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Abstract. Many combinatorial optimization problems provide their data
in an input space with a given dimension. Genetic algorithms for those
problems can benefit by using this natural dimension for the encoding of
the individuals rather than a traditional one-dimensional bit string. This
is true in particular if each data point of the problem corresponds to a bit
or a group of bits of the chromosome. We develop different methods for
constructing a rectangular grid of near-optimal dimension for given data
points, providing a natural encoding of the individuals. Our algorithms
are tested with some large TSP instances.

1 Introduction

Many combinatorial optimization problems provide their data in an input space
with a given dimension d. For example, the classical traveling salesman problem
(TSP) consists of n points in the two-dimensional plane. An efficient representa-
tion of a tour for solving the TSP with a genetic algorithm is the adjacency coding
(see [1], [2] or [3]): A tour is defined by its adjacency matrix or, equivalently, by
a list containing the successor for each city. This locus-based representation has
shown to be much more appropriate for use with genetic algorithms than a time-
based representation containing a permutation of the cities. It is characterized
by the fact that each city corresponds to a certain part of the chromosome.

When using a locus-based representation together with a standard N -point
crossover operator that does not permute the chromosomes, the arrangement
of the points in the representation is important. For example in the case of the
TSP, arranging the cities in the order given by a rough approximation of the TSP
results in a better performance of the genetic algorithm than using an arbitrary
arrangement, as shown in [1]. This is due to the fact that the crossover operator
can exploit neighbourhood relations of the preordered cities.

However, since the original problem is two-dimensional, a two-dimensional
representation as suggested by Bui and Moon ([4]) would be more natural. They
present a d-dimensional N -point crossover operator that applies to d-dimensional
grids instead of one-dimensional strings. If this idea is employed for the TSP with
a locus-based representation, the cities have to be allocated to the grid points.
This is a preliminary task that has to be completed before the start of the genetic



algorithm and should not consume too much time. On the other hand, a good
arrangement may increase the performance of the genetic algorithm.

Clearly, the grid encoding is not the only possibility for a d-dimensional
representation, one could, for example, try a graph-based encoding. But the grid
encoding has the advantage of a very simple and efficient crossover procedure
and is therefore very convenient for a genetic algorithm that uses crossover as
an important operator.

Hence, the problem considered here can be defined as follows. Given are n
data points (x1, . . . , xn) in the d-dimensional space. Find an appropriate grid size
(g1, . . . , gd) and an unambiguous (injective) allocation ı : {1 . . . n} 7→ {1 . . . g1}⊗
{1 . . . g2}⊗ . . .⊗{1 . . . gd}, such that the allocation is good in the following sense:
Points that are close to each other should be mapped to neighbouring grid points,
while distant points should be mapped to distant nodes in the grid. Thus, the
transformation to the grid throws away as little neighbourhood information as
possible, and one can hope that a genetic algorithm is able to use this information
for faster convergence. Note that the injectivity of ı implies g1 ·g2 ·. . .·gd ≥ n. On
the other hand, this product should be as small as possible, since each unused grid
point means unused space in the chromosomes and therefore poorer performance
of the genetic algorithm.

In [5], B. Moon and C. Kim study a similar problem, the two-dimensional
embedding of graphs. Their assumptions are weaker, since they exploit only the
adjacency information (i.e. distance in the TSP case). In the contrary, we will
exploit the locus information.

2 Calculating the grid size

We start with a brief discussion of different approaches. Basically, there are two
possible ways: One can either fix the grid size before allocating the points, or
one can determine the grid size while arranging the points. Suppose we want
to do the latter. An algorithm could perform a depth first search, in analogy
to the graph embedding algorithm in [5]. In each step, the grid is extended by
an additional point. But the decision where to extend the grid and in which
direction is difficult in general, since it depends crucially on points that are not
yet processed. Furthermore, if n < g1 · g2 · . . . · gd, then unused grid points have
to be inserted at some places. Suboptimal decisions that result in an ineffective
allocation are almost certain, which carries the need for repairing algorithms.
Hence, constructing the grid without previously fixing the grid size can become
very expensive, in particular for large data sets (for example n ≈ 1000).

For a concrete example, consider the points displayed in Fig. 1 (a). A step
by step arrangement may lead to the situation shown in Fig. 1 (b). It would
be relatively easy to repair this arrangement by inserting two empty positions,
thus arriving at Fig. 1 (c). In contrast, all modifications that could result in the
optimal allocation Fig. 1 (d) are quite expensive. Another situation: If point 6 is
placed to the right of point 5 instead of below, the result is Fig. 1 (e) or, if point
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Fig. 1. (a) Eight data points, (b) - (f)
their allocation to different grids, (d) is
optimal

Fig. 2. The points have been normal-
ized and projected to the coordinate
axis

7 is choosen to be below point 5, Fig. 1 (f). Note that for the last arrangement
four additional empty positions have to be inserted, which is not optimal at all.

In general, we are interested in a reasonable minimum of grid points. This
ensures a minimum of unused space for the individuals, while Fig. 1 suggests that
the neighbourhood relation is fairly well preserved by different arrangements
(each of the arrangements (c) through (f) would pass this criterion). Therefore,
we pursue the other way and fix the grid size before allocating the points.

We assume that the data points cover a region that has approximately the
shape of a d-dimensional hypercube with balanced aspect ratio, i.e. that the data
set is not poorly scaled. Otherwise, the scaling information should be exploited
for calculating the grid size.

Consider again Fig. 1 (a). We are looking for a method that calculates the
grid size for this set of points. A 2 × 4 grid would be optimal, as we can see in
the figure, a 3× 3 grid would be tolerable, too.

To this aim, we first normalize the points to [0, 1]d and name the resulting
points (y1, y2, . . . , yn). Then we project the points to each of the d coordinate
axis, obtaining d vectors of length n {(y1, . . . , yn)(k), k = 1 . . . d}, see Fig. 2.
Sorting (y1, . . . , yn)(k) for each k ∈ {1 . . . d} separately in ascending order yields
(z1, . . . , zn)(k), k ∈ {1 . . . d}, having z(k)

1 = 0 and z(k)
n = 1 for each k. We define

rk =
1

∑n−1
j=1 (z(k)

j+1 − z(k)
j )2

+ 1 for each k ∈ {1 . . . d}.

This number rk estimates the requested number of points for each dimension k.
To motivate this statement, consider more closely the projections onto the

x-axis in Fig. 2. We have eight different points z(1)
1 , . . . , z(1)

8 , but they are not
equidistantly distributed. Instead, z(1)

1 , z(1)
2 and z(1)

3 form a cluster, and the same
is true for z(1)

5 , z(1)
6 and z(1)

7 . Thus one should expect r1 = 4 rather than r1 = 8.



Consider n sorted points z1, . . . , zn ∈ [0, 1] with z1 = 0 and zn = 1. Suppose
that each zj is one of the m ≤ n points { i

m−1 : 0 ≤ i ≤ m − 1}, which
are equidistantly located. If m < n, then at least two points coincide. Let X
be a random variable with uniform distribution on [0, 1] and define δ(ξ) as the
distance of ξ to the closest point zj :

δ(ξ) = min
1≤j≤n

|zj − ξ| for ξ ∈ [0, 1].

Then the expectation of δ(X) can be computed:

E(δ(X)) =
∫ 1

0
δ(ξ)dξ =

n−1
∑

j=1

∫ zj+1

zj

min
i∈{j,j+1}

|zi − ξ| dξ

=
n−1
∑

j=1

1
4
(zj+1 − zj)2 =

m−1
∑

j=1

1
4(m− 1)2

=
1

4(m− 1)
.

Thus, we can reconstruct the number of distinct points m by means of E(δ(X)):

m =
1

4 · E(δ(X))
+ 1 =

1
∑n−1

j=1 (zj+1 − zj)2
+ 1.

This is the formula stated above. Note that this expression is continuous in each
zj , so if you take a point zj that coincides with its successor and move it a little
to the left, the left-hand side changes only a little, too. Hence a cluster that is
for example formed by z(k)

1 , z(k)
2 and z(k)

3 in Fig. 2 yields almost the same value
as a cluster of three coinciding points. This property enables the formula to be
a good estimate for the number of different points. In our example (Fig. 2) the
calculations yield r1 = 4.1045 and r2 = 7.0624.

Now one notes that the product of the requested grid sizes is in general
much larger than n: We have r1 · r2 = 28.9880 and n = 8 in our example. A
simple reflexion explains this fact: If n points are equidistantly placed on the line
through (0, 0) and (1, 1), the result will be r1 = n and r2 = n, hence r1 · r2 = n2.

At this stage, we recall our assumption that the data set is not poorly scaled.
Thus, each dimension can be treated in the same way, and we set

sk = rk · d

√

n
r1 · r2 · . . . · rd

for each k ∈ {1, . . . , d}

and obtain the desired grid size for each dimension having s1 · s2 · . . . · sd = n,
while the relations are preserved.

Unfortunately, s1, . . . , sd are no integer numbers yet. We could obtain integers
by setting gk = dske. But since we are interested in a grid as small as possible,
this is not a good choice. Thus, we simply try each reasonable combination
g1, . . . , gd. Since the dimension d is normally quite small, this is no drawback for
the performance. For large d (about d ≥ 15), a different method has to be used
instead.



In order to select the best grid size, we define

q1 = max
1≤k≤d

| log(
gk

sk
)| and q2 = log(

g1 · . . . · gd

n
).

The ratio q1 can be considered as the bias of the desired size relations, while q2

is the factor by which the grid is too large. We define the optimal grid size as the
vector (g1, . . . , gd) for which max{q1, q2} attains its minimum while g1·. . .·gd ≥ n.
The number of grid points g1 · . . . · gd will be denoted by ngrid in the sequel. In
our example (Fig. 2), the algorithm found the 2× 4 grid to be optimal.

We point out that this method for calculating the grid size is most appropriate
when the projections to the coordinate axis form significant clusters, otherwise
the algorithm will produce a nearly quadratic grid. This is a desirable behaviour
for data sets that are reasonably scaled and oriented. If the orientation is not
appropriate, i.e. not roughly parallel to the coordinate axis, a transformation
using the eigenvectors of the covariance matrix (see Section 4) can fix that prob-
lem. The algorithm is not appropriate for exploiting the scaling information of a
poorly scaled data set, but this is normally a simple task which can be done by
multiplying the requested grid sizes rk with the corresponding scaling factors.

3 Allocation of the points

Once the grid size has been computed, the allocation of the points is performed
by a simple heuristic, similar to the heuristic that is often used for the TSP. We
define the ngrid grid points γ1, . . . , γngrid as an arbitrary enumeration of the set

{(

1
2

+
i1 − 1

g1
, . . . ,

1
2

+
id − 1

gd

)

: 1 ≤ i1 ≤ g1, . . . , 1 ≤ id ≤ gd

}

.

Then, we start with a random allocation of the points, see Fig. 3 (a). Each step
of the heuristic selects randomly two edges, i.e. two existing connections between
a point and a grid point, and exchanges the allocation if this reduces the sum
of the distances. Instead of two edges, the heuristic can select one edge and one
unused grid point (they exist if ngrid > n) and exchange the allocation if the
distance is reduced. The heuristic aborts after 5000 · ngrid steps maximum. Fig.
3 illustrates the function of the heuristic in our example. Note that the result
(Fig. 3 (b)) is the optimal arrangement (Fig. 1 (d)).

Instead of the distances, the heuristic can also minimize the square distances.
This results in a slightly different behaviour and is a little faster, since no square
root has to be computed. If the standard grid defined above does not yield
satisfactory results, a different grid as described in the next section can improve
the performance.

4 Data preprocessing and Self Organizing Maps

If the shape that is covered by the data points (xj) differs from a (scaled) hyper-
cube, both the calculation of the grid size and the heuristic that uses a rectangu-
lar grid (γi) may yield poor results. In many cases, a simple rotation of the data
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Fig. 3. Allocation of the points to the
grid: (a) random initialization, (b) final
result of the heuristic

Fig. 4. A data set in R3 and the coordi-
nate system formed by the eigenvectors
of the covariance matrix

is sufficient to fix this problem. To this aim, we apply a very efficient statistical
method that makes use of the covariance matrix of the data. Let x̄ = 1

n

∑n
j=1 xj

and X =
(

(x1 − x̄) . . . (xn − x̄)
)

. Since XX ′ is symmetric, its eigenvectors
u1, . . . , ud form an orthogonal basis. We set U = (u1 . . . ud) and yj = U ′xj for
each 1 ≤ j ≤ n. This transformation yields a data set that is oriented mainly
parallel to the coordinate axis (Fig. 4).

If the data set has a more complex shape e.g with a curvature, the use of
a Self Organizing Map (SOM) may be appropriate. This is a class of Neural
Networks introduced by Kohonen, see [6] or [7] for details. Self Organizing Maps
provide a powerful tool for classifying large sets of points in the d-dimensional
space with regard to neighbourhood relations.

We take a rectangular SOM with a highly unbalanced aspect ratio and only
few codebook vectors. Thus, the SOM can reproduce the curvature of the data,
when it is trained with the points (xj), see Fig. 5 (a). In the resulting map, we can
define a coordinate system for each codebook vector (in the figure, this is shown
for the third point from the left). With this information, we can ”straighten”
the SOM and obtain a transformation to a nearly rectangular grid, while the
neighbourhood relations are preserved.

A grid defined by a SOM can be also very appropriate as a base for the
heuristic, instead of the standard grid. For this aim, we build a SOM of size
g1 × . . .× gd and train it with the data points (xj), see Fig. 5 (b). The resulting
codebook vectors define the grid (γi), which is rectangular and contains the
neighbourhood information, but is adapted to the data shape. For such a grid,
the heuristic that minimizes the square distances has shown to be best suitable.

5 Practical tests

The single steps have been described by now. The complete algorithm for con-
structing a rectangular grid from given data points can be summarized as follows.
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Fig. 5. Different applications of a
SOM: (a) a SOM for data preprocess-
ing, (b) the SOM defines the grid

Fig. 6. The test data sets, each defines
1000 cities for a TSP

Algorithm.

1. Data preprocessing. Choose either no preprocessing, rotation according to
the eigenvectors of the covariance matrix, or transformation using a SOM.

2. Grid size calculation.
3. Grid definition. Use either a standard grid or define the grid by a SOM.
4. Choice of the heuristic. Choose the sum of the distances or the sum of the

square distances to be minimized.

The algorithm is implemented in the MATLAB environment. This implies
that the performance is lower than, for example, C-code would be. This is toler-
able since there are no time-consuming loops, except for the heuristic, which is
therefore directly coded in C. For the SOM features, we use the SOM toolbox,
see [8]. The genetic algorithm is the MATLAB implementation presented in [9].

For testing our algorithm, we used four rather large traveling salesman in-
stances with 1000 cities each. The cities are shown in Fig 6. The first data set (a)
simply consists of randomly placed points. The second (b) is defined by randomly
placed points aligned to a grid. The third data set (c) is the second transformed
to a sigmoid curve, and the last (d) is the first transformed to a half circle.

To estimate the performance of the grid allocations, there is a direct and an
indirect way. The former consists in defining a measure for the preservation of
neighbourhood relations under the grid transformation. To this aim, consider
the distance matrix Dx defined by Dx

ij = ‖xi − xj‖ (1 ≤ i, j ≤ n) and the dis-
tance matrix Dγ that contains the distances after transformation to a standard
rectangular grid. Dx is normalized such that

∑

i Dij = 1 for each j. Moreover,
we define a weight matrix W to be inverse proportional to the square of the
distances and normalized: Wij = c · (Dx

ij)
−2 for i 6= j and Wij = 0 for i = j and

∑

i Wij = 1 for each j. Then, a measure Mj for the preservation of neighbour-
hood relations for one point xj is defined as the weighted mean of all distance
differences that arise from the grid transformation. Thereby the grid distances
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Fig. 7. Direct performance compari-
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tour and therefore a better perfor-
mance

must be scaled in order to achieve the best fit to the distances. As an explicit
formula, this gives

Mj = min
s∈R+

n
∑

i=1

Wij · |Dx
ij − s ·Dγ

ij | ∀ 1 ≤ j ≤ n.

The measure M for the overall preservation of the neighbourhood relations is
defined as the mean of all Mj .

Fig. 7 shows this evaluation of the grid transformation for the four test data
sets and several allocation strategies with different preprocessing, grid definition
and heuristic. Each combination corresponds to a color in the figure which is
explained in the legend by a comma separated list: The first entry is the pre-
processing method (none, eigenvectors or SOM), the second the grid definition
(standard or SOM) and the third is the heuristic (1 for absolute distances and
2 for square distances). We observe that the evaluation for the grid allocation
varies not very much, except for a larger value for the SOM preprocessing for
the first two data sets. This is not unexpected since these data sets cover al-
ready a quadratic area, thus a rectangular SOM is likely to generate a worse
arrangement.

The indirect evaluation of a grid arrangement is given in terms of the short-
est city tour computed by a genetic algorithm using the grid arrangement for
encoding. As a mutation operator, we employ the well known TSP-heuristic (see
e.g. [10]) that randomly performs edge exchange and single point insertion. We
use the same combinations for preprocessing, grid definition and heuristic as
above. In addition, for reference purpose, we try a ”smart” one-dimensional ar-
rangement according to a run of the TSP-heuristic as suggested in [1] as well as
an arbitrary one-dimensional arrangement. For each setting, 20 GA runs have
been performed, from which we take the averages. The following GA settings



Fig. 9. Grid defined by a SOM
with eigenvector preprocessing and
quadratic heuristic for data set (d)

Fig. 10. The optimal path found with
the coding shown in Fig. 9

were used: population size µ = 40, number of generations tmax = 100, nonlin-
ear ranking selection (q = 7), crossover and mutation probablity pcross = 0.5
and pmut = 0.1. Fig. 8 shows the resulting indirect performances relative to
the average performance of the arbitrary one-dimensional arrangement. We use
logarithmic (base 2) scale, where a positive value means a shorter average tour
length.

The performance differences are minimal (less than 1%), but reproducible.
The two-dimensional arrangement is always better than both the arbitrary and
the smart one-dimensional arrangement. These relations remain valid also in
earlier generations of the GA run, e.g. after t = 30, 50, or 80 generations. Thus,
our coding implies a faster GA convergence. It is interesting to observe that
the smart one-dimensional arrangement is sometimes worse than the reference.
Further, there is no outstanding correlation between the direct and the indirect
performance.

Fig. 9 and Fig. 10 show examples of a grid gained with a SOM and the
resulting optimal path for the last test data set.

The time complexity of each of the steps is clearly linear in the number of
points n. In the practical experiments with n = 1000 cities, the time for the first
step ranges from 0 (no preprocessing) over 0.01 sec (eigenvector transformation)
up to 0.8 sec (SOM). The second step (calculation of the grid size) needs about
0.01 sec. The standard grid definition takes no measurable time, while the SOM
grid calculation costs 99 sec. This is due to the fact that a large amount of code-
book vectors have to be trained. Nevertheless, even this is not much compared
to the running time of the genetic algorithm which is in this case about 48 min.
The last step, the heuristic, takes 2.3 sec for minimizing the distance sum and
1.1 sec for minimizing the square distance sum. In any case, the overall algorithm
takes little time in relation to the following genetic algorithm.



6 Conclusions

The presented methods allow the efficient arrangement of a given set of data
points in a rectangular grid under preservation of the neighbourhood relations.
This can increase the performance of genetic algorithms using a locus-based
representation, when each data point corresponds to a part of the chromosome.

The algorithms developed in this paper can be applied also in completely
different situations. For example, to define the grid size of a SOM, the ideas
from Section 2 can be used.

The natural encoding results in a small performance improvement for the
TSP. Tested with other problems, the improvements gained by a d-dimensional
encoding were similarly measurable, but small. On the other hand, there is no
obvious relation between the direct performance measure (neighbourhood preser-
vation) and the genetic performance. These facts raise some questions: Is there a
direct performance measure that is correlated to the indirect performance? Are
there (d-dimensional) encoding schemes that yield more improvement? What are
characteristics of an optimal encoding scheme for a locus-based representation?
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