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Abstract

The covariance matrix adaptation (CMA)
is one of the most powerful self adapta-
tion mechanisms for Evolution Strategies.
However, for increasing search space dimen-
sion N , the performance declines, since the
CMA has space and time complexity O(N2).
Adapting the main mutation vector instead
of the covariance matrix yields an adaptation
mechanism with space and time complexity
O(N). Thus, the main vector adaptation
(MVA) is appropriate for large-scale prob-
lems in particular. Its performance ranges
between standard ES and CMA and depends
on the test function. If there is one preferred
mutation direction, then MVA performes as
well as CMA.

1 Introduction

Evolution Strategies need self adaptation, in order to
apply to hard or badly scaled fitness functions. For
a motivating example, consider the optimization of a
prism lens from [4], chaper 9: Given is a glass block
that consists of 19 prism segments. The thickness of
the segments at both ends is variable. Hence, there
are 20 object variables, which are tuned in order to
focus the light rays and minimize the overall thickness
of the lens (see Fig. 1, the exact fitness function is
stated as f10 in Section 5). A simple ES with mutative
or derandomized step length control finds the focus
quite easily, but it fails to minimize the lens thickness.
This is due to the fact that all object variables have
to be reduced simultaneously in order to minimize the
thickness, while any other mutation direction destroys
the focus.

Other self adaptation algorithms fail in this situation,

Figure 1: Optimization of a prism lens

too. One could expect for example an adaptation of
the mutation mean (momentum adaptation) to be ap-
propriate (compare e.g. [3]). However, our experi-
ments with such an algorithm have not been successful.
On the other hand, the covariance matrix adaptation
(CMA), which adapts the covariance of the mutation,
does work in this situation. In this paper, we will de-
velop a new self adaptation algorithm that also works
in this situation and is based on similar ideas as the
CMA, but with less space and time consumption.

2 The CMA Algorithm

The covariance matrix adaptation (see [1] or [2]) is
one of the most powerful self adaptation mechanisms
today available for Evolution Strategies. While a sim-
ple ES uses a mutation distributen N(0, σ2 · I) (where
I is the identity matrix), the CMA-ES performes a
N(0, σ2 ·C)- distributed mutation, and the covariance
matrix C is being adapted. This procedure is based
on the following ideas (see [1]): Let Z1, . . . , Zn be
independently N(0, 1) distributed, z1, . . . , zn ∈ RN ,
σ1, . . . , σn ∈ R and

Z =
n

∑

i=1

Zi · σizi and C =
n

∑

i=1

σ2
i · ziz′i.



Then Z is a normally distributed random vector with
mean 0 and covariance C. On the other hand, any N -
dimensional normal distribution N(0, C) can be gener-
ated by such a sum by choosing for zi the eigenvectors
and for σ2

i the corresponding eigenvalues of C.

Thus, the offspring x̂ can be created by adding a
N(0, σ2 · C) distributed random vector to the parent
x, where σ > 0 is the global step size for x which can
be adapted conventionally. If pm denotes the mutation
path, i.e. the (weighted) mean of the last successful
steps, then C can be updated by

Ĉ = (1− ccov) · C + ccov · p̂mp̂′m,

where ccov > 0 is a small constant and Ĉ is the covari-
ance matrix for the next generation. The path pm is
updated by a similar formula:

p̂m = (1− cm) · pm + cu
m · σ−1(x̂− x)

(note that σ−1(x̂− x) is N(0, C) distributed). Again,
cm > 0 is a small constant, while cu

m =
√

cm(2− cm),
which assures that pm and p̂m are identically dis-
tributed if pm and σ−1(x̂ − x) are independent and
identically distributed. Hence, the path is not influ-
enced by the global step size σ.

This covariance matrix adaptation procedure has
turned out to be very efficient and is successful in cases
where the standard ES breaks down. In particular, the
CMA makes the strategy invariant against any linear
transformation of the search space. Moreover, the co-
variance matrix approximates the inverse Hessian ma-
trix for functions with sufficient regularity properties.
Thus, the CMA can be considered as an evolutionary
analogon to quasi Newton optimization algorithms.

The main drawback of the CMA comes with increas-
ing dimension N of the search space. The storage
space and the update time for the covariance matrix
have complexity O(N2), while the computation of the
eigenvectors and eigenvalues is even O(N3). This can
be reduced to O(N2) by executing the step for exam-
ple after N/10 generations instead of every generation,
which does no severe damage. In any case, for large N ,
the CMA performance declines rapidly, compare also
Fig. 7. There are other self adaptation mechanisms
which are similar to CMA, such as the rotation an-
gle adaptation (see [5]). This algorithm has quadratic
space and time complexity as well and shows a poorer
performance in general.

3 Main Vector Adaptation

For many functions the advantage of the CMA com-
pared to a conventional ES is given by the fact that

the CMA finds the preferred mutation direction, while
all other directions are not acceptable. An instance is
the lens optimization (see the introduction). In these
cases, it should be sufficient to adapt one vector in-
stead of an entire matrix in order to find this direc-
tion. This is done basically by the simple formula
v̂ = (1 − cv) · v + cv · p̂m, where pm is the path as
before and cv > 0 is a small constant. Then, the off-
spring x̂ can be generated by x̂ = x + σ ·Z + σ ·Z1 · v,
where Z ∼ N(0, I) and Z1 ∼ N(0, 1). We call v the
main (mutation) vector and the algorithm main vector
adaptation (MVA).

In order to make these formulas work in practice, we
have to regard two details. First, the mutation is in-
dependent of the sign of the main vector v. However,
in contrast to the update formula for the covariance
matrix, the update of v depends on the sign of the
path pm. This can result in the annihilation of subse-
quent mutation steps and inhibits the adaptation of v,
in particular for difficult functions such as the sharp
ridge f7 (cf. Section 5). To avoid this breakdown, we
simply flip v if necessary:

v̂ = (1− cv) · sign(〈v, pm〉) · v + cv · p̂m.

Here, 〈·, ·〉 denotes the scalar product of two vectors.

The second problem to be fixed is the standard de-
viation of Z + Z1 · v along the main vector v. Since
Z + Z1 · v ∼ N(0, I + vv′), its variance along v is
σ2

v = 1 + ‖v‖2, hence σv =
√

1 + ‖v‖2. On the con-
trary, σv = 1 + ‖v‖ would be desired, since this corre-
sponds to the functioning of v as additional mutation
in the main vector direction. Thus, we write

x̂ = x + σ · (Z + Z1 · wv · v).

Letting wv = 1 + 2 · ‖v‖−1 yields σv = 1 + ‖v‖, how-
ever, the experiments show that a constant wv = 3
(corresponding to ‖v‖ = 1) yields the best results in
general, occasionally, wv = 1 is better.

Again, we point out that taking v (or anything simi-
lar) as the mean vector of the mutation does not yield
an efficient algorithm! This is presumably due to the
geometry of the high dimensional RN , where a nonzero
mutation mean results in a shifted sphere, while the
additional main vector mutation yields an ellipsoid as
mutation shape.

4 The MVA-ES Algorithm

In order to adapt the mutation step size σ, we employ
the same derandomized mechanism using a path pσ,
with the only difference that for pσ the main vector v



is ignored. This is again a perfect analogy to the CMA
([1]). Thus, the complete mutation algorithm reads as
follows.

Mutation.

1. Generate Z ∼ N(0, I)

2. Generate Z1 ∼ N(0, 1)

3. x̂ = x + σ · (Z + Z1 · wv · v)

4. p̂σ = (1− cσ) · pσ + cu
σ · Z

5. σ̂ = σ · exp
(

(‖p̂σ‖ − χ̂N )/(dσ · χ̂N )
)

6. p̂m = (1− cm) · pm + cu
m · (Z + Z1 · wv · v)

7. v̂ = (1− cv) · sign(〈v, pm〉) · v + cv · p̂m

where

Z ∈ RN and Z1 ∈ R random vectors,
x, x̂ ∈ RN parent and offspring individuals,
pσ, p̂σ ∈ RN parent and offspring σ-paths,
cσ > 0 σ-path constant and cu

σ =
√

cσ(2− cσ),
choose e.g. cσ = 4/(N + 4),

σ, σ̂ > 0 parent and offspring mutation step lengths,
pm, p̂m ∈ RN parent and offspring paths,
cm > 0 path constant and cu

m =
√

cm(2− cm),
choose e.g. cm = 4/(N + 4),

v, v̂ ∈ RN parent and offspring main vectors,
cv > 0 main vector constant, choose e.g. cv =

2/(N +
√

2)2,

χ̂N = E(‖N(0, I)‖) =
√

2 ·Γ(n+1
2 )/Γ(n

2 ) ≈
√

N − 1
2

(we prefer this approximation to the approxima-
tion from [1]).

The suggestions for the parameters cσ, cm and cv are
the same as the respective suggestions for the CMA
in [1], they are good also for MVA. However, for some
test functions, a greater value cv yields a faster con-
vergence, e.g. cv = 0.1.

For the recombination, we restrict here to a simple
intermediate recombination that is executed by com-
puting the mean of the object variables, paths, step
sizes, and main vectors of all participating individu-
als. Clearly, other recombination types are possible as
well, e.g. discrete or generalized intermediate recom-
bination.

5 Experimental Results

The MVA-ES has been tested against the CMA-ES
and a standard ES with derandomized step length
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Figure 2: f1 (sphere) and f2 (Schwefel)

control. We used the test functions f1, . . . , f9 from
[1], which are nonlinear and resistent to simple hill-
climbing. In addition, we test the lens optimization
f10. In order to obtain non-separability for f1, . . . , f9,
one determines a random orthonormal basis U before
every ES run and minimizes fk(U ·x) instead of fk(x).
Comparing the results to the case U = I shows that
each of the tested algorithms is invariant against any
rotation of the search space. This was of course ex-
pected.

In order to compare the adapation properties, all func-
tions have been tested in dimension N = 20. More-
over, we obtain a time and space complexitiy com-
parison with function f1 in different dimensions. For
each test function and each ES, we try a simple (1, 10)
variant without recombination (solid line in the plots)
and a (5,35) variant with intermediate recombination
(dotted line). We performed 70 runs for each setting.
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Figure 3: f3 (cigar) and f4 (tablet)

The plots show the fitness curves of average runs of
MVA-ES, CMA-ES and standard ES. For MVA-ES,
the best and the worst fitness curves are displayed,
too. The tests have been performed with MATLAB,
for the CMA-ES we used the implementation from [1].

Function f1(x) =
∑N

i=1 x2
i is the sphere function and

the only one that remains separable under the ran-
dom rotation. We observe that neither ES has dif-
ficulties to find the optimum, as well as for Schwe-
fels function f2(x) =

∑N
i=1(

∑i
j=1 x2

j ). The ”cigar”

f3(x) = x2
1 +

∑N
i=2(1000xi)2 is more interesting: The

standard ES fails, while CMA and MVA are success-
ful. This is the classical case of one preferred muta-
tion direction: It is easy to optimize the coordinates
2 . . . N , but then the remaining feasible direction along
the first coordinate is difficult to find. We observe fur-
ther that recombination apparantly disturbs the main
vector adaptation a little in general.
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Figure 4: f5 (ellipsoid) and f6 (parabolic ridge)

The ”tablet” f4(x) = (1000x1)2+
∑N

i=2 x2
i is in a sense

the converse of f3: The optimization is first carried
out along the first coordinate, then the coordinates
2 . . . N remain. Since there is no preferred mutation
direction, it is not unexpected that MVA fails to con-
verge, while the covariance matrix adapts easily to this
situation. Here a mechanism that ”fades out” one di-
rection, i.e. the inverse of MVA could be suitable.
Note that recombination helps the MVA in this case
to converge. The ellipsoid f5(x) =

∑N
i=1(1000

i−1
N−i xi)2

is another linear transformation of the sphere. Here,
there is neither a preferred mutation direction as in
f3 nor an ”anti-mutation” direction as in f4. Again,
CMA adapts easily, while the bad scaling remains a
problem for MVA and standard ES.

The parabolic ridge f6(x) = −x1 + 100
∑N

i=2 x2
i is an

instance for a preferred mutation direction and is eas-
ily optimized by the MVA-ES. The same is true for the
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Figure 5: f7 (sharp ridge) and f8 (Rosenbrock)

sharp ridge f7(x) = −x1 + 100
√

∑N
i=2 x2

i . This func-
tion is particularly hard to optimize, since the local
gradient is constant. A too small choice for wv results
in a failure of the MVA. The generalized Rosenbrock
function f8(x) =

∑N−1
i=1

(

100(x2
i − xi+1)2 + (xi − 1)2

)

(”banana function”) is an instance for a bent ridge.
Again, MVA and CMA are successful in this situation,
while standard ES fails. On the contrary, function
f9(x) =

∑N
i=1 |xi|2+10 i−1

N−1 , a sum of different powers,
is hard for MVA. Recombination improves the MVA
convergence.

Function f10(x) =
∑N−1

i=1

(

R− h
2 −h · (i− 1)− b

h · (ε−
1)(xi+1 − xi)

)2
+ maxi xi + mini xi is the prism lens

function (see introduction and Fig. 1). Here, h > 0 is
the height of the segments, b > 0 is the distance from
the lens to the screen, R = h · N−1

2 the y-coordinate
of the desired focal point, ε > 1 the refraction index
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Figure 6: f9 (different powers) and f10 (prism lens)

of the lens and 2 · xi the respective thickness. While
the standard ES stagnates with a thickness induced by
the initial random initialization, MVA and CMA find
the optimum. When the preferred direction has been
found and the lens is thinned, the focus is slightly dis-
turbed and has to be restored afterwards. The MVA-
ES does this much more rapidly than the CMA-ES,
when cv = 0.1 is chosen. (The corresponding parame-
ter setting for CMA does not work.)

Finally, we compare the time and space consumption
of a (1, 10)-MVA-ES and a (1, 10)-CMA-ES in search
space dimension N = 2, 5, 10, 20, 50, 100, 200, 400, 800,
see Fig. 7. In the time complexity plot, the average
time for one generation with test function f1 is dis-
played. The covariance matrix eigenvectors have been
updated all N/10 generations. The performance de-
crease is linear in N for the MVA and quadratic in
N for the CMA. Of course, the time complexity argu-
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Figure 7: Time and space consumption of the (1, 10)-
MVA-ES and the (1, 10)-CMA-ES for increasing di-
mension N . The time for one generation with test
function f1 is shown, the covariance matrix eigenvec-
tors have been updated all N/10 generations.

ment becomes unimportant when the fitness function
is expensive, in particular when its time complexity
in N is greater or equal O(N2). But even then, the
space advantage of the MVA remains, especially if the
population consists of many individuals. Moreover, for
large N , the computation time for the covariance ma-
trix eigenvectors increases drastically in practice, since
there is only a limited amount of memory available.
For a Pentium III with 128 MB RAM and the built-in
MATLAB function, this occurs at about N ≈ 400.

6 Conclusions

We presented a new self adaptation mechanism for
Evolution Strategies that adapts the main mutation

vector. The algorithm is similar to CMA and shows
a similar performance in situations where there is one
preferred mutation direction to find. If the demanded
adaptation is more complex, MVA is less powerful than
CMA. On the other hand, the time and space complex-
ity of MVA is only linear in the search space dimension
N . Therefore, MVA is appropriate for problems in
high dimensional search spaces (N > 500), where the
use of CMA becomes problematic because of its O(N2)
complexity. In low dimensions (N < 100), CMA will
remain the better choice.

There are several possible extensions of MVA. For ex-
ample, one could adapt an ”anti-mutation” vector, this
can be appropriate for functions similar to f4. One can
adapt more than one main vector, controlled e.g. by
the scalar product. If this is extended to N vectors,
it could be possible to obtain an algorithm similar to
CMA that does not need any eigenvector decomposi-
tion and thus has an O(N2) update of the mutation
directions instead of O(N3).
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