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Abstract. The field of active learning and optimal query construc-
tion in Neural Network training is tightly connected with the design of
experiments and its rich theory. Thus there is a large number of ac-
tive learning strategies and query criteria which have a sound theoretical
foundation. This comparative study considers the regression problem
of approximating a nonlinear noisy function with relatively few inputs.
We evaluate some query criteria, namely space-filling criteria, variance
criteria, markov chain monte carlo methods and query by committee.

1 Introduction

An important practical application of Neural Networks is the approximation of
an unknown black-box-function with a nonlinear behaviour and not too much
inputs. Often the output of the function is corrupted by noise. For example,
the function could be given by the behaviour of a highly complex technical
system. Then the collection of training data is very expensive with respect to
both time and other resources. In this paper, we concentrate on the situation
that the bulk of costs is spent for labelling the input data, that is measuring
the output of the black-box-function at a given input x ∈ X, where X denotes
the space of valid inputs.

If we assume that it is straightforward to obtain unlabelled input data,
for example if the input space is some bounded hypercube in Rd, then we can
consider the following problem: Given a training set ({xj}n

j=1, {yj}n
j=1) ⊂ X×R

and a trained Neural Model net, find a new query xn+1 ∈ X (or a set of new
queries) such that the expected information gain is maximal if (xn+1, yn+1) is
added to the training set. Here yn+1 denotes the result of measuring at xn+1.
Then the next query (or queries) can be obtained by optimizing some query
criterion on the whole space X. We call this the optimization method. In this
study, we use a standard nonlinear optimization algorithm, which was started
5 times for each query to prevent it from getting trapped in local optima.

A second scenario arises if there is only a limited set Ξ = ({ξj}k
j=1 ⊂ X of

valid inputs available. This occurs for example when the decision if an input is



is valid or not involves another expensive operation. Alternatively, if the eval-
uation of the query criterion is very slow but can be performed simultaneously
for many points, it might be favourable to generate Ξ at random and use it
for constructing the query. Then the next query xn+1 ∈ Ξ is constructed by
selecting the point of Ξ which optimizes some query criterion. In this study,
this selection method is performed with 1000 randomly generated points.

There are very few comparative studies in literature, each of which can
cover only a small part of the many different active learning algorithms. This
is also true for this study. We concentrate on the situation given above and try
to provide some empirical background for the question of which query criteria
are good.

2 Different Query Criteria

This section briefly presents and discusses different query criteria. We restrict
to the situation that only one point at a time is queried. This has two mo-
tivations: First, after adding the query to the training set, the information
gained by this step is used in further queries, so this argument suggests that
this strategy might carry an improvement. Second, literature observes no mea-
surable drawback of this procedure, see e.g. [2]. A query criterion is then
a function q : (x, {xj}, {yj}, net) 7→ z ∈ R+ which takes a new input x, the
training set ({xj}, {yj}) and the Neural Network net and returns some positive
measure of the expected information gain if the query is performed at x. Query
construction should result in a point x at which q attains its maximum.

a. Random Queries
A simple method (for reference only) is selecting x ∈ X or x ∈ Ξ at random.

b. Space-Filling Queries
Another simple and yet powerful strategy is to construct a space-filling design.
This can be obtaind by defining q(x, {xj}) = minj ‖x − xj‖, where ‖ · ‖ is a
norm on X. This criterion depends neither on {yj} nor on net.

c. Network Variance Criteria
Variance criteria emerge from the theory of optimal experimental design. In
order to use this theory, several assumptions have to be made:

• the true function is perfectly learnable by the network,
• the weights w1 ∈ RW of the trained network are close to their optimal

(true) value w0, and this remains valid after adding a new training point,
• the noise in the measurements is independently normally distributed with

mean 0 and variance σ2.

For the weight vector w, the training error function with weight decay param-
eter α is given by

S(w) =
1
2

n
∑

i=1

(net(xi, w)− yi)2 +
α
2

W
∑

i=1

w2
i .



If we consider the partial derivative of the network output with respect to the
weights and the inverse Hessian of the error function,

g(x, net) =
∂ net
∂w

(x,w1) and A(net) =
(

∇∇S(w1)
)−1

,

then the overall predictive variance after a query at x is about minimal if

q(x, net) = g(x, net)T A(net)g(x, net)

is maximal (see [4]). The network weights depend on the training data, there-
fore this query criterion implicitely depends on the training data, too. Since for
linear models the predictive variance at x is given by g(x)T Ag(x) and the sec-
ond assumption implies that the network is approximately linear in the weights,
this criterion maximizes the predictive variance. On the other hand, maximiz-
ing g(x)T Ag(x) is equivalent to minimizing det(A∗) where A∗ is the inverse
Hessian after adding the new training pattern (x, y). Therefore this criterion
is strongly related to the important D-optimality in linear regression.

Theoretical treatments of variance criteria can be found e.g in [4] or [2].
These articles also suggest and derive other and more complex variance criteria,
based on thorough probabilistic analysis. But since the dominant term is always
g(x)T Ag(x), there is not too much difference in practice.

However, all theoretical analysis does not answer a key question: can we
apply these methods if the above assumptions do not hold? Clearly, even for
most toy problems not all of them valid. The results of this comparative study
suggest that even then the variance criteria are good criteria, at least if the right
network architecture is used. For feed-forward networks with sigmoid activation
functions of the hidden neurons, and if there are not too few hidden neurons
so that the network can capture the uncertainty, the queries obtained by the
variance criterion tend to produce a space-filling design as long as the network
”is not too sure”. In this study, the variance criterion has been used with a
single network (denoted by Var) and a committee of 5 networks (Var(C)).

d. Markov Chain Monte Carlo Methods
An alternative access to the g(x)T Ag(x) criterion considers the distribution
of the network outputs. If they are assumed to be normally distributed, a
good estimator for their variance (derived in a Bayesian framework) is σ̂2 +
g(x)T Ag(x), where σ̂2 is the estimated measurement variance (see [1] for a
very good overview). So maximizing the query criterion again means finding
the point with the maximal predictive variance. Of course the assumption that
the distribution of the network outputs is Gaussian holds almost never. Markov
Chain Monte Carlo (MCMC) methods (see [3]) provide an alternative technique
for estimating the distribution of the network output and thus the predictive
variance: The weights are randomly sampled according to their probability
(where the probability is given by the training error function), and for each
sampled weight the network outputs for a set {ξj} ⊂ X of desired input points
are calculated. In order to get a representative sample of the true distribution,
quite many weights have to be sampled. Therefore, one run takes some time,



and in particular it is prohibitive to use an optimization algorithm that starts
the sampling many times. Instead it is convenient use the selection method:
generate a number of points in the input space at random, evaluate the MC
once for all points and then choose the point with the largest variance. There
are several variants of MCMC algorithms. For this study, we used a simple
one sampling 1000 weights (denoted by MCMC) and a hybrid one sampling 100
weights (HMC). Both algorithms are described in [3].

e. Query by Committee
Another query criterion arises when a committee {netj}m

j=1 of networks is used
as model instead of a single network. The committee members are trained
independently with different random initial weights, and the model output at
x is the mean of the network outputs netj(x). The query by committee (QBC,
see [5]) criterion is then the committee disagreement or variance, defined by

q(x, {netj}) =
m

∑

j=1

(

netj(x)− 1
m

m
∑

i=1

neti(x)
)2

.

It is interesting to note the relation between QBC and MCMC methods: The
m different weight vectors of the network committee can be considered as m
samples in the weight space according to a probability that is biased towards
the peaks. However, if there are only few samples, this bias seems to affect the
estimate of the variance in a rather positive than negative way.

For our experiments, we used a committee size of m = 5. Moreover, to get
a reference, we tried the variance criterion with the committee as well, using
q(x, {netj}) =

∑

j g(x, netj)T A(netj)g(x, netj).

3 Results and Conclusions

Different benchmark functions have been used for this study: the ”sine”, ”hills”,
”gaussian” and ”waves” functions have smooth and moderately complex nonlin-
ear behaviour, the ”edge” function has a non-smooth edge and the last function
is almost linear. The functions are defined on [0, 1]d, where dimensions d from
2 up to 6 have been tested. Although our main interest is the noisy function,
we also performed experiments without noise. In all cases, the training set was
initialized with

{

x ∈ Rd : xi ∈ {0, 1}
}

∪
{

x ∈ Rd : ∃j ≤ d : xj ∈ {0, 1}, xi =
1
2∀ i 6= j

}

∪
{ 1

2

}

(CCI design). We used feed-forward networks with one hidden
tanh layer, linear output, and shortcut connections. We present the results for
2d + 1 hidden units, other experiments with different hidden layer size and
without shortcut connections confirm the results. The networks were trained
with a Levenberg-Marquardt algorithm with Bayesian regularization. The fig-
ures display the RMSE with respect to the function without noise. All values
represent the mean of 20 independent experiments, for clarity of presentation
the floating mean over 10 successive numbers of training patterns was taken.

Fig. 1 compares the query criteria with growing number of training pat-
terns for some benchmark functions. The upper two plots show the RMSE
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Figure 1: RMSE curves for some of the benchmark functions

development for the sine function in dimension d = 2 and d = 6. For QBC and
the variance criteria the optimization method has been used, for the Markov
chain and the distance criteria the selection method. The committee results are
always better than the rest. This is not surprising, since network committees
are expected to generalize better than a single network. Moreover, the plots
indicate that QBC is slightly better than the variance criterion. The Markov
Chain methods perform not very well, the random and the space filling criteria
deteriorate with increasing dimension.

The curves for the functions without noise are not shown, but they per-
fectly confirm the results. The lower left plot displaying the curves for the
almost linear function in dimension d = 6 with a large noise amplitude shows
similar results. Here the hybrid Markov chain performs well, but QBC re-
mains the best choice. The lower right plot compares the selection and the
optimization methods for the variance criterion (a single network) and QBC.
The optimization method results in a lower RMSE finally, while surprisingly
the selection method performs better when the number of training patterns is
small. Probably the query criteria are highly multimodal in those cases, and
the optimization gets stuck in local optima. The other benchmark functions
verify the above results, which is shown in fig. 2. Only for the non-smooth
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Figure 2: The final RMSE after 150 training patterns

edge function, the HMC criterion performs surprisingly well.
This study was designed and performed in order to increase experience

about the practical behaviour of query criteria and thus support the decision
for the right active learning strategy. We conclude that if a committee of
networks is available, the QBC criterion gives very good results, even with our
relative small committee size of 5. Moreover, it is most easy to evaluate, since
no Hessian is needed. If only a single network is used, the variance criterion is a
good choice. Our space-filling criterion is good in particular in low dimension.
The MCMC criteria have a relatively poor performance. Moreover they are
computationally very expensive to evaluate, in contrast to the other criteria,
the evaluation of which is negligible compared to the network training. We
therefore do not recommend MCMC methods for query construction in the
setting of this study. However, in high dimensions this may be different.
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