Similarity-preserving Metrics for Amino-acid Sequences

String distances
- Levenshtein (edit) distance
- Feature (n-gram) distance
- Negative scaled similarity [Agrafiotis]
- Mole fraction metric [Apostol & Szpankowski]
- Setubal & Meidanis

Distance
- Symmetric, positive-semidefinite measure
- Satisfies the triangle inequality
- In vector spaces computed over scalar product
- Foundation for many algorithms

Similarity score
- Biologically founded: PAM, BLOSUM, DNA... schemes
- Mathematical properties undefined
- Not applicable in many statistical and pattern recognition algorithms

Problems:
Either not biologically plausible or mathematically inconsistent.

Levenshtein:
Minimum number of edit operations needed to transform one string into another. No biological connection.

Feature:
Number of n-grams in which the strings differ. Biologically unfounded and mathematically inconsistent.

Agafiotis:
Based on scoring matrices, but mathematically inconsistent.

Apostol & Szpankowski:
Takes only mole fractions of amino-acids into account, discards their order.

Setubal & Meidanis:
Mathematically and biologically sound, but requires all symbols to have the same self-similarity.

Similarity-based metric
Analogy with vectors:
\[d(a,b) := \langle a|a \rangle + \langle b|b \rangle - 2\langle a|b \rangle \]
- Symmetric, positive-semidefinite, zero for \(a=b \)
- For certain scoring schemes (BLOSUM etc.) satisfies the triangle inequality

Examples:
Values like mean, median, and variance can be defined over a distance measure.

Question:
Given similarities \(\langle a|b \rangle, \langle b|c \rangle \) such that \(\langle a|b \rangle < \langle b|c \rangle \), what can be said about \(\langle a|c \rangle \)?

Applications of distance measures for strings
- Sammon Mapping: projecting the data onto a plane with preserving the distances
- Self-Organizing Maps: regression through mapped data

Above:
Sammon mappings of the identity and BLOSUM62 matrices and of the hemoglobin \(\alpha \) and \(\beta \) chains. Below: Sammon mapping and the Self-Organizing Map of samples from seven protein families.