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Abstract. While the unconstrained portfolio optimization problem can be solved
efficiently by standard algorithms, this is not the case for the portfolio optimization
problem with additional real world constraints like cardinality constraints, buy-in
thresholds, roundlots etc. In this paper we investigate two extensions to Evolu-
tionary Algorithms (EA) applied to the portfolio optimization problem. First, we
introduce a problem specific EA representation and then we add a local search
for feasible solutions to improve the performance of the EA. All algorithms are
compared on the constrained and unconstrained portfolio optimization problem.

1 Introduction

Evolutionary Algorithms (EA) have been successfully applied to many op-
timization problems in science and technology. Some researchers also used
EA on financial engineering problems like the portfolio optimization problem
[4,1,8]. In this paper we compare the impact of several EA solution represen-
tations and the application of local search on the performance of EA on the
portfolio optimization problem.

2 The Portfolio Optimization Problem

Using the standard Markowitz mean-variance approach [6], the unconstrained
portfolio optimization problem is given as

minimizing the variance of the portfolio :
∑N

i=1

∑N
j=1 wi · wj · σij , (1a)

maximizing the return of the portfolio :
∑N

i=1 wi · µi, (1b)

subject to
∑N

i=1 wi = 1 , (2a)
0 ≤ wi ≤ 1 ; i = 1, .., N (2b)

where N is the number of assets available, µi the expected return of asset
i, σij the covariance between asset i and j, and finally wi are the decision
variables giving the composition of the portfolio.
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The optimization problem as given in Equ. 1 is a multi-objective optimiza-
tion problem with two competing objectives. First, to minimize the variance
(risk) of the portfolio and at the same time to maximize the return of the
portfolio. Equ. 2 gives the minimum constraints for a feasible portfolio.
While this portfolio optimization problem is a quadratic optimization prob-
lem for which computationally effective algorithms exist, this is not the case
if real world constraints are added:
Cardinality Constraints restrict the number of assets in the portfolio.

N∑

i=1

sign(wi) = k (3)

Buy-in Thresholds give the acquisition prices for each asset.

li ≤ wi; i = 1, .., N (4)

Roundlots give the smallest volumes fi that can be purchased.

wi = yi · fi; i = 1, .., N and yi ∈ Z (5)

Other real world constraints can include sector/industry constraints, immu-
nization/duration matching and taxation constraints, but these will not be
addressed in this paper.

3 The Optimization Algorithm

To solve the multi-objective optimization problem we use a Multi-Objective
Evolutionary Algorithm (MOEA) having two different EA representation
types with an additional problem specific extension for each representation.
To further improve the results we apply a local search for feasible solutions.
There are two approaches how to incorporate local search into EA (Memetic
Algorithms) either using Lamarckism or relying on the Baldwin effect [10].

3.1 Evolutionary Algorithms

EAs are population based stochastic optimization heuristics inspired by Dar-
win’s Evolution Theory. An EA searches through a solution space in parallel
by evaluating a set (population) of possible solutions (individuals). An indi-
vidual gives a solution by representing the decision variables wi.
An EA starts with a random initial population P0. Then the ’fitness’ of each
individual is determined by evaluating the objective function, Equ. 1. After
the best individuals P ′

t are selected, new individuals for the next generation
Pt+1 are created from P ′

t . New individuals are generated by altering the indi-
viduals of P ′

t through random mutation and by mixing the decision variables
of multiple parents through crossover. Then the generational cycle repeats
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Fig. 1. EA scheme Fig. 2. Multi-Objective EA Fig. 3. Memetic Alg.

until a breaking criteria is fulfilled, see Fig. 1 for a basic scheme.
There are several alternative EA implementations but only two will be con-
sidered in this paper: Genetic Algorithms (GA) [5] are based on a binary
representation for real value decision variables and rely on big populations
and the crossover operation. Evolutionary Strategies (ES) [9] on the other
hand use a direct real value representation and apply sophisticated mutation
operators. An extensive overview on EAs can be found in [2].

3.2 Multi-Objective Evolutionary Algorithms

Due to the population based search strategy and the simple selection strategy
EAs are easy to extend to multi-objective optimization problems. First, by
using selection based on multiple objective values like the Pareto-dominance
criteria. Secondly by adding an archive population At used to maintain the
currently known Pareto-front. Zitzler gives a guide to MOEAs in his Ph.D.
Thesis [12].
During multi-objective optimization two goals are to be reached. On the one
hand the solutions should be as close to the global Pareto-optimal front as
possible and on the other hand the solutions should also cover the whole
Pareto-front. The first goal is often achieved through elitism by replacing
random individuals in Pt with individuals on the Pareto-front At, see Fig. 2.
The second goal can be achieved by punishing individuals that are too close
together (Fitness Sharing).

3.3 Memetic Algorithms

Memetic Algorithms (MA) [7] extend EA by adding an arbitrary (possibly
problem specific) local search heuristic before evaluating the population Pt,
see Fig. 3. There are two alternatives of how to integrate the local search
[10], first by updating only the enhanced objective values (fitness) for each
individual (Baldwin Effect) or by also updating the decision variables, so that
they can be inherited to the next generation (Lamarckism). An example for
MA on the portfolio optimization problem is given in [8].
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4 Experimental Settings

In our experiments we apply a generational GA population strategy with a
population size of 500 individuals. We use tournament selection with a tour-
nament group size of 8 together with objective space based fitness sharing
with a sharing distance of σshare = 0.01. The selection mechanism prefers
individuals that are better than other individuals in at least one objective
value, i.e. are not dominated by another individual. To maintain the currently
known Pareto-front we use an archive of 250 individuals and use At as elite
to achieve a faster speed of convergence. Details of this MOEA strategy can
be found in [11].
We use two different standard EA representations on the portfolio optimiza-
tion problem: First, a GA binary representation with a 32 bit standard binary
encoding (genotype) for each wi (phenotype). A 3-point-crossover and one-
point-mutation is used on the GA genotype, with a crossover probability of
(Pc = 1.0) and mutation probability of (Pm = 0.01). Secondly we use an ES
with a real-valued solution representation. In this case the phenotype equals
the genotype. We apply a discrete 3-Point-Crossover (Pc = 0.5) and local
mutation with one strategy parameter for each decision variable (Pm = 1.0)
on the ES genotype. These parameters were selected from preliminary exper-
iments.
The idea to use a problem specific representation for the portfolio optimiza-
tion problem is based on the fact that portfolios on the Pareto-front are rarely
composed of all available assets, but only a limited selection of assets. The
actual composition of the assets in the portfolio resembles a one-dimensional
binary knapsack problem. To allow easy removal and adding of assets to the
portfolio we added an auxiliary binary bit-mask bi together with the decision
variables wi to represent a solution. Each bit bi determines whether the as-
sociated asset will be element of the portfolio or not, w′

i = bi · wi. Both EAs
were enhanced with this additional ’knapsack’ representation. The extended
EAs will be referred to as Knapsack-GA (KGA) and Knapsack-ES (KES).
The second extension is made to improve the number of feasible solutions gen-
erated by the EA. Instead of punishing or rejecting infeasible solutions, we
apply a ’local search heuristic’ to convert an infeasible solution into a feasible
one. For example to hold Equ. 2 we limit the range of the EA solution repre-
sentation and use a standardization step w′

i = wi/
∑N

j=1 wj . For cardinality
constraints we set all but the k biggest decision variables wi to zero before
standardization. Similar mechanisms were applied for buy-in thresholds and
roundlot constraints.

5 Results

The comparison of the different EA implementations was performed on bench-
mark data sets given by Beasley [3]. The numerical results presented here are
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performed on the Hang Seng data set with 31 assets.
To compare the performance we measure the percentage difference (∆area)
between the area below the Pareto-front generated by the EA and the area
below the unconstrained Pareto-front given as reference solution, see Fig. 8.
For each experiment 50 independent runs each with 100.000 fitness evalua-
tions were made. For these we calculate the mean, standard deviation, max-
imum and minimum values and the 90 % confidence interval of the ∆area,
which is to be minimized.

5.1 Adding the Knapsack representation to the EA individuals

When comparing the GA and ES against the KGA and KES without ad-
ditional constraints (no li and fi) the extended versions clearly outperform
the standard EA approaches, see Fig. 4. Especially the KES shows very good
convergence behavior. Only in case of k = 2 the GA and ES are able to catch
up with the extended EA representations. This shows that the assumption
that the portfolio optimization problem resembles the binary knapsack prob-
lem holds true even without cardinality constraints and that the extended
representation is able to search more efficiently than the standard EAs.
With additional buy-in thresholds and roundlots (li = 0.1 and fi = 0.02) all
algorithms performed much worse, see Fig. 5. Although single runs of the ex-
tended EAs find reasonable good solutions, the results are rather unreliable.
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Fig. 4. ∆area for Hang Seng without li and fi
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Fig. 5. ∆area for Hang Seng with li = 0.1 and fi = 0.02
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Fig. 6. ∆area for Hang Seng with Lamarckism and without li and fi
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Fig. 7. ∆area for Hang Seng with Lamarckism and li = 0.1 and fi = 0.02

5.2 Applying Lamarckism

The main advantage of the extended EA seems to be the ability to easily
change the content of the portfolio. The same effect could be achieved if local
search with Lamarckism is used. With Lamarckism assets removed by local
search would cause the decision variables to be set to zero. Therefore the
resulting vector of decision variables wi would be sparse. On such a sparse
vector single mutations and crossover could cause major changes of the con-
tent of the portfolio. With this, standard EAs could move as easily through
the space of assets combinations as the extended EA.
The experiments with Lamarckism supports this view, see Fig. 6. The stan-
dard EAs become competitive to the extended EAs and especially the ES
behaves nearly as good as the KES except for the unconstrained portfolio
optimization. In the latter case, Lamarckism can not have the same effect
since no assets are removed through local search.
In case of additional constraints all algorithms perform much better and
the results become more reliable, see Fig. 7. Even the extended EAs bene-
fit from the Lamarckism because the extended representation is as improper
for the discretization of the search space through the roundlot constraints
as the standard EAs are for searching for portfolios with limited cardinality.
Remarkably, the KES with Lamarckism seems to perform as well as in the
unconstrained case. Most likely the discretization of the Pareto-front through
the limited archive size levels the effect of the roundlot constraint.
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6 Conclusions and Future Work

We have shown that the extended EA with the additional knapsack repre-
sentation is able to solve the portfolio optimization problem more efficiently
than the standard EA approaches, due to the improved search capabilities
regarding the possible combinations of assets in a portfolio. The KES showed
to be superior to the KGA due to the more appropriate ES real-value repre-
sentation of the decision variables wi. We were also able to produce the same
effect by using the Memetic feasibility search in combination with Lamarck-
ism. In this case the standard EAs were able to draw level with the extended
EAs and as before the ES with Lamarckism produced better results than the
GA with Lamarckism and even better than the KGA.
With additional constraints all algorithms performed not as well except a
few good outliers when using the extended EA. Again, Lamarckism is able to
improve the algorithms. With Lamarckism the KES reliably produces results
only sightly worse than in the unconstrained case. Preliminary experiments
hint that a discrete representation for KGA performs much better in case of
roundlot constraints and produces equally good results.
Our future research will concentrate on improving the Multi-Objective EA
and comparing alternative Multi-Objective EAs on the portfolio selection
problem. Another area of improvement could be the local search. There are
numerous alternatives to the simple search for feasible solutions, but they
have to be carefully evaluated regarding the ability to handle additional con-
straints.
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