroke. Mutation of a pop-
ulation means the relocation of the whole population to an-
other place in the problem space. Recombination objects
are now complete individuals of the parent populations.
One cycle
0 on population level comprises
 generations
of the inner strategy.

The advantage of the nested(�+; �)–strategy over a nor-
mal (�+; �)–strategy is the parallel search in different re-
gions of the problem space, thus the probability of finding
the global optimum is higher. The mutation and selection
of populations also prevents the strategy from early conver-
gence into a local optimum.

This model is very suitable for parallelization, because
it includes already several independent populations. Since
the main computation work is done on the�0 offspring pop-
ulations, in VEES�0 is set to the number of slave nodes
used. Thus each processor keeps one offspringpopulation.
To avoid multiple parent populations on any node, the num-
ber of parent populations�0 is restricted to a value less or
equal than�0. This would not be necessary in a strategy
with selection type ’+’ on population level, but it simplifies
the implementation and keeps the amount of communica-
tion low.

The coordination of the ES mechanisms on population
level is the task of the master. It determines which popu-
lations are duplicated or used for recombination and finally
which populations are selected to be parents in the next cy-
cle.

5. VEGA – distributed genetic algorithms

The program VEGA (Verteilte Genetische Algorithmen
= distributed GAs) has the same master-slave architecture as
VEES. It implements a distributed genetic algorithm based
on the island model with exchange of individuals over a de-
fined exchange topology (analogous to section 4.2). The ge-
netic algorithm can be varied in many points. There are sev-
eral exchange topologies (ring, grid, x-net, hypercube, full
connected), crossover methods (single/double point, uni-
form), individual codings (binary, gray code) and selection
methods (roulette-wheel, ranking, stochastic remainder, de-
terministic sampling) available.

6. Comparison of different Implementations

The programs used for the comparisons are:

� VEES (described in section 4)

� VEGA (described in section 5)

� ESCA PADE

ESCA PADE is an implementation of a(�=�+; �)

strategy which is able to run on a single-
processor workstation [7, 8]. For our comparison
ESCA PADE version 1.2 was available.

� MPES
MPES is also part of EvA and is a massively par-
allel version of ES on the SIMD computer MasPar
MP-1 [4]. In MPES three kinds of ES are imple-
mented:(�+; �)-ES, nested(�+; �)-ES and a special
kind of ES adopted to the massively parallel architec-
ture. The point of interest in this comparison is the
difference between the SIMD and the MIMD imple-
mentation of ES.

In the evolutionary algorithms of EvA 24 standard
benchmark functions are implemented, which we took from
[1], because these functions are implemented in GENEsYs
which was used for comparisons with the GA implementa-
tions of the EvA project. For the tests described here we
chose four functions out of the 24, which have different
properties.

The following names are used to denote the rows of the
tables with the measured values:

n number of compute nodes
nind number of individuals(�)
ngen number of generations(
)
ttot total amount of compute time
tgen time per generationtgen = ttot=ngen
tind time per individual tind = tgen=(n � nind)

rconv convergence raterconv =
runs converged

runs

Proceedings of the 23rd EUROMICRO Conference '97 New Frontiers of Information Technology
1089-6503/97 $10.00 © 1997 IEEE

As we see, the time per individualtind is not only di-
vided by the number of individuals, but also by the num-
ber of compute nodesn. Therefore it is the effective time
needed for the calculation of one individual. Thus the paral-
lel calculations will benefit in lower values of the timetind.

The number of individualsnind is equal to the number of
offspring individuals� of an ES. This is because all the time
intensive calculations like recombination, mutation and cal-
culation of fitness are done� times, for each offspring indi-
vidual once.

The measured times of VEES are average values of 10
up to 20 measurements, depending on the effort which is
given by the absolute time needed for one measurement and
the number of nodes used. Foreach measurement of such a
series a different initialization value of the random number
generator was used. The detailed parameter settings can be
found in [13, 2, 4]. The type of the used strategy is listed in
the subtitle of the tables in Schwefel’s notation.

6.1. Functionf1

f1(~x) =

nX
i=1

x2
i

; with n = 3;�5:12� xi � 5:12

(1)
The functionf1 is a very simple square function with

only one global optimum at the origin. The calculation of
this function takes a negligibleamount of time and therefore
this function is good for comparison of the speed of the ES
implementation. For the comparison the dimensionn =

3 was used. Because VEES and VEGA are able to find
maximas only, the function was inverted, so that it has a
maximum with the value78:644.

In Fig. 3 on the left side we can see the comparison val-
ues for finding the optimum of functionf1 using one pro-
cessor. VEGA needs almost 3 times more generations to
reach the optimum. The reason for this is that the evolution
strategies can use self-adapting mutation step lengths which
are better adapted to the shape of the objective function.
VEES needs more time for the calculation of one individual
than VEGA, but because of the fewer generations it needs
also fewer time for the calculation overall. ESCA PADE is
designed to run on one processor only and is much faster for
this simple function than the other programs. That means
that it has fewer overhead for internal administration tasks
of the program. For more complex functions it is pos-
sible that the difference in calculation speed decreases in
relation to the other programs, but in the used version of
ESCA PADE the other test functionsf10 and f22 were not
implemented.

Considering the parallel runs of VEES and VEGA in Fig.
3 on the right side in comparison with the times for one pro-
cessor on the left side, we see that some more generations

nind ngen ttot tgen tindf1(3) [s] [ms] [�s]

VEGA (1+1) 1� 350 69 6,2 85 257
VEES (1+1) 1� 350 25 3,47 139 397
VEES Sparc10 1� 350 25 4,1 164 469
ESCA PADE Sp10 1� 350 28 0,9 32,1 91,7

VEGA (16+1) 16� 22 92 1,6 17,4 49,4
VEES (16+1) 16� 22 33 0,906 27,5 78
MPES 16K PEs 16384� 1 8 0,33 41 2,5

Figure 3. Comparison of VEGA, VEES and ES-
CAPADE for function f1, with 350 (resp. 352)
individuals. VEES and ESCAPADE used a
(95/2, 350)–strategy, VEES on 16 nodes a (7/2,
22)–strategy.

are needed to reach the optimum, when a similar number
of individuals are used but distributed to 16 nodes (16� 22

vs. 1 � 350). The reason for this effect is that a smaller
population leads to a lower speed of progress per gener-
ation. The overall computation time, however, decreases
much and compensates for the small increase in genera-
tions. Because of the parallel computation, the effectively
needed time for the calculation of one individual decreases
by a factor of 5. The reason for this sublinear speedup is the
fact that the administration overhead of the program outbal-
ances the calculation time of the objective function for this
simple function.

The program MPES needs the shortest time for this func-
tion. With the large amount of 16384 individuals3 it is able
to make a nearly optimal step towards the optimum of this
low dimensional function in every generation. This is indi-
cated by the few generations needed. As expected, the cal-
culation time for one individual is much less than with the
other programs because of the large number of processors.

6.2. Functionf9

Ackley’s function:min(f9) = f9(0; : : : ; 0) = 0

f9(~x) = �a � exp

0
@�b

vuut 1

n
�

nX
i=1

x2
i

1
A

� exp

1

n
�

nX
i=1

cos(c � xi)

!
+ a+ e

a = 20 ; b = 0:2 ; c = 2� ; e = 2:71828

3 it would have taken additional time to prevent their use because of the
SIMD architecture

Proceedings of the 23rd EUROMICRO Conference '97 New Frontiers of Information Technology
1089-6503/97 $10.00 © 1997 IEEE

nind ngen ttot tgen tind rconvf9(30) [s] [ms] [�s]

VEES P 1� 320 85 42,6 501,1 1566 1,0
VEES P 1� 20 254 8,2 32,3 1616 0,45
VEES P 16� 20 118 6,0 50,6 158 1,0

VEES rs 1� 20 267 2,8 10,5 524 0,59
VEES rs 4� 20 145 3,5 23,9 299 1,0

Figure 4. Comparison for function f9. Abbre-
viations: P - Intel Paragon, rs - IBM rs6000.
For every column 20 independent measure-
ments were made, for VEES on one node of a
rs6000, 100 measurements were made. Con-
vergence was reached when the optimum 0
was approximated with a difference less than
1 � 10�6. We used a (45/2, 320) resp. a (5/2, 20)
ES on every node and intermediate recombi-
nation for the object variables and the step
size. Exchange parameters where: exchange
interval = 5 generations, exchange rate = 0.2,
exchange topology = full connected.

n = 30 ; �32:768 � xi � 32:768

Ackley’s function is a continuous and multimodal func-
tion. It consists of a base exponential function which is
modulated by a cosine wave. We use it here in the gen-
eralized, scalable version of Schwefel [12] with dimension
n = 30.

This function is high dimensional and multimodal, so we
want to look at it under the aspect of what we can gain from
parallelism. In the first column we have considerably high
computation time on one node, but all runs converge to the
global optimum. When we reduce the number of child in-
dividuals to 20, the computation time decreases, but only
about half the runs converge. Using 16 nodes, we have both:
low computation time and high convergence rate.

6.3. Functionf10 (TSP)

The third test function we used is theTraveling Salesman
Problem. The task is to find the shortest route that visits
each of 100 cities once. For this special problem the short-
est route is known and amounts to 21285 length units. The
cities are given by their coordinates in the plane. We used
here only a simple position encoding of the problem with-
out special recombination operators etc., which is not able
to find the optimal route of this NP-complete problem. So
we can compare the quality of the found solution, too. To
compare the calculation time for this function, in the first

nind ngen ttot tgen tindf10(100) [s] [ms] [�s]

VEGA 64� 256 1000 1320 1,32 80,56
VEES 64� 256 1000 2063 2,064 125,9
VEES 36� 100 320 200 0,625 174
VEES 64� 256 360 664 1,844 112
MPES 16384� 1 580 621 1,071 65,4

f10(100) nind best route

VEGA 64� 256 29498
VEES 64� 256 23935
VEES 36� 100 22280
VEES 64� 256 22235
MPES 16384� 1 28497

Figure 5. Comparison of calculation time for
the TSP. The optimal route is 21285. The
VEES strategy was of type (70/3, 256) resp.
(27/3, 100).

half of the table we calculated constantly 1000 generations,
but the algorithms converged in about half of it to a final
value.

The position encoding is as follows: All towns are num-
bered, each town number is assigned one object variable
and each object variable is a ordinal number of its town. To
calculate the town sequence, the object variables are sorted
in ascending order, but they keep the implicit assignment
to their town. After sorting, the sequence of assigned town
numbers gives the route to visit the towns. In this algorithm
an evolution strategy uses real-valued object variables and
a genetic algorithm uses integer-valued variables for the or-
dinal numbers. So in genetic algorithms it is possible that
two towns have the same ordinal numbers. In this case it de-
pends on the ordering algorithm which town is visited first.
With real valued ordinal numbers like in evolution strategies
this case is very unlikely.

VEES needs about 50% more time for an individual than
VEGA and thus for the whole run. This is due to the 64 bit
doublefloating point values used in VEES for each of the
100 cities of an individual, in contrast to the 7 bit integer
values used in VEGA. This may also be the reason for the
much shorter route found by VEES. The floating point val-
ues leave more freedom for fine position changements of the
towns relative to each other than the integer interval[0; 127].

The table in Fig. 5 gives a comparison between VEES
and MPES. With both programs 16384 individualswere cal-
culated overall, in VEES they were distributed to 64 pro-
cessors. The total time of VEES needed for finding the best

Proceedings of the 23rd EUROMICRO Conference '97 New Frontiers of Information Technology
1089-6503/97 $10.00 © 1997 IEEE

object variable 1 object variable 2

quality

Figure 6. Function f22 for the 2-dimensional
case, inverted.

solution with this configuration was only little longer than
that needed by MPES. This shows that distributed evolution
strategies can reach equallygood results as the massively
parallel ones. Additionally the shortest route found in this
run by VEES was much shorter than that of MPES and it
needed less generations as well.

The measurement in the left column of Fig. 5 shows that
VEES is also able to find a comparable route with much less
effort in time and number of individuals.

At this function a big influence of using recombination
of individuals could be seen. Without recombination were
found only routes that were about10:000 units worse than
those found with recombination� = 2. Increasing the num-
ber of recombinants to� = 3 brought again a visible im-
provement of the solutions. Values of� > 3 only increased
calculation time but brought no considerable effect.

6.4. Functionf22

Functionf22 (Fig. 6) is a 10-dimensional function with
many suboptima that differ only a little fromeach other and
from the global optimum. Therefore the difficulty of this
function for the evolutionary algorithms is to find the global
optimum and not to converge into a local one.

f22(~x) =
1

d

nX
i=1

x2
i
�

nY
i=1

cos(
xip
i
) + 1

with n = 10; d = 4000;�600 � xi � 600

The measurements with one processor (upper 4 rows of
Fig. 7) brought the following results:

� VEES needs less generations and thus less total cal-
culation time as VEGA,

nind ngen ttot tgen tindf22(10) [s] [ms] [�s]

VEGA P 1� 3200 290 570,4 1967 615
VEES P 1� 3200 106 300,3 2833 885
VEGA S10 1� 3200 164 407,2 2483 776
VEES S10 1� 3200 106 268,4 2532 791

VEGA P 64� 50 304 30,61 100,7 31,5
VEES P 64� 50 108 13,6 126 39,4
MPES 16384� 2 51 10,02 196,5 6

Figure 7. Comparison with function f22. Ab-
breviations: P - Intel Paragon, S10 - Sparc 10.
The used strategy was of type (864/2, 3200)
resp. (14/2, 50).

� the time per generation and per individual of VEES
is greater,

� with VEGA only about 15% of the runs converged to
the global optimum, with VEES parameter settings
were found, which had a convergence rate of 100%.

Using the same number of individuals distributed to 64
nodes brought a factor 23 speedup in both programs, VEGA
and VEES. The number of generations needed did not in-
crease, so that the time per individualtind decreased by the
same factor. On 64 nodes the convergence rate of the single
measurements of VEES was not as sensitive to littlechanges
in the parameter settings as using only one node.

MPES needs about half of the generations of VEES, but
because of the fewer individuals used in VEES, the overall
computation time is only slightly greater. MPES also has
no difficulties finding the global optimum.

7. Conclusions, Outlook

In summary, we obtained the following results:

� distributedES execution on a MIMD computer is able
to speedup the ES significantly,

� the global optimum is found with a higher probability
even if there exist many similar suboptima,

� in our benchmarks the solutions found with the dis-
tributed ES were often much better than the ones
found with a one-processor version.

The advantage of distributedevolution strategies over the
massively parallel ones is that they are also able to run on

Proceedings of the 23rd EUROMICRO Conference '97 New Frontiers of Information Technology
1089-6503/97 $10.00 © 1997 IEEE

a single-processor workstation and not only on an expen-
sive parallel computer. So it is possible to develop, test and
debug new applications on a workstation and to use the par-
allel computer only for the optimization runs.

EvA is a user-friendly and powerful tool for optimiza-
tion tasks with evolutionary algorithms. It provides menu-
driven full implementations of distributed and massively
parallel genetic algorithms and evolution strategies. Addi-
tionally the language Tcl is included, so that powerful batch
scripts can be written that control the optimization runs.

Until now EvA was not applied to large real-world ap-
plications. We therefore are eager to get in contact with
researchers who need such a powerful ES optimization sys-
tem.

8. Acknowledgments

Some of this research was performed while both au-
thors were at the University of Stuttgart, IPVR. We would
like to thank the other members of the former EvA team:
Roland Baumann [2] and Alex Hummler [9] for their dis-
tributed and massively parallel genetic algorithms (VEGA
and MPGA), Marc Ebner [3] for his genetic algorithms
on the neurocomputer Adaptive Solutions CNAPS called
CNGA, Steffen G¨orzig [4] for his massively parallel evolu-
tion strategies, MPES, and Alexander Hasel [5] who com-
bined all these with a powerful and easy to use graphical
user interface under X11/Motif.

References

[1] T. Bäck. A User’s Guide to GENEsYs 1.0. Technical report,
University of Dortmund, Department of Computer Science,
System Analysis Research Group, 1992.

[2] R. Baumann. Verteilte Genetische Algorithmen auf dem
MIMD–Parallelrechner Intel Paragon. Diplomarbeit Nr.
1227, Universit¨at Stuttgart, IPVR, 1995.

[3] M. Ebner. Parallele Genetische Algorithmen auf einem Neu-
rocomputer. Studienarbeit Nr. 1478, Universit¨at Stuttgart,
IPVR, 1995.

[4] S. Görzig. Massiv Parallele Evolutionsstrategien auf dem
Parallelrechner MasPar MP-1. Diplomarbeit Nr. 1291, Uni-
versität Stuttgart, IPVR, 1995.

[5] A. Hasel. Eine graphische Oberfl¨ache für Parallele Genetis-
che Algorithmen und Evolutionsstrategien. Diplomarbeit
Nr. 1301, Universit¨at Stuttgart, IPVR, 1995.

[6] F. Hoffmeister. Scalable Parallelism by Evolutionary Al-
gorithms, pages 177–198. Number 367 in Lecture Notes
in Economics and Mathematical Systems. Springer, Berlin,
Heidelberg, 1991.

[7] F. Hoffmeister. The User’s Guide toESCAPADE 1.0 — A
Runtime Environment for Evolution Strategies. University
of Dortmund, Department of Computer Science XI, P.O.Box
500 500, D-4600 Dortmund 50, Germany, October 22 1991.

[8] F. Hoffmeister and H.-P. Schwefel. KORR2.1 — An Im-
plementation of a(�+; �) – Evolution Strategy. University
of Dortmund, Department of Computer Science XI, P.O.Box
500 500, D-4600 Dortmund 50, Germany, October 22 1991.

[9] A. Hummler. Massiv parallele Genetische Algorithmen auf
dem Parallelrechner MasPar MP-1. Diplomarbeit Nr. 1240,
Universität Stuttgart, IPVR, 1995.

[10] J. K. Ousterhout.Tcl und Tk. Entwicklung grafischer Be-
nutzerschnittstellen f¨ur das X Window System. Professional
Computing. Addison–Wesley, 1995.

[11] I. Rechenberg.Evolutionsstrategie ’94, volume 1 ofWerk-
statt Bionik und Evolutionstechnik. frommann–holzboog,
Stuttgart, 1994.

[12] H.-P. Schwefel. Evolution and optimum seeking. Sixth-
Generation Computer Technology Series. John Wiley &
Sons, INC., 1995.

[13] J. Wakunda. Verteilte Evolutionsstrategien auf dem Super-
computer Intel Paragon. Diplomarbeit Nr. 1300, Universit¨at
Stuttgart, IPVR, 1995.

[14] A. Zell and R. Baumann. Distributed Genetic Algorithms on
the Intel Paragon, a large MIMD Computer. In T. B. L. J. Fo-
gel, P. J. Angeline, editor,Proc. of the 5th Ann. Conf. on
Evolutionary Programming, San Diego, CA, Feb. 29-March
2 1966.

Proceedings of the 23rd EUROMICRO Conference '97 New Frontiers of Information Technology
1089-6503/97 $10.00 © 1997 IEEE

