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Abstract

This paper addresses the problem of mapping the features
of a gas distribution by creating concentration gridmaps
from the data collected by a mobile robot equipped with an
electronic nose. By contrast to metric gridmaps extracted
from sonar or laser range scans, a single measurement of
the electronic nose provides information about a compar-
atively small area. To overcome this problem, a mapping
technique is introduced that uses a Gaussian density func-
tion to model the decreasing likelihood that a particular
reading represents the true concentration with respect to
the distance from the point of measurement. This method
is evaluated in terms of its suitability regarding the slow
response and recovery of the gas sensors. The stability of
the mapped features and the capability to use concentration
gridmaps to locate a gas source are also discussed.

1 Introduction

This paper addresses the problem of modelling gas distri-
bution in indoor environments by a mobile robot equipped
with an electronic nose, comprising an on-board array of
gas sensors. A new algorithm is presented for creating con-
centration gridmaps by combining the recorded gas sensor
readings of the robot with location estimates. Intended ap-
plications include chemical mapping of hazardous waste
sites and localisation of a distant gas source, especially in
environments where it is impractical or uneconomical to
install a fixed array of gas sensors. The method does not
require artificial ventilation of the environment, e.g., by
imposing a strong, unidirectional airflow as in previous ap-
proaches for gas source localisation [6, 15, 4].

Gridmaps were originally introduced to mobile robotics
in the early 1980s as a means of creating maps using wide-
angle measurements from sonar sensors [12]. The basic
idea is to represent the robot’s surroundings by a grid of
small cells. In a conventional gridmap, each cell contains a
certainty value representing the belief that the correspond-
ing area is occupied by any object. In the suggested ap-
proach, the cells in the gridmap correspond to an estimate

of the relative concentration of a detected gas in that par-
ticular area of the environment. There are several problems
in creating such a representation that are specific to robots
equipped with gas sensors, discussed as follows.

In contrast to range-finder sensors such as sonar or laser,
a single measurement from an electronic gas sensor pro-
vides information about a very small area. This problem is
further complicated by the fact that the metal-oxide sensors
typically used for this purpose do not provide an instanta-
neous measurement of the gas concentration. Rather, these
sensors are affected by a long response time and an even
longer recovery time. The time constants of rise and decay
of the mobile nose used here were estimated as τr ≈ 1.8 s
and τd ≈ 11.1 s [7]. Thus, considerable integration of suc-
cessive measurements is carried out by the sensors them-
selves. The impact of this effect on the concentration map-
ping is discussed in Section 2.2. In addition, because diffu-
sion is a very slow transport mechanism for gases in general
[13], the distribution of gas molecules in an environment
that is not strongly ventilated tends to be dominated by tur-
bulence and convection flow, typically resulting in a jagged
pattern of temporally fluctuating eddies [9, 14].

To overcome these problems, a mapping technique is
introduced that permits integration of many gas measure-
ments over an extended period of time. Spatial integration
of the point measurements is carried out by using a Gaus-
sian density function to extrapolate on the measurements,
by assuming a decreasing likelihood that a given measure-
ment represents the true concentration with respect to the
distance from the point of measurement. By integrating
many measurements along the path of the robot, the under-
lying structure of the gas distribution can be separated from
the transient variations due to turbulence.

In order to build complete concentration gridmaps, the
path of the robot should roughly cover the entire space, al-
though a uniform exploration is not necessary. To increase
spatial accuracy it is also advantageous to pass particular
points from multiple directions.

The location estimates required for map building were
obtained by the external, vision-based absolute position-
ing system W-CAPS [8], which is briefly described in Sec-



tion 3. However, the results are expected to apply to any
mobile robot equipped with a suitably accurate on-board
positioning system, e.g., by carrying out simultaneous lo-
calisation and mapping with other sensor systems [2].

2 Concentration Gridmaps

Gridmaps extracted from a sequence of measurements are
able to represent time-constant features of the measured
quantity. In rooms with a constant unidirectional airflow
these structures should be plume-like ones [5]. This paper,
however, presents investigations performed in an unventi-
lated room. Recent experiments showed that the concen-
tration profile in an unventilated environment is often rela-
tively stable over time as well. These plume-like structures
may be caused by constant air streams that occur as a con-
sequence of spatial temperature differences [16, 11].

In order to create gridmaps the cells have to be updated
multiple times. Gas sensor readings represent, however,
just the concentration at the very small area of the sensor’s
surface (≈ 1 cm2). Nevertheless these readings contain in-
formation about a larger area, for two reasons:

• Despite the jagged gas distribution of temporally fluc-
tuating eddies [9, 14], it is reasonable to assume that
the gas concentration in the vicinity of the point of
measurement does not change drastically because of
the smoothness of the time-constant structures we are
searching for.

• The metal-oxide gas sensors perform temporal inte-
gration of successive readings implicitly due to their
slow response and recovery time. Thus spatial infor-
mation is integrated along the path driven by the robot.

2.1 Building Concentration Gridmaps

Assuming that the raw sensor readings Rt represent the real
concentration at the current location, the normalised read-
ings rt are convolved using the radially symmetric two di-
mensional Gaussian:

f (�x) =
1

2πσ2 e
− �x2

2σ2 . (1)

Thus a weighting function is applied which indicates the
likelihood that the measurement represents the concentra-
tion at a given distance from the point of measurement. In
detail the following steps are performed:

• First, for each grid cell (i, j) within a cutoff radius Rco,
around the point�xt where the measurement was taken

at time t, the displacement�δ(i, j)
t to the grid cell’s cen-

tre�x(i, j) is calculated as

�δ(i, j)
t =�x(i, j) −�xt. (2)

Figure 1: Sum of the likelihood function for a sequence of
steps along a straight line.

• Now the weighting w(i, j)
t for all the grid cells (i, j) is

determined by

w(i, j)
t =

{
f (�δ(i, j)

t ) : δ(i, j)
t ≤ Rco

0 : δ(i, j)
t > Rco

(3)

• Then two temporary values maintained per grid cell
are updated with this weighting: the total sum of the
weights

W (i, j)
t = ∑

t
w(i, j)

t (4)

and the total sum of weighted readings

WR(i, j)
t = ∑

t
rtw

(i, j)
t (5)

are calculated using the normalised readings rt ob-
tained from the raw readings Rt as

rt =
Rt −Rmin

Rmax −Rmin
. (6)

using the minimum and maximum (Rmin, Rmax) value
of a given sensor.

• Finally, if the total sum of the weights W (i, j)
t exceeds

the threshold value Wmin, the value of the grid cell is
set to

c(i, j)
t = WR(i, j)

t /W (i, j)
t : W (i, j)

t ≥Wmin. (7)

Fig. 1 shows the sum of the weighting functions for a se-
quence of steps along a straight line (with a step width of
2σ). The figure shows the last five steps and the current one
indicated by an arrow. One can see that the readings col-
lected at positions x1-x5 were spread by the mapping pro-
cess along the driven path. While the spreading along the
path is approximately independent of the chosen parame-
ter σ, the spreading orthogonal to the path is determined
mainly by this variable. Note that the sum of the likelihood
function assigns a strong weight along the path driven, be-
cause the actual sensor readings contain information espe-
cially about this path due to the implicit integration of suc-
cessive measurements.
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Figure 2: One-dimensional mapping of a rectangular step
pulse with the technique described in eq.1-7.

2.2 Sensor Dynamics

It was mentioned that the sensor readings were assumed
to represent the real concentration. As a consequence of
this approximation the mapped values show asymmetri-
cally blurred edges and a slightly shifted centre of the area
of maximum concentration compared to the real distribu-
tion. This effect can be seen in Fig. 2, which shows how
a rectangular step pulse would be mapped by the described
technique. In the upper part (a) the real distribution can be
seen, which is a step pulse with a duration of ∆t = 10 s.
Here, the response of the mobile electronic nose used in
this paper (the Örebro Mark III mobile nose [7]) is also
shown. This curve was calculated using a first-order sensor
model and the time constants τrise ≈ 1.8 s and τdec ≈ 11.1 s
that were determined for this mobile nose by nonlinear
least-squares fitting [7]. The middle part (b) of the figure
shows the likelihood function (eq.1 with σ = 1 s) multi-
plied by the current reading. The readings were taken at a
rate of 2 Hz in this example. Note that the applied value of
σ corresponds to a distance of 5 cm if the described situa-
tion is considered to be caused by a robot that drives with
a constant velocity of 5 cm/s through a 50 cm wide area of
constant concentration. Finally in part (c) the normalised
curve of the mapped values (eq. 7) is shown.

Comparing the real distribution with the course of the
mapped values in Fig. 2(c) the asymmetrical shift as well
as the blurring effect can be seen. This corruption is, how-

Figure 3: Koala Robot equipped with the Örebro Mark III
mobile nose.

ever, not crucial. Due to the low speed of the robot, which
never exceeded 5 cm/s during the experiments presented
in this paper, the expected shift would be in the order of
10 cm at most. This effect is even smaller for smooth dis-
tributions, which the metal-oxide sensors can follow more
closely than a step-like one. In addition, the directional
component of both effects would be averaged out if the
robot passes a certain point from different directions. If this
condition is fulfilled, the position of concentration maxima
is represented closely by the described mapping process.
The remaining effect of the blurred edges should be toler-
able as long as the time-constant structures we are looking
for can be distinguished in the maps created.

3 Experimental Setup

The experiments were performed with a Koala mobile
robot (see Fig. 3) equipped with the Mark III mobile
nose [7], comprising 6 tin oxide sensors manufactured by
Figaro. This type of chemical sensor shows a decreasing
resistance in the presence of deoxidising volatile chemicals
in the surrounding air. The sensors were placed in sets of
three (of type TGS 2600, TGS 2610 and TGS 2620) inside
two separate tubes containing a suction fan each. Multi-
ple, redundant sensor types were used only to increase the
robustness of the system (there was no attempt to discrim-
inate different odours). Papst Fans (405F) were used to
generate an airflow of 8 m3/h. The distance between the
two sets of sensors was 40 cm.

To record the position of the robot the vision-based ab-
solute positioning system W-CAPS [8] was applied, which
tracks a distinctly coloured object mounted on top of the
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robot (the green cardboard “hat” shown in Fig. 3). The
positioning system uses four Philips PCVC 740K web-
cameras mounted at fixed positions with a resolution of
320 × 240 pixels to triangulate the (x,y) position of the
centre of the colour blob. By combining up to 6 single po-
sition estimates, it provides centimeter level accuracy.

All experiments were performed in a rectangular labora-
tory room at Örebro University (size 10.6 × 4.5 m2). The
robot’s movement was restricted so that its centre was al-
ways located inside the central region where precise and re-
liable position information is available. The air condition-
ing system in the room was deactivated in order to elimi-
nate the possibility of a dominant constant airflow.

To emulate a typical task for an inspection robot, an
odour source was chosen to imitate a leaking tank. This
was realised by placing a paper cup filled with ethanol on
a support in a bowl with a perimeter of 12 cm (see Fig. 3).
The ethanol dripped through a hole in the cup into the bowl
at a rate of approximately 50 ml/h. Ethanol was used be-
cause it is non-toxic and easily detectable by the tin oxide
sensors.

4 Data Acquisition Strategy

Two different strategies were tested to collect concentration
data. In one set of experiments the robot was driven along a
predefined path, which was a rectangular spiral around the
location of the odour source. The minimal distance to the
centre of the source was 1 m, 0.75 m, 0.5 m, 0.35 m on the
subsequent windings of the path. Along the straight lines a
constant speed was applied because this was found to en-
hance the localisation capability [3, 11]. At the corners the
robot was rotated slowly (10◦/s) in order to minimise ad-
ditional turbulence. A complete cycle including an inward
and an outward phase lasted about 25 minutes. These cy-
cles were repeated with a randomly chosen starting corner
and direction at the start of each trial.

For a second set of experiments two different reactive
searching strategies were applied in the manner of a Brait-
enberg vehicle [1]. Based on the stereo architecture of
the mobile nose a direct sensor-motor coupling was im-
plemented. Uncrossed as well as crossed inhibitory con-
nections were used. In this way maximum wheel speed
results if the sensed concentration is low, which in turn
implements a simple sort of exploration behaviour. With
uncrossed connections the robot turns toward higher con-
centrations (a behaviour that Braitenberg called permanent
love) while the robot turns away from them with crossed
connections (exploring love). Further details and the gas
source localisation performance of such a “smelling Brait-
enberg vehicle” are discussed in [9].

5 Results

The introduced mapping algorithm depends on three pa-
rameters: the width of the gaussian σ, the cutoff radius Rco

and the threshold Wmin. The parameter σ has the great-
est influence on the resulting gridmaps. Using Rco = 3σ
and Wmin = 1.0× (number of sensors) it was found that
for small values of σ (≤ 10cm) the spatial integration
performed is not sufficient to bring out the time-invariant
structure of the gas distribution [10]. Here, local variations
along the path driven dominate the mapped distribution. In-
creasing σ causes these local maxima to be combined, and
the time-constant structures to appear as contiguous spots.
All of the subsequent gridmaps presented were created us-
ing a value of σ =15 cm, which provides a reasonable com-
promise between the two effects.

5.1 Stability of the Mapped Features

Due to the local character of single gas sensor measure-
ments, it takes some time to build a concentration gridmap.
In addition to spatial coverage, a certain amount of tem-
poral averaging is also necessary to represent the time-
constant structure of the gas distribution.

In Fig. 4 the distance of the 90%-median (the median
of the x- and y- coordinates of the area, which is defined
by those cells with a value of at least 90% of the maxi-
mum) to the true centre of the gas source is plotted. The
corresponding gridmaps were created with a cell size of
2.5 × 2.5 cm2 using all six sensors and the parameters
σ = 15 cm, Rco = 3σ, Wmin = 6.0. Fig. 5 shows snapshots
of these concentration maps that were created from data
collected up to the time specified. Concentration values are
indicated by shadings of grey (dark → low, light → high)
while the values higher than 90% of the maximum are
shown with different shadings (of red).

During the experiments where the robot moved along a
predefined spiral path (section 4), it took approximately 25
minutes for the mapped structures to stabilise. This is indi-
cated by the distance of the 90% median to the centre of the
source which is shown in Fig. 4 (a). After a complete cy-
cle (≈ 25 min) – meaning that the robot passed each point
along its path two times – only small step-like variations re-
mained. The transition between a preliminary mapped dis-
tribution, found after the robot has passed each point along
its path just once, and the stable one is shown in example 1
and 2 in Fig. 5.

The presented results are approximately independent of
the number of sensors used. Gridmaps extracted from data
collected with 2 or 4 paired sensors reveal qualitatively the
same features, thus indicating that it is not possible to ac-
celerate the mapping process by using additional gas sen-
sors mounted at approximately the same location. It is in-
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Figure 4: Distance of the 90% median to the centre of the
gas source for 12 trials.

stead necessary to combine readings that are taken at dif-
ferent times in order to find the time-invariant structure of
a particular distribution.

Slightly different results were obtained if the robot was
controlled reactively as a Braitenberg vehicle, as explained
in section 4. The distance of the 90% median to the centre
of the gas source is shown in Fig. 4 either for crossed (b)
and for uncrossed connections (c). For both cases stable
structures could be determined more quickly, even though
the average speed was lower (approx. 4 cm/s compared
to 5 cm/s). On the other hand, the detected global maxi-
mum changed more often because the robot has a tendency
to get stuck in local concentration maxima. An exception
was found in the run “EL3” (see example 6 in Fig. 5). In
this experiment the parameters of the applied strategy were
chosen to enhance concentration peak avoidance. Conse-
quently the robot failed to explore the complete available
space and thus the area of maximum intensity could change
drastically even after several hours if a new part of the room
was explored. Concerning their suitability to create con-

centration gridmaps, no substantial difference could be de-
termined between the two reactive strategies tested.

5.2 Gas Source Localisation

In the case of a gas distribution controlled purely by dif-
fusion, the location of the gas source would correspond to
the maximum in the concentration map. This assumption
is, however, not fulfilled under realistic conditions due to
the slow diffusion velocity of gases [13].

Nevertheless, the position of the 90% median can be
used to estimate the location of the source in some cases.
An exact agreement with the position of the gas source (in-
dicated in Fig. 4 by the shaded area up to Rsrc = 6 cm) was
observed only temporarily. On the other hand the error at
the end of the experiment was < 50 cm in 8 out of 12 runs
(see indicated examples 2,4,5 and 8) and < 75 cm in 10
out of 12 runs (see indicated examples 2,4,5,7 and 8). It is
not guaranteed, however, to get a good estimate with this
method.

Note that apart from the run “Spiral 2” (example 3)
the concentration maps always showed a plume-like pro-
file originating approximately from the location of the gas
source (see example 2,4 – 8). Further experiments are nec-
essary to investigate whether the asymmetric profile of the
region of maximum concentration values provides a clue
on the location of the gas source at its edge.

6 Outlook

This paper presents a new technique for modelling gas dis-
tributions by constructing concentration gridmaps with a
mobile robot. It is discussed how the slow response and
recovery of the metal oxide sensors affect these maps. Re-
sults of experiments carried out with three different explo-
ration strategies are presented and analysed with respect to
the time needed to represent the time-invariant structures of
a particular gas distribution in the gridmaps created. This
was achieved more quickly with reactive control strategies,
which was found to be a consequence of the fact that the
two different reactive behaviours applied increase the time
the robot spends in regions of high concentration. How-
ever, the structures found in the gridmaps changed more
often because the robot could temporarily get stuck in local
concentration maxima.

If the robot was driven along a predefined path it took
longer to determine a stable concentration profile compared
to the reactive control strategies tested. On the other hand,
the structures found then remained comparatively stable.

At present, only time-constant structures in the gas dis-
tribution were modelled by using temporal averaging. It
would also be possible to model changing gas distributions
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Figure 5: Concentration gridmaps created from data that were collected up to the time specified. Note that the point where
the particular snapshot was taken is also referenced in Fig. 4.

by aging the measurements instead of averaging, so that
older measurements gradually lose their weight.

Other possible developments would include experimen-
tal comparisons of different exploration strategies for map
building. Strategies based on the state of the map, e.g.,
by moving towards areas of high uncertainty, could also be
considered. Future work could also include development of
an actual source-finding strategy based on the information
about plume-like stuctures extracted from these maps.
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