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Abstract

The evolution strategy with neighborhood at-
traction (EN) is a new combination of self-
organizing maps (SOM) and evolution strate-
gies (ES). It adapts the neighborhood rela-
tionship known from SOM to ES individuals
in order to concentrate them around the op-
timum of the problem.

In this paper, detailed investigations on the
robustness of the EN were performed on a
variety of well-known optimization problems.
The behavior of the EN was compared to that
of several other known variants of ES such as
ES with mutative step control, ES with co-
variance matrix adaptation, differential evo-
lution and others. In this test series it was
shown that EN is much more robust than the
other ES variants.

1 INTRODUCTION

Evolution strategies with Neighborhood attraction
(EN) are a combination of two different kinds of prob-
lem solvers: Evolution strategies (ES) and artificial
neural networks, i.e. self-organizing maps (SOM), to
be more precise.

ES were developed in the late 1960s by Rechenberg and
Schwefel and later improved (see [Rechenberg, 1994],
[Schwefel, 1995] and [Béck et al., 1997]). Their main
application is the optimization of real-valued multi-
parameter problems. They directly use the informa-
tion of the quality of a potential solution of the func-
tion to be optimized. ES work on a population P
of potential solutions (individuals a) by manipulating
these individuals with evolutionary operators.

A special class of neural networks - the self-organizing
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Figure 1: EN: Transfer of the SOM neighborhood onto
ES individuals

maps (SOM) - were developed in the 1980s by Ko-
honen [Kohonen, 1995]. The neurons of a SOM are
organized in a neighborhood relationship, e.g. a two-
dimensional grid. Learning takes place by adapting
the weight vectors of the neurons (and thereby the
neurons’ positions in the problem space) according to
a learning rule which incorporates the neighborhood
relation defined among the neurons.

The idea behind EN is to transfer the neighborhood
and the learning rule defined for SOM neurons onto
the individuals of an ES (see fig. 1). Using this neigh-
borhood concept in the new EN, better EN individuals
can attract their worse neighbors and thus, the indivi-
duals will be concentrated around the optimum.

Previous benchmark tests were performed on a num-
ber of optimization tasks which could be solved



by EN as well as by many conventional ES (cf.
[Huhse and Zell, 2000]). The main focus was on the
convergence velocity of the EN, and it could be shown
that — especially for small populations — the per-
formance of the EN is equivalent to or even better
than comparable conventional ES on those benchmark
problems.

This paper investigates the robustness of the EN. The
focus lies on difficult optimization tasks which often
cause problems to conventional ES. A test bed of many
difficult optimization tasks was set up, and the reliabil-
ity of the EN is compared to several different variants
of ES like ES with mutative step control, ES with co-
variance matrix adaptation, differential evolution, and
others. The experiments show that the EN has an ap-
parently better robustness than the other ES variants
on most of the tested optimization tasks.

A short description of the EN is given in section 2.
The optimization problems used as a test bed for our
investigations are described in section 3. Section 4
shows the test series that were performed on EN and
the ES variants, and the results are discussed in section
5. Detailed information on the test functions can be
found in the appendix.

2 EVOLUTION STRATEGY WITH
NEIGHBORHOOD ATTRACTION

The individuals which are unordered in conventional
ES, have neighborhood relations in the EN. The neigh-
borhood between the u parent individuals is consti-
tuted by arranging them in an orthogonal, elastic grid.
As known from SOM, each individual can be identi-
fied by its fixed grid position, and two individuals are
neighbors if they are directly connected on the grid
(see fig. 2, left).

Figure 2: Left: Neighborhood grid between the parent
individuals; all grey individuals are neighbors of the
black individual.

Right: Division of the problem space into hyper-cubes;
during initialization one individual is placed randomly
into each hyper-cube

The dimension d, of the grid depends on the dimen-
sion d, of the problem space and on the number p of
the parent individuals (i.e. the number of the indivi-
duals constituting the grid). The grid is calculated in
the following way: First, p is divided into its prime
factors; eg. p =100 = 2-2-5-5; ny = 4 is the
number of the factors f;. If the number ny of the
factors is smaller than the dimension of the problem,
then the grid dimension is set to ng. Otherwise, the
smallest primes are multiplied until the number of fac-
tors is equal to the problem dimension. Thus, it holds:
dy < dp. Inside the neighborhood grid the individu-
als are arranged according to the factorization. E.g.
for p = 100 and a problem dimension d, = 10, the
grid dimension is d; = 4 and f; = 2 individuals are in
the first dimension, f = 2 individuals in the second,
f3 = 5 individuals in the third and f; = 5 individuals
in the fourth.

Because of the orthogonality of the grid the neigh-
borhood is easily determined. The left and the right
neighbor of one individual a; can be determined in-
dependently for each dimension. E.g. for dimension
d = 1 the two neighbors of a; with the grid coordi-
nates

a; = (ao, a1, az,...,a,) are
an, = (ag,a1 —1,as,...,a,) and
an, = (ag,a1+1,a9,...,a,).

Figure 3: Neighborhood attraction in EN

In contrast to conventional ES and SOM, the ini-
tial values of the object variables of the EN indivi-
duals are not assigned randomly. Rather, the problem
space is divided into equally sized hyper-cubes, each
of them corresponding to one grid position (see fig. 2,
right). The object variables of the associated indivi-
dual are initialized with equally distributed random
values within the ranges of its hyper-cube.

As is customary in ES, the EN individuals are evalu-
ated using the fitness function.

The EN-specific evolutionary operator — the neighbor-
hood attraction — manipulates the EN individuals ac-



cording to one learning step in a SOM. Every parent
individual ap is attracted to its best neighbor ap; and
thus becomes the offspring ap (see figure 3). The ob-
ject variables Zo of the offspring are calculated accord-
ing to equation 1 and the neighborhood relations are
retained unchanged.

_‘o:fpﬁ-(s-(i"Nb—fp) (1)

Here, Zp is the object variables vector of the parent
and Znyp is its best neighbor. The parameter § de-
fines the strength of the attraction along the differ-
ence vector and Zo denotes the object variables of the
offspring.

If the parent individual ap is considered better than
all its neighbors an; (j = 1...g, g is the number of
neighbors) a ”simple conventional” mutation (referred
to as ES-mutation here) is performed. A offsprings are
generated according to 2.

ﬁmut,l = -/\7(0, ]-) I = 1...)
dmin = m1n(||.i"p - fNJ”) j =1 g (2)
_ 1
Seff = ﬁdmin
fO,- = fp+seff"l7muti Z = 1TL

n is the number of object variables.

The effective step size s.ys is determined by the recip-
rocal number of object variables ! and by the distance
dmin to the nearest neighbor. Thus, a mutation which
jumps over a neighbor and an entanglement of the grid
becomes less likely. During the contraction of the grid
the effective step sizes decrease due to the influence of

dmin-
Recombination is not explicitly used.

For details, please see [Huhse and Zell, 2000].

3 TEST FUNCTIONS

An extensive test bed of optimization tasks was con-
stituted to permit thorough investigations on the ro-
bustness of the EN.

On the one hand, the functions used for previous test
series [Huhse and Zell, 2000] were incorporated (fi,
f2, f6, fos f15, f21). These functions include uni-modal
and multi-modal functions as well as symmetric and
non-symmetric ones, and they were also used e.g. in
[de Jong, 1975], [Bick, 1992] and [Schwefel, 1995]. On

according to [Rechenberg, 1994], who proposes for his
basic algorithm for a (11 A) -ES to make the length of
the mutation vector independent of the number n of vari-
ables by generating the normally distributed vector ele-

ments with the mean zero and with the variance o = ﬁ

most of these test functions almost all ES variants and
also the EN converged.

On the other hand, special focus was set on very diffi-
cult test functions which are known to cause problems
to many optimization tasks. E.g. f; (Shekel’s fox-
holes) consists of a wide plateau with many steep and
narrow holes embedded as local minima, where the in-
dividuals might get caught. fa3 [Galar, 1991] consists
of a plateau with one local maximum, connected to
the global maximum by a single saddle. The varying
dimensions of each test function are indicated in the
appendix.

e fi: Sphere model

o fy: Generalized Rosenbrock’s function
o f5: Shekel’s foxholes

o fs: Schwefel’s double sum

o fo: Ackley’s function

e fi5: Weighted sphere model

e fi17: Fletcher and Powell

e fis: Shekel-5

e fig: Shekel-7

e fy0: Shekel-10

® for:
o fy3: Galar

Griewangk

o foy: Kowalik

4 TEST SERIES

For each function of the test bed the EN was compared
to the following ES variants:

e ES with uncorrelated self adaptation (uncorre-
lated)

e ES with covariance matrix adaptation (CMA) ac-
cording to [Hansen and Ostermeier, 1996]

e ES with mutative step control (named MSR, by
[Rechenberg, 1994])

e ES with derandomized self adaptation (derand)
[Ostermeier et al., 1993]

o ES without self adaptation (off)



e ES with self adaptation adopted from differential
evolution (diffevol) [Price and Storn, 1995]

The following parameter settings were used for the EN:
Size of the individual grid g = 100, attraction factor
6 = 0.0011, and the number of offsprings per parent
generated during ES-mutation A = 2.

For all ES variants, a (10,100)-strategy without re-
combination was used. These settings were chosen
because they are known to be practicable for many
optimization tasks. Furthermore A = 100 corresponds
to the grid size of the EN, which means, that the num-
ber of function evaluations which are calculated in one
generation of EN corresponds to that of one generation
of ES.

We developed a special EN simulation program to
perform the test series. For the comparision tests
we used EvA, a simulation program for Evolutionary
Algorithms which was developed in the same group
[Wakunda and Zell, 1997).

A simulation run was stopped when the convergence
value was reached or when the algorithm stagnated.
Focus was not on the number of function evaluations
but on the best function value reached. Every run was
repeated 30 times with different random seeds. Then
the best fitness values reached were averaged out and
the standard deviation was calculated. The graphical
representations below show for the different strategies
(abscissa) the average of the best fitness values and
the standard deviation added to and subtracted from
that average (ordinate). 2 For clarity, the optimum of
each test function is plotted as a thin line.

Not all test series can be represented graphically here.
For the test functions fi, fs, fo, fi5 almost all strate-
gies were equally reliable in finding almost always the
optimum. Only the differential evolution ES had some
problems.

The more interesting results for the difficult functions
which could not be solved by some strategies are shown
below:

For function f5, only EN was totally reliable (fig. 4).
All other strategies were frequently trapped in one of
the local optima.

For function fi7, most strategies achieved good results
(fig. 5). Uncorrelated ES, CMA-ES and derandomized
ES found the optimum with only small variance, the

2Only one standard deviation was calculated for better
and worse results. Note: The subtracted standard devia-
tion does not imply that there were results better than the
optimum. It is only shown to facilitate the comparision of
very similar results, like CMA, derand, and EN in fig. 5.
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Figure 6: Function fis, min(fis(Z)) = —10.1532

other variants had some more problems. Again, only
EN showed no problems in the optimization.
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Figure 8: Function faq, min(faq(Z)) = —10.5364

Also for fis, EN is the most robust strategy (fig. 6).
It stagnated only once, and compared to the other
strategies, EN was clearly the best.

The test series for fi9 and foo led to similar results
(fig. 7, fig. 8): EN was the only strategy which was
able to always find the optimum. All other strategies
stagnated repeatedly.

The same holds for the maximization problem fo3 (fig.
9). EN always found the global optimum, while the
other strategies often climbed on the local maximum,
and one strategy (differential evolution ES) did not
even leave the plateau from where the search started.

The test series with function fa4 shows varying results
(fig. 10). The best strategies are EN, CMA-ES, and
derandomized ES. CMA-ES and EN are almost equal,
derandomized ES performs a bit worse.

F5 is the only test function where EN was outper-
formed by other strategies (fig. 11). While uncor-
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Figure 9: Function fa3, max(f23(Z)) = 2.00686
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Figure 10: Function fa4, min(f24(£)) = 0.0003075

‘f2 —
optimum -------—-
15

05 |

best fitness

-05

-1 1 1 1 1 1 1 1
uncorrelated CMA MSR derand off diffevol EN
self adaptation

Figure 11: Function fa, min(f2(Z)) =0

related ES, MSR-ES, derandomized ES and even ES
without self adaptation (off) converged always, EN
had problems as well as CMA-ES and differential evo-
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lution ES.

F5, is a quite difficult test function which could not
be optimized reliably by any strategy (fig. 12). Com-
paring the averages of the best function values found,
EN is the second best strategy after CMA-ES.

5 CONCLUSIONS

The robustness of the new EN strategy — Evolution
strategy with Neighborhood attraction — was investi-
gated in exhaustive test series using a large test bed
of optimization tasks and many ES variations for com-
parision.

Only for one of the thirteen test series, some of the ES
variants were more robust than EN, i.e. other strate-
gies were able to optimize the test function more often
than EN. For all test series, the EN was able to find
the optimum in at least 90% of the test runs. For
most of the test series, the EN converged always (for
all seeds), and for many optimization tasks, EN was
the only strategy that was able to converge always,
while all other ES variants repeatedly stagnated in lo-
cal optima.

It could be shown that the EN is much more robust
than other ES-variants, especially for difficult, multi-
modal functions.

For further work it is conceivable to incorporate the
mechanism of EN into other existing, elaborated ES
to improve these. A combination of e.g. CMA and
EN could be quite promising.

A TEST FUNCTIONS

A.1 f;: Sphere model

[de Jong, 1975]

[@) =30, o
~512<z; <5.12; dim =10
min(f;) = f1(0,...,0) =0

A.2 f5: Generalized Rosenbrock’s function

[de Jong, 1975]

F(&) = X5 (100« (@i — 22)? + (2 — 1)?)
—5.12< 2; <5.12; dim =10
min(fy) = fo(1,...,1) =0

A.3 f5: Shekel’s foxholes

[de Jong, 1975]

1
f5(Z)

(aij)

-32-16 0 16 32-32--- 01632
-32-32-32-32-32-16--- 3232 32

K =500 fs(a1j,a2;) =c; =7
—65.536 < z; < 65.536: dim = 2
min(fs) = fs(—32, —32) ~ 0.998004

1 25 1
R S ey

zi—a;;)®

A.4 fs: Schwefel’s double sum
[Schwefel, 1981, Schwefel, 1995] (function 1.2)
— n i 2 T

fe(@) =220 (Zj:l 371') =z Az
—65.536 < z; < 65.536; dim =10
mln(fﬁ) = f6(07 te 70) =0

A.5 fy: Ackley’s function

[Ackley, 1987

fo(@) = —a-exp (<by /L - Ti, 22)
—exp (L .30, cos(c-z;)) +a+e
a=20; b=0.2;
—32.768 < z; < 32.768 ;
min(fg) = fg(o, ‘e ,0) =0

c=2r

dim = 10



A.6 fi5: Weighted sphere model 7 A7) C; f19(Z = A(7))
1444401 ~10.4028
201]1]1]1]02 -5.08767

Schwefel, 1988

[Schwefel, 1988] 3/8/8|8|8|02 -5.1288
fis(@) =" i a2 4166|6604 -2.75186
. 503713704 -2.76589
5122 <5 dim =10 6292|906 -1.83708
min(fi5) = f15(0,...,0) =0 715053303 -3.72275

min(flg) = flg((], ey 0) = —10.4029

A.7  fi7: Fletcher and Powell A.10  fs: Shekel-10
[Fletcher and Powell, 1963] [T6rn and Zilinskas, 1989]
=\ __ m 1
f17(Z) = Y, (Ai — Bi(x))? F20(2) = = X321 mamE—am e

m =10
0<z;<10; dim=4

Ai = Z?:l(aij sin a; + by; cos a;)

B; = 377 (aij sinzj + b cos x;)

a;j,bij € [—100,100] (equ. distr. randoms) i AQD) ¢ || f20(@ = AQ))
aj € [-7,7] (equ. distr. randoms) 1j4)414)4 101 -10.5363
2 |1 1 1 1 0.2 -5.12847
—m <y <w; dim=4 3188 8] 8 |02 -5.17562
; 4 |6 6 |6 6 |04 -2.871
min = a,Qg,...,0,) =0
(fi7) = frrlon 0 ) 51307 (3| 7 |04af -280662
6 |29 (2] 9 |06 -1.85892
7151 5 (3] 3 |03 -3.83364
A.8 fiz: Shekel-5 88| 18| 1 |07| -167525
916 2 (6] 2 |05 -2.42083
. 1 . . . -2.42652
[Torn and Zilinskas, 1989] 0]7]36]7]36]05 05
f18(Z) = — E:il (Q,A(i))(fl,A(i))T+Ci min(fao) = f20(0,...,0) = —10.5364
m=2>5
0<z:<10; dim=4 A.11 f51: Griewangk
i A0) & | Fis(@=40) [Torn and Zilinskas, 1989]
11414414101 -10.1532
21111102 -5.0552 fr(F) =1+ Ly 2 7 eog( 2
3[8|s|8|8|02]| -510076 2(%) § ot =TT eos (%)
4166|6604 -2.68284 d =200
513713704 -2.6304

—100.0 < z; < 100.0; dim = 10
min(f21) = f21(0, ey 0) =0

min(flg) = flg((), ey 0) = —10.1532

A.12 fy3: Galar
A.9 fi9: Shekel-7
[Galar, 1991]

[T6rn and Zilinskas, 1989 f23(F) = (exp(—522) + 2exp(—5(1 — 21)?))
f1o(@) = = Xiz1 m=ame-amye -exp (=531, o7)
m="7 —50<2;<5.0; dim=10

0<z;<10; dim=4 min(fas) = f23(0.9965,0, ...,0) ~ 2.00686



A.13 f5,: Kowalik

[Schwefel, 1977, Schwefel, 1995]

o 11 b3 +b; 2
faa(@) = 352, (ai - :;Srbxsfzzz)

—-50<z;<50; dim=14
i a; b;l
1 | 0.1957 | 0.25
2 | 0.1947 | 0.5
3 | 0.1735 1
4 | 0.1600 2
5 | 0.0844 4
6 | 0.0627 6
7 | 0.0456 8
8 | 0.0342 | 10
9 | 0.0323 | 12
10 | 0.0235 | 14
11 | 0.0246 | 16

min(fas) & f24(0.1928,0.1908,0.1231,0.1358)
~ 0.0003075
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