
Genetic Algorithms Can Improve the Construction of
D-Optimal Experimental Designs

J. POLAND, A. MITTERER∗, K. KNÖDLER and A. ZELL
WSI Rechnerarchitektur
Universität Tübingen

Sand 1, D - 72076 Tübingen
GERMANY

poland@informatik.uni-tuebingen.de http://www-ra.informatik.uni-tuebingen.de

Abstract: - We study the benefits of Genetic Algorithms, in particular the crossover operator, in
constructing experimental designs that are D-optimal. To this purpose, we use standard Monte Carlo
algorithms such as DETMAX and k-exchange as the mutation operator in a Genetic Algorithm. Compared
to the heuristics, our algorithms are slower but yield better results.

Key-Words: - Genetic Algorithm, Memetic Algorithm, Design of Experiments, DOE, D-Optimal,
DETMAX Algorithm, k-Exchange Algorithm, Combinatorial Optimization.

1 Introduction
Design of experiments (DOE) has been of both

great theoretical and practical interest. There ex-
ists a number of criteria for optimality of designs,
and there are several algorithms for constructing
optimal designs. The most common and most
widely used criterion is D-Optimality.

Given are n candidates x1, . . . , xn, defined by
points u1, . . . , un in the input space (the d-
dimensional euclidean space) and a regression type
(e.g. a second order polynomial). For a choice of
p < n candidates ξ = (j1, . . . , jp) ∈ {1 . . . n}p, we
write |ξ| = p and define the design matrix

Xξ = (xj1 . . . xjp)
′,

i.e. Xξ is the matrix formed of the chosen candi-
dates. We now consider the model

y = Xξβ + ε

which is linear in the coefficients, where ε is a ran-
dom vector with distribution N(0, σ2 · Id) and y is
the observation vector of size p. Then,

β̂ = (X ′
ξXξ)−1X ′

ξy

is the least squares estimate for β and has co-
variance matrix (X ′

ξXξ)−1σ2. To obtain a model
of high quality, one should choose the candidates
∗A. Mitterer, BMW Group, D - 80788 München, Germany,

alexander.mitterer@bmw.de

j1, . . . , jp in order to minimize this covariance ma-
trix. Several notions of minimality have been con-
sidered. D-Optimality means to minimize the de-
terminant det((X ′

ξXξ)−1) or, equivalently, maxi-
mize det(X ′

ξXξ). The desired number of points in
the design is usually a fixed number p0.

We remark that this approach applies to ar-
bitrary polynomial models or, even more gen-
eral, to models that are linear in the coefficients.
For example, a second order polynomial model
for the points (u1,j , u2,j)

p
j=1 is obtained by xj =

(1 u1,j u2,j u2
1,j u2

2,j u1,j · u2,j)′. Low order poly-
nomial models have many practical applications
in engineering, e.g. they are used to imitate the
behaviour of complex systems. In this case, the
process of measurement which leads to the obser-
vation vector y may be quite expensive, and one
is interested in the best possible design, while the
expenses to find the design (computer time) are
almost negligible.

2 Common algorithms
Almost all algorithms for constructing D-

optimal designs are Monte Carlo algorithms,
heuristics, that base on the idea of sequentially
exchanging ”bad” candidates of a design for ”bet-
ter” ones. A comparison of these algorithms can be
found in [1]. In this section, we outline two of these
algorithms, which we will use as reference and as
mutation operators for the genetic algorithms.

2.1 DETMAX

The DETMAX algorithm was first suggested in
1974 by Mitchell ([7]) and subsequently improved
(see e.g. [2]). One starts with a random design ξ =
(j1, . . . , jp). One also initializes the failure set F to
the empty set. F is supposed to contain all those
designs which did not lead to an improvement. (In
fact, for space-saving reasons, F will contain the
determinant of those designs.)

In each step, with p denoting the actual number
of candidates, there are three cases:
• p = p0. Then one randomly decides whether

to add or to remove a candidate.
• p > p0. In this case, a candidate is removed,

if the current design is not in F . Otherwise, a
candidate is added.

• p < p0. In this case, a candidate is added, if
the current design is not in F . Otherwise, a
candidate is removed.

After that, one has to decide, which candidate is
added or removed. Since

det
(

(X ′
ξ x)

(

Xξ
x′

))

=

det(X ′
ξXξ) · (1 + x′(X ′

ξXξ)−1x),

the candidate xj is added for which 1 +
x′j(X

′
ξXξ)−1xj attains its maximum. If a can-

didate is removed, this term is replaced by 1 −
x′j(X

′
ξXξ)−1xj .

There are some more updating formulas which
allow to perform also the other computations (such
as updating (X ′

ξXξ)−1) with a small effort (see [2]
for details). Because of the accumulation of float-
ing point errors, one should perform a bootstrap-
ping after a number of steps, i.e. calculate the
exact values, we used 10 steps.

When after one step the actual number of can-
didates p equals the desired number p0, one checks
if there is an improvement of the determinant. In
this case, the failure set F is emptied, otherwise all
designs that were met up to now are added to F .

The algorithm terminates if |p − p0| > q, where
q is a constant. Mitchell proposed q = 6, which we
adopted. A former version of this algorithm using
q = 1 often gets stuck in local minima with poor
determinant. When |p − p0| > 1, it is called an
”excursion”.

2.2 k-exchange

Another heuristic for constructing D-optimal de-
signs is called k-exchange algorithm (see e.g. [5]).

It is based on the idea that it might not be optimal
to add the candidate for which 1 + x′j(X

′
ξXξ)−1xj

attains its maximum. If afterwards a candidate is
removed, these two steps can be considered as one
step (the exchange of a candidate), thus yielding
more improvement. Of course, this increases the
size of the problem considerably. Instead of find-
ing the maximum of p terms, now roughly N · p
have to be examined. To keep this number lower,
one can consider only the best k candidates for
addition and the worst k candidates for removal.
Thus, there are k2 terms of which the maximum is
to be found.

3 The crossover operator
Especially in large scale cases with a great num-

ber of candidates, the above exchange procedures
are likely to get stuck in a local optimum which
is a result of a suboptimal design in a part of the
input space. Another design may be better for this
part, but worse for another. If the better part of
the first design is combined with the better part
of the second, there could be hope that the result-
ing design ”inherits” the good properties of both
designs. Hence, we consider a crossover operator
that takes two designs and builds two new designs
of them. For this aim, we first have to define an
appropriate representation of a design.

Consider a bit string b of length n, b = b1b2 . . . bn.
The candidate j occurs in the design b if and only
if bj = 1. Thus, it is possible to apply an arbitrary
standard type of crossover (one point, two point,
uniform) to two designs b1 and b2, obtaining two
new designs b3 and b4 (see e.g [3] or [4]).

This binary representation has a severe draw-
back. In particular if p � n, each design b uses
much space to encode little information, similar to
a sparse matrix. Therefore, another representation
can be used. A design corresponds to a set c coded
as an ordered list containing all points of the de-
sign. For a genetic algorithm all the lists should
have a fixed length, but on the other hand dur-
ing the process of optimization it is desirable to
try and combine designs of different size. There-
fore, the lists have the fixed length of 2 · p0, and
the unused entries are filled with 0. Note that the
alphabet used for this representation is no longer
binary, but has size n + 1.

Of course, this list representation requires a dif-
ferent crossover operator. It has turned out that
the simulation of a standard crossover operator on

the binary representation works well. In addition,
this simulation can easily be done in time O(p),
while the standard crossover operator on the bi-
nary representation needs time O(n).

More explicitely, the uniform crossover operator
on two lists c1 and c2 producing c3 and c4 reads as
follows. Take the smaller of the first elements of
c1 or c2 and remove it. With probability 1

2 , add it
to c3 or c4, respectively. If the first elements of c1
and c2 are equal, remove them from both c1 and
c2 and add them to both c3 and c4. Repeat these
steps until both c1 and c2 are empty.

4 Repetitions
The list representation of designs has one more

advantage. If p0 is not too small, the optimal de-
sign may contain repetitions, i.e. candidates that
are contained two or more times. This fact seems
not to be very intuitive at a first glance, but it
can be illustrated by a simple example. Consider a
linear model in one dimension with n = 10 equidis-
tant candidate points. Then the best way to choose
p0 = 4 candidates is to take the minimum point
and the maximum point each twice, as one can
easily verify.

With the list representation, we are able to en-
code designs that contain repetitions, while this is
not possible with the binary representation. Even
if k is small enough such that the optimal design
does not contain repetitions, it has shown out that
admitting repetitions during the search accelerates
the algorithm.

5 Genetic Algorithms
We have already described the representation of

the individuals, i.e. either binary or list coding, as
well as the crossover operator for the genetic al-
gorithm. The fitness function is almost obvious,
one roughly takes the inverse of the determinant
of X ′

ξXξ. Of course a larger number of actual de-
sign points p than the desired number p0 allows a
larger determinant. Therefore we perform an ini-
tial estimate d0 of the optimal inverse determinant
by once applying the heuristic. Then we define the
fitness function

φ(ξ) = det(X ′
ξXξ)−1

+ C(t) · 1|ξ|>p0 · (|ξ| − p0) · d0,

where C(t) is a function dependent of the actual
generation t of the genetic algorithm. We used

an increasing sigmoid function having C(0) = 1
and C(tmax) = 20, where tmax is the number of
generations that are performed. Thus, the fitness
function is non-stationary (see e.g. [6]), but in each
generation t its minimum will have |ξ| = p0, since

min
|ξ|>p0

φ(ξ) ≥ d0 ≥ min
|ξ|=p0

φ(ξ).

Moreover, the function is non-decreasing in t. This
non-stationary fitness function has the effect that
in the early phase of the genetic algorithm designs
with more points are tolerated, allowing a larger
genetic variety, while later those designs are elemi-
nated, increasing the chance for an optimal design
with the desired |ξ| = p0.

For the mutation, we pursue a similar strategy.
While in the late generations it is important to
draw the maximum effect out of the heuristic, we
can save time in the early phase by aborting the
heuristic after a certain number of steps and choos-
ing a small q (in case of the DETMAX algorithm)
or k (in case of the k-exchange algorithm).

Finally, for generating the initial population, we
use the heuristic for about one third of the popula-
tion. The number of design points p is choosen ran-
domly for each individual between p0 and p0 + 10,
where p = p0 has the greatest probability. Again
we can save time by aborting the heuristic after
a certain number of steps and choosing a small q
(for DETMAX) or k (for k-exchange). The rest
of the population is generated randomly with p
design points, where p is uniformly distributed in
{p0, . . . , p0 + 10}.

6 Experimental results
The algorithms have been tested with several

candidate sets, varying number of design points
and polynomial models of different order. Here,
the results of a test data set with 94 candidates
are presented, defined by a full factorial set in 4
dimensions with 9 points for each coordinate plus
a small random perturbation. Different test data
sets produced very similar, partly almost identical,
output. We show two ”tight” designs, a 3rd or-
der model having 35 design points and a 4th order
model having 70 design points, which is in fact the
lowest possible number of points for the respective
model. Moreover, we present two ”large” designs,
3rd and 4th order with 100 and 150 points, respec-
tively. In addition, we present two ”real world”
data sets from an industrial application (see [8]).

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

k−exchange detmax k−exchange (bin) detmax (bin)

heuristic
GA: mean+stddev
GA: optimum

Fig. 1. Test data set, tight design, 3rd order

−0.6

−0.4

−0.2

0

0.2

0.4

k−exchange detmax k−exchange (bin) detmax (bin)

heuristic
GA: mean+stddev
GA: optimum

Fig. 2. Test data set, large design, 3rd order

Each figure contains the relative performances of
the four heuristics, k-exchange, DETMAX, binary
k-exchange and binary DETMAX, and in compari-
son, the performance of the genetic algorithm using
these heuristics as mutation operators. It is com-
mon to execute the heuristic a number of times
R and choose the best resulting design, we used
R = 20. Also the genetic algorithms have been
evaluated 20 times, the figures display the aver-
age performances with standard deviations and the
best performances. The plots use a logarithmic
(base 2) scale, the values are relative to the fit-
ness of the pure k-exchange, a positive value means
a better (lower) determinant. Thus, the leftmost
bar (k-exchange heuristic) is the reference and is
always 0, and a bar of height -1 means that the fit-
ness value of the corresponding measurement was
twice the reference value.

We observe that the genetic algorithm yields al-
ways better designs than the corresponding heuris-
tic. Especially for large designs, the list version
performs considerably better than the binary ver-
sions. In one case (Fig. 4), the DETMAX muta-

0

1

2

3

4

5

6

7

8

9

k−exchange detmax k−exchange (bin) detmax (bin)

heuristic
GA: mean+stddev
GA: optimum

Fig. 3. Test data set, tight design, 4th order

−10

−8

−6

−4

−2

0

2

k−exchange detmax k−exchange (bin) detmax (bin)

heuristic
GA: mean+stddev
GA: optimum

Fig. 4. Test data set, large design, 4th order

tion operator seems not to produce a robust genetic
algorithm. The best design is mostly found by the
genetic algorithm with k-exchange.

In our MATLAB implementation, one run of a
heuristic takes, depending on the data set, about
2 seconds using k-exchange and about 4 seconds
using DETMAX. One call of the genetic algorithm
with a population of µ = 40 individuals running
for tmax = 100 generations takes on the average
about 170 seconds with k-exchange and about 240
seconds with DETMAX. Thus, the running time
of the genetic algorithms is roughly 80 times the
running time of the corresponding heuristic.

7 Conclusions
Genetic algorithms can improve the construction

of D-optimal experimental designs. Particularly
when measuring is expensive, the presented genetic
algorithms can save costs. Moreover, they can pro-
vide a way to obtain good practical designs, that
are good with respect to more than one optimality
criterion. This approach could lead towards more

0

0.5

1

1.5

2

2.5

3

k−exchange detmax k−exchange (bin) detmax (bin)

heuristic
GA: mean+stddev
GA: optimum

Fig. 5. Real data set 1, rather tight design, 3rd order

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

k−exchange detmax k−exchange (bin) detmax (bin)

heuristic
GA: mean+stddev
GA: optimum

Fig. 6. Real data set 2, large design, 3rd order

powerful design algorithms, meeting the demands
of the growing complexity of todays real world sys-
tems.

Acknowledgments

We thank Thomas Fleischhauer and Frank
Zuber-Goos for helpful discussions. This research
has been supported by the BMBF (grant no. 01
IB 805 A/1).

References:

[1] R. D. Cook and C. J. Nachtsheim. A com-
parison of algorithms for constructing exact d-
optimal designs. Technometrics, 22(3):315–323,
Aug 1980.

[2] Z. Galil and J. Kiefer. Time- and space-saving
computer methods, related to mitchell’s det-
max, for finding d-optimum designs. Techno-
metrics, 22(3):301–313, Aug 1980.

[3] D. Goldberg. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-
Wesley, 1989.

[4] J. Holland. Adaptions in Natural and Artifi-

cial Systems. Ann Arbor: The University of
Michigan Press, 1975.

[5] M. E. Johnson and C. J. Nachtsheim. Some
guidelines for constructing exact d-opitmal de-
signs on convex design spaces. Technometrics,
25:271–277, 1983.

[6] Z. Michalewicz. A survey of constraint han-
dling techniques in evolutionary computation
methods. In R. G. Reynolds J. R. McDonnell
and D. B. Fogel, editors, Fourth Annual Con-
ference on Evolutionary Programming, Cam-
bridge, MA, 1995.

[7] T. J. Mitchell. An algorithm for the construc-
tion of ”d-optimal” experimental designs. Tech-
nometrics, 16(2):203–210, May 1974.

[8] A. Mitterer. Optimierung vielparametriger
Systeme in der Antriebsentwicklung, Statis-
tische Versuchsplanung und Künstliche Neu-
ronale Netze in der Steuergeräteauslegung zur
Motorabstimmung. PhD thesis, Lehrstuhl für
Meßsystem- und Sensortechnik, TU München,
2000.

