
A simple management tool for medium-sized

Web sites

Igor Fischer1 and Andreas Zell1

Wilhelm-Schickard-Institut f�ur Informatik, Universit�at T�ubingen,
K�ostlinstr. 6, 72074 T�ubingen, Germany

ffischer, zellg@informatik.uni-tuebingen.de
http://www-ra.informatik.uni-tuebingen.de/

Abstract. Site management is one of the key issues in Web publish-
ing. Whereas smaller sites can be still managed manually, large Web
sites generally require a systematic approach, usually involving sophisti-
cated tools operated by skilled personnel. Between these two extremes are
medium-sized sites. Although site management tools exist for both ex-
tremes, the market coverage of the mid-size segment is somewhat sparse.
In this paper we describe our own tool, aimed at small and medium sized
Web sites, of some 1000 pages. It is simple to use and needs no special
skills or knowledge to be operated. Yet it is powerful enough to man-
age a site of a small organization and to enforce a common corporate
identity. We use it for management of our department site, as well as for
managing contents of various on-line education projects.

1 Introduction

The continuous and exponential growth of the WWW has been marked not
only by an increasing number of Web sites, but also by increasing size and
complexity of the sites themselves. Today, it is not unusual for a Web site to
contain tens, or even hundreds of thousands of documents linked with each
other. For example, the AltaVista search engine lists over 20000 documents in
the domain java.sun.com alone, and there are probably many more1. Moreover,
large sites can even span many servers distributed around the world. Since sites
are non-static entities, with pages continuously being added, removed, changed
or linked in a di�erent way, their management has increasingly become an issue.

The term \Web site management" is used to describe a wide variety of ac-
tivities related to publishing contents on the WWW, ranging from authoring,
over maintaining consistent structure, to traÆc analysis and site optimization.
For the purpose of this paper, by managing a Web site we shall mean a subset
of those activities, namely keeping site structure under control, as well as en-
suring common appearance of corresponding pages, regardless of their contents.

1 Experience shows us that, as a rule, search engines do not index all pages on the
WWW. For example, our department site has some 200 pages, but only 16 appear
in the AltaVista listing.

Under structure we understand the way pages are linked to each other and how
they interact with server-side modules, like servlets or CGI scripts. More pre-
cisely, the site structure describes which pages comprise the site and how they
relate to each other. Although the structure of a web site can generally be any
kind of a directed graph, for navigational simplicity tree-like structures prevail.
Consequently, most relationships are of hierarchical (like super-/subordinated,
or parent/child) or peer level (predecessor or successor) nature, with few excep-
tions, most notably the home page, which is in many sites linked to from all
pages.

By common appearance we mean coherent use of fonts, colors, graphics,
logotypes, navigational elements and layout in all pages.

Although smaller sites of, say, few dozen Web pages still can be managed
manually, this approach relies heavily on the human factor and is therefore
error-prone. For large sites, with many thousands of pages, management has to
be machine-supported in some way. Di�erent tools have been developed to cope
with the challenge, ranging from simple visual tools, like Microsoft FrontPage,
for managing smaller sites, to big database systems with di�erentiated author-
ing, access and version control, capable of dynamically generating personalized
contents on the high end.

In the former approach, a web site manager uses a visual site editor for
determining the site structure. This approach is intuitive and simple as long as
the display remains comprehensible, but for large sites, the screen easily becomes
confusing and jammed with pages and links.

The latter approach does not rely on a visual representation of site, although
it may still include it as a convenience. In that approach, content and site man-
agement are specialized tasks, being generally performed by di�erent people.

The rest of this document is structured as follows: We �rst take a look at
some existing site management tools, then we state the scope and target audience
of our tool, analyze the tool structure and show subsequently some example
sites managed by the tool. In conclusion we summarize the results and discuss
possibilities for further development.

2 Related tools

Rapid growth of the WWW has been followed by development of various Web-
related tools and applications, from rather specialized ones, like link checkers,
to comprehensive site management and analysis applications. Analyzing all of
them would be beyond the scope of this article, but we shall take a brief look at
some of their representants.

One very popular site management tool for smaller sites is Microsoft Front-
Page [1], available for Windows platforms. Developed as a complete solution for
Web publishing, it concentrates mainly on page design, but also includes visual
site management. Former versions relied on an integrated Web server and gen-
erated proprietary code, but in the \2000" version those issues are improved.

For the design of sites with common look-and-feel, FrontPage provides modi-
�able page templates. The tool is itself simple to use, especially for Microsoft
OÆce-experienced users, but, due to prede�ned templates, limits the designer's
freedom. A mightier tool, aimed at professional programmers, is Visual InterDev
[2].

Another popular tool is NetObjects Fusion [3], designed for small business.
Like FrontPage, Fusion is a visual tool with focus on desktop-publishing-like
page design, but also allows drag-and-drop design of sites. It encapsulates the
site in a proprietary database format, thus disallowing any manual modi�cations
by the author. It is reportedly very good for designing pages with pixel-level
precision, but has problems with importing existing sites [4]. Fusion is available
for Windows and Macintosh platforms.

Symantec Visual Page [5] for Windows and Macintosh is primary a Web
authoring tool, but also o�ers some basic site management functions. A site
is stored in a project �le, but it does not describe any linear or hierarchical
structure. Therefore, no automatic generation of navigation elements is provided.
Instead, all links have to be entered manually.

A tool more oriented on content management than on page design is the
UserLand Frontier [6], speci�cally aimed at news-oriented sites. Common ap-
pearance of pages is ensured through use of templates, and linear navigation is
simple to implement, but not site maps, table of contents etc. All relevant data
(contents, templates and site structure) is stored in an object-oriented database
in a proprietary format. Contrary to previously mentioned tools, a visual repre-
sentation of site structure is not provided. Frontier is available for Windows and
Macintosh platforms.

The SGI Site Manager [7] is capable of representing the complete site struc-
ture in three-dimensional hyperbolic space. This tool is more sophisticated, con-
sisting of a client and a server part, and should be con�gured by a Webmaster
or a user who has experience with server con�guration. Besides for content man-
agement, this tool provides for site traÆc analysis. Common appearance of pages
is provided through templates, which can be created not only for HTML, but
for any �le format. It does not generate navigation elements automatically, and
is available for IRIX 6.2 and higher platforms.

On the high end are site management tools like Interwoven TeamSite [8].
Based on a hybrid architecture (�le system and database), this tool is suitable
both for existing and legacy sites, as well as for well structured state-of-the-art
sites, with templates, XML, dynamic contents generation and many more. It is
available for Windows, Mac and Solaris platforms, but its price, starting at USD
70000, places is out of reach for smaller organizations.

3 Scope

Site management tools developed up to date mainly concentrate on large Web
sites, usually involved in e-business. The coverage of small and medium sites,
consisting of roughly 1000 pages and needing coherent and appealing corporate

identity is notably sparser. This is especially true for non-Windows platforms.
Medium-sized sites are already too large to be eÆciently managed by simple
visual tools. Additionally, many of those tools, most of them with emphasis
on Web design, although o�ering a number of prede�ned templates, limit the
authors freedom in designing his own common appearance of pages. On the other
hand, a high-end professional solution is likely to be too expensive to acquire
and to support for an organization with a relatively small site.

A typical example of such organization would be a small or mid-size orga-
nization or company with rented Web space. The server administration would
be generally outsourced to the Internet Services Provider, but the organization
is likely to remain in charge for the contents. The following model describes the
constellation:

{ the organization designs a visual appearance for presentation on the Web,
corresponding to its corporate identity, or hires a professional designer for
the job,

{ it creates the contents to be published on the Web,
{ it converts the contents into HTML and shapes it to suit the designed ap-
pearance, and

{ passes it to the Web-space provider, who publishes it.

The whole publishing process should be preferably performed modularly, in
independent steps. The Web designer needs neither contents nor Web access for
designing the appearance. He or she designs only templates, which are to be
�lled with contents. The contents creator, on the other hand, doesn't rely on the
design when creating the contents. The two components meet only when melting
them together into �nal HTML �les which are to be published. But even then,
the resulting site can be viewed o�-line, as long as no interactive components, like
database queries, are involved. The need for a Web server comes into appearance
only in the �nal step, when the content is published on the Web.

To meet the needs of that group, we developed a Web site management
tool that is still relatively easy to use for Web authors, but powerful enough
to manage such medium sized sites. In the development of our tool, we were
guided by the idea of simplicity. More speci�cally, we wanted the tool to ful�ll
the following requirements:

{ easy to install,
{ simple to use,
{ easy to maintain,
{ able to maintain legacy HTML pages without further modi�cations,
{ not to use proprietary data formats,
{ independent of specialized editors or viewers,
{ able to work o�-line, independent of Web server

The target group we had in mind were content authors. The only assumption
we made about them was possession of some HTML knowledge. Therefore, the
tool has to o�er maximum possible freedom in developing design and contents
and spare the authors of technicalities connected with server administration.

As could be expected, developing such a tool could not be done without trade-
o�s. Above requirements could not be met without imposing some constraints
on the site structure. They were the following:

{ the site structure can be considered static,
{ page contents are independent of their position in the site structure.

The �rst constraint simply states that the number of pages remains the same
and that links between them don't change. At the �rst glance it might seem as a
very hard constraint, since it excludes dynamically generated pages, like from a
database or search engine. Fortunately, this is not the necessarily the case: if only
a limited number and kind of pages is generated dynamically, one can reserve
proxy pages in the site structure, which acquire their content dynamically. For
example, one can reserve a \search" page in the site structure, whose content is
then generated according to the search results.

What the constraint really makes impossible is management of dynamic sites,
like personalized sites, where users practically create their personal view of the
site, or where sites automatically adapt to users. Those features are, however,
not very common yet and for small and medium sites of limited interest.

The other constraint is even easier to meet. It aims at uncoupling the devel-
opment of contents from development of site structure. In practice it means that
contents authors should not reference other pages relatively to the current one
(like \see previous page"), but only by their �le name (like \see page introduc-

tion.html"). For hyperlinked medium like WWW it is anyway the preferred way,
because the reference can be implemented as a hyperlink to the referenced page.
Those hyperlinks can still be relative inside the directory tree containing the
pages. The directory structure does not have to correspond to the site structure,
but site maintenance might be somewhat simpli�ed if it does.

4 Tool structure

The core of our tool is a Perl script which takes site description, page templates
and contents pages as input and produces complete linked site as output (�gure
1). Instead of using a database or some proprietary format for storing the site
structure and its contents, we basically rely on HTML. This makes the tool
extremely easy to use for a HTML author, because HTML can easily be edited,
even with pure text editors. So, all inputs to the processing tool are HTML-
based, with some extensions that control the processing and the output is strictly
HTML | at least to the degree the author of contents and templates adhered
to the standard.

The notorious HTML property of mixing contents and structure comes help-
ful in our case. We use HTML in description �le to describe the site structure.
In templates, we mix the structure with contents to achieve a page appearance
that is dependent on the page position in the site structure. The tool imposes
no restriction on the way authors write contents pages, except that it expects
them to be in HTML.

s i t e
d e s c r i p t i o n

t e m p l a t e s

c o n t e n t s

w e b s i t e

p r o c e s s o r

Fig. 1. Schematic tool structure.

s i t e
d e s c r i p t i o n

t e m p l a t e s

w e b s i t e

p r o c e s s o r

Fig. 2. Schematic tool structure for \site
recycling".

The description �le describes site structure in a similar way the Netscape
bookmark �le organizes user's bookmarks. The logical organization of a site
is hierarchical, in a tree structure. The tree consists of nodes and branches,
branches representing hierarchical relationships between nodes. Nodes are gen-
erally named, and each one can have a page assigned to it. This is a di�erence to
most other site management tools, which require a page to be assigned to each
node. By allowing nodes without assigned pages, we provide a way for jumping
directly to lower-level pages, without having to stop at intermediary pages of no
interest, but still maintaining a consistent site structure. This concept resem-
bles the idea of abstract classes in object-oriented programming, which have no
functionality but to serve as basis for child classes.

The tree structure in the description �le is represented by nested HTML
de�nition lists (<DL>), with each node being a de�nition term (<DT>). If a node
has a page assigned to it, the page is represented by a HTML link to it ().

To facilitate the processing, we have included some proprietary extensions to
standard HTML. All extensions are optional and inuence in no way standard
HTML parsing of the �le. At the beginning of the �le, a block with system and
user variables can be included. This block is a HTML comment, starting with
<!--VARIABLES and ending, like all HTML comments, with -->. The system
variables control the processing: they specify where to �nd contents �les, where
to put the generated �les, which templates to use and so on. An example is given
in table 1 in the next section.

Additionally to them, a user can de�ne his own variables it the VARIABLES

block, like copyright note, author name and so on. These variables, if given in
template �les, get substituted for their values during processing.

After the VARIABLES block, the site structure, as nested de�nition lists, fol-
lows. The proprietary extensions to the <DT> tag, analogous to the Netscape ex-
tensions used in bookmarks �le, appear after DT and before closing angle bracket.
They are used to force use of another template, to implicitly specify a sequence
of source �les to be inserted at that point etc. Table 2 describes some example
extensions.

Fig. 3. Site structure, viewed with a HTML browser.

Site structure can be viewed with an ordinary HTML browser, as shown in
�gure 3. Both hierarchical site structure, as well as linear order of pages, is easy
to understand.

The template �les can be seen as wrappers for contents �les. They de�ne the
appearance of web pages, including navigation bars, buttons and banners. They
are basically HTML pages with processing directives, speci�ers and variables
that during processing get substituted for currently applicable values. All these
HTML extensions appear as HTML comments, i.e. surrounded by <!-- and -->

strings. They represent page title, hypertext references to this and other pages,
and so on. For some of these elements, the current value depends only on the
page being processed and for others on the site structure and the page position
in it. Together, they are used for automatic generation of navigation elements,
indices and site maps. Some examples are presented and described in section 5.

It is possible to use a same directory for both contents (input) pages and the
resulting web site. In that case, the processing tool does not take whole HTML
pages as a source, but extracts the original contents from them for processing.
This feature makes it possible to update a complete site { for example, change
its design or update links { without having a separate copy of it for publishing. It
is very useful for maintaining existing sites, since one can make changes directly
on its pages, without the need for a separate publishing step. The tool structure
that corresponds to this concept is shown in �gure 2.

Design of template �les should preferably be done by a HTML-experienced
designer. The basic layout can still be designed with a visual tool, and then
manually extended and composed together to build a suitable template �le. As
far as contents authors are concerned, this tool imposes no obstacles, but allows
them to concentrate on contents, without worrying about appearance.

5 Example sites

The site management tool described here has been originally developed in the
VirtuGrade project, for the management of educationally oriented Web sites.
Although it is still its main application area, it can also be used for general site
management. For example, we use it for the management of our department web
site.

Fig. 4. An excerpt from a site description �le.

Figure 4 shows the same site description �le as �gure 3, but this time in source
code. The VARIABLES block de�nes which �les are to be processed, which simply
copied, with which page number and template to start and which directories to
use. The meaning of all these variables is described in table 1.

Variable Meaning

$SOURCE The directory containing source pages. The default value is source.

$DEST The directory for processed pages. The default is dest. If source and
destination are the same, the processing tool extracts original con-
tents from the pages and reprocesses them.

$FILTER A �le �lter (wildcards for listing �les), de�ning which �les other than
those explicitly listed are to be processed. By default no other �les
are processed.

$COPY FILES Files to be automatically copied from source into destination, like
images, Java classes etc. May include wildcards. Default: none.

$TEMPLATE Template �le to use for the pages. By default Template.html.

$PAGE Starting value of the page counter. Default value is 1, but it can be
set to any number, or to a letter, for alphabetical enumeration.

Table 1. Control keywords for VARIBALES block in site description �le

Further, the site structure is stated: the <DT> tags de�ne nodes in the hier-
archy given by nested <DL> tags. Some of these tags are used with extensions,
whose meanings are described in table 2.

The �les TemplateStart.html and Template.html are used as templates dur-
ing processing: it starts with TemplateStart.html but switches later to Tem-

plate.html. Figure 5 shows a small part of a template �le which governs the
appearance of the navigation bar. In this example, the whole navigation bar is
packed in a table. The <!--INDEX--> tag in the second line starts the navigation
bar description. The <!--L1 TYPE="current"--> de�nes �rst-level entries for
index entries belonging to the same branch as current page: the name of the
branch is displayed (<!--TITLE--> tag) and a new table started. Inside the ta-
ble, the appearance of second-level entries is de�ned. The current entry appears
with an icon left to it (tag) and its name is shown in a di�erent
color. Other entries (<!--L2 TYPE="other"-->) are shown without an icon and
in default color.

<DT> Extension Meaning

END Used in conjunction with $FILTER from the VARIABLES block. All �les
selected by the �lter and which, alphabetically sorted, appear between
currently processed �le and the �le given in the END variable, get
processed and subsequently inserted at the current position in the
site structure.

TEMPLATE=": : :" Switches to another template �le for processing current and subse-
quent source �les.

PAGE=: : : Sets the page counter to the given value.

Table 2. Extensions to the <DT> tag

Fig. 5. An excerpt from a template �le.

After the closing tag for current branch �rst-level entries (<!--/L1-->), the
appearance of other �rst-level entries is de�ned. They simply get their name
shown, but their subordinated branches are not shown. The <!--/INDEX--> tag
closes the de�nition of the navigation bar. Finally, the body of the source �le
is inserted in place of the <!--BODY CONTENT--> tag. Table 3 summarizes the
HTML extensions used in template �les.

In place of HEAD CONTENT and BODY CONTENT in a template �le, the HTML
code from <HEAD> and <BODY> parts of source �les are inserted. Further, ex-
tensions like PREV and UP are available for generating linear navigation in the
site.

The <INDEX> block is used for generating exible and powerful navigation
bars. For example, if current page or branch should be highlighted in the navi-
gation bar, then the HTML code inside the Ln block marked as "CURRENT"
should di�er from the code in the block marked as "OTHER". Also, if di�erent
levels are to appear in di�erent colors in the navigation bar, the code in di�erent
Ln tags has to control it.

A page from a toy example site, generated using the above described template
and site description �le, is shown in �gure 6. This page has a standard banner at
the top, with buttons for linear navigation on its right edge. The left side of the
page contains a navigation bar, with the current page being marked with a small
quadratic icon. At the bottom, the page contains a logo, some textual information
about the page and the author and again buttons for linear navigation. All these
elements are de�ned in the template �le. The information content of the page,
as de�ned in a source �le, appears in the large right part of the screen.

As a real world example of sites managed by the tool, a page from our
department's Web site [9] is shown in �gure 7. Like the toy example above, it
also contains the top banner with some information and navigation elements, and
a navigation bar on the left, with highlighted current page. This is today a very
frequent appearance on the WWW and can almost be considered a standard.

Extension Meaning

HEAD CONTENT The contents of current source �le's <HEAD> block.

BODY CONTENT The contents of current source �le's <BODY> block.

DATE Current date, useful as the last modi�cation date.

PREV File name of a previous page in the site structure. If no LEVEL is
speci�ed, it refers to the previous page regardless of hierarchy level.
Else, it referes the previous page at the given hierarchical level.

NEXT File name of the next page in the site structure. Considerations similar
to PREV hold.

LEVEL Level speci�er for PREV and NEXT.

UP File name of the parent page in the site structure, i.e. one hierarchy
level higher.

DOWN File name of the next page in the hierarchically higher level, i.e. the
next branch in the hierarchy.

TITLE This variable can have di�erent meanings, depending on where it ap-
pears:

{ inside the <!--INDEX--> ... <!--/INDEX--> block, it is the name
of the index point

{ inside the <TITLE> ... </TITLE>, it is the title of the currently
processed page

HREF This variable also has di�erent meanings, depending on where it ap-
pears:

{ inside the <!--INDEX--> ... <!--/INDEX--> block, it is the relative
URL of the page assigned to the index point

{ outside the <!--INDEX--> ... <!--/INDEX--> block, it is the URL
of the current page

PAGE Current value of page counter (page number).
INDEX Start of an index block. Index block contains complete or partial site

index and is useful in navigation bars.

/INDEX End of an index block.

Ln Start of n-th level in an index, n being a number between 1 and 6.
Additionally, a type should be speci�ed:

{ TYPE="CURRENT": marks block to be used for processing index
points referring to the current page or pages on other hierarchy
levels belonging to the same branch.

{ TYPE="OTHER": opposite of current: marks block to be used for
processing index points referring to the pages that are neither
current, nor belonging to the same branch on another level.

{ TYPE="ALL": means CURRENT or OTHER: marks block to be
used for processing all index points, regardless if they belong to
the same branch or not.

/Ln End of n-th level in an index.
Table 3. HTML extensions for template �les

Fig. 6. Example page generated by the site management tool.

The index appears twice in this page: in a single line in the top banner,
with only current branch for each level displayed, and in the left navigation
bar, with current level expanded and shown with all branches. Contrary to the
toy example before, which represents a small Web course book with a preferred
order (a learning trajectory) of traversing it, the department site is a more free
structure and does not provide for a linear (forward/backward) navigation, but
only for a hierarchical one. It also includes a search function, which is accessed
on a separate search page through the link "Suchen" in the lower part of the
navigation bar. The contents of the department site changes almost daily, with
di�erent authors being responsible for di�erent pages. Therefore, to facilitate
the maintenance, only the published version of the site exists and all changes
are made directly on it. Only for the case when pages are added or removed, the
webmaster updates the site description �le and \recycles" the site, as illustrated
on �gure 2 above.

6 Discussion

E�ective Web site management can be done with relatively simple tools and
very limited resources. In this paper, we have described a site management tool
implemented in Perl, suitable for managing small and medium-sized sites.

Most commercially available site management tools rely on a database or
some proprietary format for storing a site before publishing. This approach is
systematical and allows management of very big sites, including dynamic gen-
eration of pages or even whole sites. The main drawback lies in its complexity:
skilled personnel and maybe expensive hardware and software is needed, which
can be behind the reach of smaller organizations.

The other extreme, manual site management, is impractical and can be per-
formed only for very small sites. It is labor-intensive, error-prone and easily be-

Fig. 7. A page from the department for computer architecture's web site.

comes very expensive as site grows. Additionally, it is hard to enforce a common
appearance (\corporate identity") on pages.

The tool described in this article aims to be simple enough to be used by
anybody familiar with HTML, but still capable of managing sites containing
hundreds of pages. It uses HTML for all its inputs (contents, templates and site
description) with minor extensions, which are hidden in HTML comments and
serve as control elements for page processing. As of software, it needs only a
Perl interpreter and works independently of a Web server or any other back-end
process, like database or search engine. That makes it a kind of \plug-and-play"
program, which is not the case for more complex and sophisticated solutions.

The tool's capabilities have been shown in managing di�erent Web sites,
from di�erent department and faculty sites at our university, to various sites in
VirtuGrade and Bioinform@tik projects.

A drawback of the tool is that it can generate only static sites, i.e. sites where
structure remains the same for all visitors, regardless when they request a page.
Although it can be an important issue in some cases, for the users in our scope
(small and mid-sized organizations), it is seldom the case.

It can also be argued that HTML is not the ideal language for describing
a site structure, or even contents. Whereas there certainly is something to this
argument { otherwise we would not experience continuous improvement of ex-
isting standards and establishment of new ones, like XML [10] for general data
description, or WebDAV [11] for content management { HTML is for the time
being still the most common format on the Internet, simple yet powerful. In
authors' opinion, this balance of simplicity and capability has been one of the

crucial reasons for the success of the WWW. Although the tool would perhaps
bene�t from a better format for site and contents description, it is likely that it
would discourage many of its users. To that concern adds the fact that new stan-
dards, like XML and XLST, are still under development and sparsely supported
by simple and powerful tools. And, even if the time should render the described
tool obsolete, we believe that the underlying ideas and principles regarding site
management will still remain valid.

7 Acknowledgments

The authors wish to thank Uwe Oestermeier, the originator of the concept for site
management, who kindly provided his own tool as a sample. Many thanks go to
the authors' colleagues Simon Wiest and Clemens J�urgens, who further extended
the described tool and supported the author with new ideas. The VirtuGrade

project is funded by the state of Baden-W�urttemberg and the Bioinform@tik

project by the state of Baden-W�urttemberg and the Deutsche Telekom AG.

References

1. Microsoft Corporation, Erste Schritte mit Microsoft FrontPage 98, 1998.
2. Microsoft Corporation, \Visual interdev web solutions kit,"

http://msdn.microsoft.com/vinterdev/wsk/default.asp, 2000.
3. NetObjects, NetObjects Fusion 5.0,

ftp://ftp.netobjects.com/pub/products/documentation/nf5 docs/NOF5manual.pdf,
1999.

4. B. Steppan, \World-Wide-WYSIWYG," iX, vol. 6, pp. 40{49, 1999.
5. Symantec Corporation., Symantec Visual Page User's Guide, 1998.
6. UserLand Software, \Frontier news," http://frontier.userland.com/news/, 2000.
7. Douglas B. O'Morain, Site Manager User's Guide, Silicon Graphics, Inc.,

http://techpubs.sgi.com/library/manuals/3000/007-3320-002/pdf/007-3320-
002.pdf, 1998.

8. Interwoven, Inc., \Interwoven home page," http://www.interwoven.com, 2000.
9. Simon Wiest and Michael Plagge, \Praktikum: Mobile Roboter,"

http://www-ra.informatik.uni-tuebingen.de/lehre/praktikum.html, 1999.
10. T. Bray, J. Paoli, and C. M. Sperberg-McQuee, Extensible Markup Language

(XML) 1.0, W3C Consortium,
http://www.w3.org/TR/1998/REC-xml-19980210.html, Feb. 1998.

11. David Sussman, \WebDAV: A panacea for collaborative authoring?," IEEE Mul-
tiMedia, vol. 6, no. 2, pp. 76{79, 1999.

