
Optimizing Data Measurements at Test Beds
Using Multi-Step Genetic Algorithms

K. KNÖDLER, J. POLAND, A. MITTERER∗ and A. ZELL
WSI-RA Universität Tübingen
Sand 1, D - 72076 Tübingen

GERMANY
knoedler@informatik.uni-tuebingen.de http://www-ra.informatik.uni-tuebingen.de

Abstract: - Series of measurements should be planned carefully in order to reduce the costs and to
allow an efficient execution at measuring devices. For this planning process, we present a multi-step
optimization method using genetic algorithms. As a concrete application, we arrange a set of Design of
Experiment measuring points appearing during the calibration of combustion engines in an optimal way.

Key-Words: - Genetic Algorithm, Traveling Salesman Problem, Multi-Step Optimization, Adjacency
Coding, Variable Alphabet Coding, Monte Carlo Algorithm, Design of Experiments.

1 Introduction
The process of calibrating combustion engines is

currently becoming an extremely time-consuming
task for car manufacturers. Legal limits concerning
exhaust emissions and growing customer requests
for economy and performance can only be met by
introducing additional engine functionality.

As a consequence, the dimension of an engine’s
parameter space constantly increases. Therefore it
is no longer economical or even possible to use con-
ventional full factorial techniques for calibrating
the engine in an optimal way. Statistical Design of
Experiments (DOE) reduces the set of measuring
points describing the area-of-interest of an engine’s
parameter space. The results of the measurments
are used to tune software engine models, e.g. ar-
tificial neural networks or multivariate regression
models ([7], [10], [4]). Thereby a faster and thus
significantly lower-priced searching for optimal pa-
rameters can be performed in an offline process.

Not only the choice of the measuring points
(DOE) is critical, but also the arrangement. The
change of the parameters, in particular the engine
speed nmot and the relative air mass flow ramf ,
results in oscillations of the total engine system.
The measurements can only be executed when the
system has stabilized again. This needs more re-
laxation time, the more parameters are changed.
Our goal is therefore to minimize the oscillations

∗A. Mitterer, BMW Group, D-80788 München, Germany.
E-mail: alexander.mitterer@bmw.de.

1000
2000

3000
4000

5000
6000

20

40

60

80

60

70

80

90

100

110

120

nmot [rpm]ramf [%]

V
S

i [°
]

Fig. 1. The N measuring points xk at the M < N
operating points yj

in order to reduce the total measuring time, by
the way improving the robustness and the repro-
ducibility of the measurements. Another criterion
is the fact that test bed engineers tend to prefer
changing only one parameter at a time.

At our starting point, there already exists a set
of N DOE measuring points at M unique operating
points {yj}M

j=1 = {(nmotj , ramfj)}M
j=1. The oper-

ating range is spanned by the engine speed nmot
and the relative air mass flow ramf (with respect
to the maximum value). There are nj valve spread
combinations {x(j)

k }nj
k=1 = {(VS j,k

i ,VS j,k
e)}nj

k=1 at
each operating point, where VS i defines the inlet
and VS e the exhaust valve spread. Figure 1 visu-
alizes this situation using the VS i components of
these measuring points.

2 Separation of the problem
Mostly, a change of the engine speed nmot

results in a particularly oscillating engine sys-
tem. Changing the relative air mass flow ramf
is slightly less critical. For some engines the con-
verse may be true. Changing the valve spreads
yields less instability. This fact strongly suggests
a separation of the sorting problem. In a first step
we consider the operating points only, the second
step concentrates on the valve spread components
of the measuring points. These two subproblems
are each similar to the Traveling Salesman Prob-
lem (TSP): in the first part we search for a shortest
path between the M operating points yj resulting
in a certain order of the {x(j)

k }nj
k=1 blocks. The sec-

ond step requires the sorting of the valve spread
components within each block. In order to sat-
isfy the constraints, each TSP-like subproblem is
solved by its own algorithm using different mea-
sures for calculating the minimum path length.

3 Subproblem 1: The operating
range

First we search for the shortest path between the
M unique operating points yj . There are two dif-
ferences to the original TSP: first, we look for the
shortest path instead of cycle. As starting point,
we use the operating point defined by the mini-
mum nmot and ramf values. Second, the amount
of simultaneous changes in the nmot and the ramf
direction has to be minimized in order to keep the
relaxation times as short as possible. The solutions
on the operating range are therefore either formed
as slalom courses in the nmot or in the ramf di-
rection.

There is a well known heuristic for the Traveling
Salesman Problem, consisting of
• random edge exchange and
• random single point insertion.

These operations are performed a number of times
(in our algorithm 1000 · M times). This heuris-
tic is known to produce good solutions in general
and even optimal solutions in the case of a small
number of points. Since we are interested in the
overall optimal path, while computation time is
rather negligible, we carry out the heuristic 10000
times and choose the best result. Figure 2 shows
the percentage of runs finding the optimum over
the number of operating points. If M grows too
large (M ≥ 99), the pure heuristic almost never

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Number of points

P
er

ce
nt

ag
e

of
 o

pt
im

al
 r

un
s

Fig. 2. Percentage of heuristic runs finding the opti-
mum over the number of operating points

finds the optimum (< 0.01%) and is thus no longer
acceptable.

Hence, we expand the heuristic with a genetic
algorithm. There are several possible representa-
tions for a path, we follow the suggestion of Grefen-
stette et al. ([5], see also [6], [2], [3], [8] for this
topic). A tour is described as a list of numbers.
There is an edge from operating point yi to yj ,
if the component of the list at position i takes
the value j. A simple example: the path tour
1 → 4 → 2 → 5 → 3 corresponds to the adjacency
tour (4, 5,−, 2, 3).

For the fitness function, we define a path length
according to the above considerations:

φ(p) =
M−1
∑

j=1

d(yp(j), yp(j+1)),

where p is a permutation of {1, . . . , M} represent-
ing a path. The distance between two operating
points y and ỹ is defined by their euclidean dis-
tance plus their respective nmot and ramf dis-
tances with appropriate weights:

d(y, ỹ) = ‖y − ỹ‖2+

gnmot · |ynmot − ỹnmot|+
gramf · |yramf − ỹramf |.

The weights gnmot and gramf should be chosen in
such a way that
• paths run mainly parallel to the coordinate

axis and
• the parameter which is more critical with re-

spect to oscillations is changed less frequently.
We use the genetic algorithm described in [9],

which is an improved and extended version of the

1000 2000 3000 4000 5000 6000
10

20

30

40

50

60

70

80

90

nmot [rpm]

ra
m

f [
%

]

Fig. 3. Minimizing operating points path length: The
shortest slalom course in the nmot direction

basic genetic algorithm (see e.g. [1]). The evolu-
tionary operations are:
Crossover: Performing n-point or uniform
crossover on individuals coded in the adjacency
representation often leads to infeasible offsprings.
The repairing algorithm takes into account the or-
ders of the points given by both parents. For a
more detailed description see [2] and [6].
Mutation: As mutation operator, the heuristic
described above is used.

3.1 Results for minimizing the operat-
ing points path length

The empirical results presented here rely on a
real, relatively small data set consisting of N = 101
measuring points at M = 35 unique operating
points (see Figure 1). In this case, the pure heuris-
tic works well. In the general case with a genetic al-
gorithm, we mention that the heuristical mutation
operation needs to be performed with the same
probabilty as the crossover operation in order to
meet the optimum.

Figure 3 and 4 respectively show the results
of the genetic algorithm using different settings
for the weight factors gnmot and gramf in the d-
distance. This leads to either the shortest slalom
course in the nmot or in the ramf direction.

4 Subproblem 2: Sorting the
valve spread blocks

Having ordered the M operating points, we now
have to sort the nj valve spread components within
each of the M blocks. In our case, this is done by
searching the shortest path between all N measur-
ing points projected to the (VS i,VS e) plane un-

1000 2000 3000 4000 5000 6000
10

20

30

40

50

60

70

80

90

nmot [rpm]

ra
m

f [
%

]

Fig. 4. Minimizing operating points path length: The
shortest slalom course in the ramf direction

der conservation of the order determined in the
first step. Taking the euclidean distance between
the valve spread components leads to good results.
This is due to the fact that changing the camshaft
parameters simultaneously results in quite short
lasting oscillations compared to the ones corre-
sponding to changes on the operating range.

We use two simple deterministic methods to sort
the blocks of valve spread components at the M op-
erating points. These methods are demonstrated
in the following. Consider a situation where we
have M blocks with {nj}M

j=1 = {3, 4, 2, ..., nM}
measuring points:

1 2 3 4 5 6 7 8 9 10 ...

First we calculate for each block j the order of
its valve spread components {x(j)

k }nj
k=1, which leads

to the shortest path inside the block. This is done
by considering every possible permutation.

4.1 Method 1: Sequential orientation
switching

This method uses the latter result and de-
termines sequentially the best orientation of the
shortest path inside each block j. The order is re-
verted, if this leads to a shorter euclidean distance
to the last point of the previous block j − 1. Ta-
ble 1 demonstrates that the last point of block j is
used to decide if switching the orientation is useful
or not. A drawback of this method is that it pro-
cesses the list of the blocks successively, starting
with the second block. The choice of the orienta-
tions at previous blocks already limits the selection
within the following blocks. For the first block,
both orientations are taken into account.

1 2 3 4 5 6 7 8 9 10 ...
+ + + + + ...

- - - ...
+ + ...

1 3 2 7 4 6 5 9 8 10 ...

Tab. 1. Sequential orientation switching

4.2 Method 2: Correlated sorting

This method uses the valve spread components
{x(j)

k }nj
k=1 plus the last one of the already sorted

last block j − 1 for each block j. Now, all pos-
sibilities of ordering with x(j−1)

nj−1 as first point are
considered in order to find the path with minimum
distance. The fields in table 2 signed by ⊕ and �
demonstrate that nj +1 points are used to find the
best order within block j. Again the first block
has to be treated separately by considering both
orientations of its shortest path.

1 2 3 4 5 6 7 8 9 10 ...
⊕ + + + + ...

� - - ...
⊕ + ...

1 3 2 7 4 6 5 9 8 10 ...

Tab. 2. Correlated sorting

It is obvious that method 1 can be easily ex-
tended in order to find the best orientation for each
optimized path at all operating points. The choice
of orientation at any operating point depends on
the orientations at every other operating point. We
therefore use first a simple Monte Carlo Algorithm
and second a genetic algorithm to master this job.

4.3 Method 3: Monte Carlo Algorithm

The Monte Carlo Algorithm inverts the orien-
tation of the optimized path of a randomly cho-
sen operating point j. This operation is repeated
several times. The new orientation survives if the
resulting total path between all valve spread com-
ponents is reduced.

4.4 Method 4: Genetic algorithm

We solve the problem of finding the orientations
of the shortest path at each block j by using a ge-
netic algorithm. As will be explained, this method
is a special case of the method discribed in the
next section. We use the euclidean distance as fit-
ness function for the individuals. The individuals
are bit strings of length M with 0 or 1 at each bit
position for the two orientation possiblities.

4.5 Method 5: Pure genetic sorting

We now generalize the methods 1 and 4 of the
privious sections. At each operating point yj there
are nj valve spread components. That means that
there are nj ! possible permutations, which can be
used to describe the order of the measuring pro-
cess. Remember that method 4 only used two
permutations, both representing the shortest path
between the corresponding valve spread measur-
ing points, but with different orientations. This
section shows, how variable alphabet coding sug-
gested in [9] can be used to generate individuals,
which will again be treated by a genetic algorithm.

Now, an individual is just one choice of the nj !
permutations of the valve spread components at
each block j. In order to obtain a uniform distri-
bution, we use variable alphabet coding described
in [9]: each block j corresponds to one position of
the bit string and is allowed to take as many differ-
ent values as there are permutations of the existing
valve spread measuring points. That means posi-
tion j can take Pj = nj ! values. Hence, we use a
different alphabet for each position of the individ-
ual. Each individual v has the form

v = (vj)M
j=1 ∈

M
⊗

j=1

{1 . . . Pj}.

For our sorting problem, other representations
like unary coding, binary coding with bias and bi-
nary coding with penalty, examined for comparison
purposes in [9], perform worse. The reason is on
one side the non-uniform distribution of the indi-
viduals for unary coding and on the other side the
extremely high number of invalid individuals for
binary coding.

Again the euclidean distance between the valve
spread components is used as fitness function for
the individuals. The initial population is gener-
ated randomly using one possible permutation at
each block j. This time the genetic algorithm de-
scribed in [9] together with the standard crossover
and mutation operations, i.e. either uniform or n-
point crossover and one-bit or random mutation
with pmut = (length of the individual)−1 are ap-
plied.

4.6 Results for minimizing the valve
spreads path length

In the following we present and discuss the re-
sults of the described different algorithms. We
start with the results of the simple sorting meth-

1500

1600

1700

1800

1900

2000

2100

2200

1

2157

2

1765

3

1757

4

1703

5

1666

Method

Fig. 5. Sorting valve spread blocks: Valve spreads path
lengths for nmot priority

ods. Figures 5 and 6 show the shortest eu-
clidean distances between all N valve spread com-
ponents projected to the plane spanned by the
valve spreads. For the different methods both the
nmot case and the ramf case are displayed.

The methods 3 und 4 lead to better results com-
pared to the straightforward methods 1 and 2.
There are two reasons for that: first, the meth-
ods 3 and 4 pick randomly chosen blocks for deter-
mining the best orientations of the shortest paths;
second, these methods are not limited to sequential
optimization, starting with block 2.

We performed 100000 independent experiments
with 1000 orientation switches per run to obtain
the results of method 3. The orientations lead-
ing to the shortest total distance are found using
method 4, the genetic extension of method 1. We
are able to find the orientations of the optimized
paths which lead to the shortest total path un-
der the restriction of using the shortest path inside
each block.

With the pure genetic sorting defined by method
5 using variable alphabet coding, we are able to
achieve a further improvement of method 4. The
reason is that the pure genetic method is not re-
stricted to the shortest paths at each block. We
are able to find the overall shortest path length
between all valve spread components, i.e. 1666 in
the nmot case and 1596 in the ramf case. Figures
5 and 6 show these values, too. In the case of nmot
priority, at about 6/7 of all blocks the arrangement
of the shortest paths determined by method 4 were
used. For the case of ramf priority this fraction is
at least about 3/5. In both cases, the parameter
setting of the genetic algorithm is: µ = 100 parent
individuals, λ = 100 offsprings, tournament selec-

1500

1600

1700

1800

1900

2000

2100

2200

2300

1

2232

2

2048

3

1701

4

1660

5

1596

Method

Fig. 6. Sorting valve spread blocks: Valve spreads path
lengths for ramf priority

tion with q = 4 individuals, 3-point crossover with
pcross = 0.6, bitwise (conventional) mutation with
pmut = 1/35 and a niche factor of α = 0.5.

5 Conclusions

We presented a multi-step optimization process
for sorting a set of measuring points using genetic
algorithms, Monte Carlo Algorithm, and simple
deterministic sorting methods. With these algo-
rithms, an improved measuring arrangement and
hence reduced relaxation times and overall mea-
suring time is achieved. This arrangement was
previously handwork. In the second step the pure
genetic approach has shown to be superior to the
simple sorting methods and the Monte Carlo Al-
gorithm.

Several modifications and extensions in the
methods are imaginable. If the block size for the
second step increases, the coding of the permuta-
tions is no more efficient for the genetic algorithm.
In this case, one could apply a blockwise adja-
cency coding similar to the coding we used for step
one. In another situation, a one-step algorithm
may yield better results, namely if the weights for
the parameters are almost equal. This leads to
more complex paths and to an increased running
time of the algorithm.

Acknowledgments

We thank Thomas Fleischhauer and Frank
Zuber-Goos at BMW Group Munich for helpful
discussions. This research has been supported by
the BMBF (grant no. 01 IB 805 A/1).

References:

[1] T. Bäck. Evolutionary Algorithms in Theory
and Practice. Oxford University Press, 1996.

[2] T. N. Bui and B. R. Moon. A new genetic ap-
proach for the traveling salesman problem. In-
ternational Conference on Evolutionary Com-
putation, pages 7–12, 1994.

[3] T. N. Bui and B. R. Moon. On multi-
dimensional encoding/crossover. 6th Inter-
national Conference on Genetic Algorithms,
pages 48–56, 1995.

[4] T. Fleischhauer, A. Mitterer, K. Knödler,
J. Poland, and A. Zell. Motoroptimierung
mit Hilfe neuronaler Netze und evolutionärer
Algorithmen. Technical report, Universität
Tübingen, WSI RA, Feb 2000. Schlussbericht
des Vorprojekts.

[5] J. Grefenstette, R. Gopal, B. Rosmaita, and
D. Van Gucht. Genetic algorithms for the
travelling salesman problem. Proceedings of
the first International Conference on Genetic
Algorithms and Application, pages 160–168,
1985.

[6] A. Homaifar, S. Guan, and G. E. Liepins.
A new approach on the traveling salesman
problem by genetic algorithms. 5th Inter-
national Conference on Genetic Algorithms,
pages 460–466, 1993.

[7] A. Mitterer. Optimierung vielparametriger
Systeme in der Antriebsentwicklung, Statis-
tische Versuchsplanung und Künstliche Neu-
ronale Netze in der Steuergeräteauslegung zur
Motorabstimmung. PhD thesis, Lehrstuhl für
Meßsystem- und Sensortechnik, TU München,
2000.

[8] B. R. Moon and C. K. Kim. A two-
dimensional embedding of graphs for genetic
algorithms. 7th International Conference on
Genetic Algorithms, pages 204–211, 1997.

[9] J. Poland, K. Knödler, Holger Böttle, A. Mit-
terer, T. Fleischhauer, F. Zuber-Goos, and
A. Zell. Finding smooth maps in motor conrol
unit calibration using genetic algorithm with
variable alphabet coding. Preprint 2000.

[10] K. Weicker, A. Mitterer, T. Fleischhauer,
F. Zuber-Goos, and A. Zell. Einsatz von
Softcomputing-Techniken zur Kennfeldopti-
mierung elektronischer Motorsteuergeräte. at-
Automatisierungstechnik, 48, 2000.

