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Abstract. In this paper we address the problem of limited growth and
the difficulty of self-repair in the field of Artificial Embryology. We im-
plemented a topological simulation of multiple cells which is continuous,
structure-oriented, with a dynamically connected network of growing
cells and endogenous communication between cells. The cell behavior
is simulated based on models of gene regulatory networks like Random
Boolean Networks and S-systems. Evolutionary Algorithms are used to
evolve and optimize the parameters of the models of gene regulatory net-
works. We compare the performance of Random Boolean Networks and
S-systems when optimized by Evolutionary Algorithms on the problem
of limited growth and two implementations of cell death and signaling
cell death on the problem of self-repair.

1 INTRODUCTION

The research field of Artificial Embryology (AE) is rather new and only few
papers have been published on this topic. Most researchers regard AE as a sim-
ulation environment for early developmental processes, to test or to develop
biologically plausible theories of pattern formation. Others apply the generative
grammatical encodings of AE together with Evolutionary Algorithms (EA) to
shape and structure optimization problems like growing neural network topolo-
gies or Evolutionary Engineering (EE). For both topics the generative grammat-
ical encoding of AE offers the advantage of a better scaling behavior over direct
encoding schemes.

The first application for AE is to be used for multi-cellular simulation environ-
ments in the field of theoretical biology. One example for such a multi-cellular
simulation environment is the Cell Programming Language (CPL) by Agarwal
[1]. Here the cell behavior can be programmed with a number of high level
instructions like move(direction) or differentiateto(tissuetype). Another AE envi-
ronment was introduced by Fleischer [13] [12], which uses cells with attributes
like position, shape, and concentrations of biochemicals. The behavior of a cell
is based on programmable differential equations computing the concentration of
biochemicals. Another example for cell behavior based on differential equations
is the Cellerator by Shapiro and Mjolsness [22].



Regarding the two applications of AE as coding scheme for growing neural nets
and general shapes in EE, growing neural nets seems to be most popular and
there are many publications in this research area [3] [7] [10]. EE on the other hand
seems to lack a suitable representation scheme for generals shapes. There are only
few successful examples of EE in the literature based on specialized EA repre-
sentations, for instance, Funes and Pollak [14] were able to evolve Lego®bridges
and cranes using a tree based EA representation. The general problem of shape
representation in EE was discussed by Schoenauer on a topological optimum
design problem [21]. He compares several parametric representations but in his
conclusions he indicates that generative grammatical encodings could yield ma-
jor advantages for EE. Actually Hornby and Pollak describe the advantages of
generative grammatical encodings as they occur in AE by comparing a para-
metric, context-free L-System, generating LOGO style GP code, and a standard
non-generative GP to build a model of a desk [16].

In this paper we address two fundamental problems for AE, first the problem
of limited growth and second the problem of self-repair for artificial embryos,
because without the ability of limited growth AE becomes useless as dynamic
simulation environment in theoretical biology and also for EE. We solve these
problems not by crafting suitable rules, but by optimizing the cell behavior, i.e.
the parameters of the cell behavior, with an EA. We compare the performance
and the properties of two models of cell behavior on the problem of limited
growth and two different cell models on the problem of self-repair.

The next section gives an overview over some of the related work in the field
of AE. In section 3 we describe our implementation of a simulator for a multi-
cellular environment and the EA implementation. Results on the problems of
limited growth and self-repair are discussed in section 4. Finally, conclusions on
the achieved results and an outlook is given in section 5.

2 RELATED WORK

In one of the earliest work by Hugo de Garis [5] the cell behavior was similar
to neighborhood interaction rules of cellular automata and determined if a cell
is to remain inactive, to die or to split as long as a maximum number of cell
division was not exceeded. By using Genetic Algorithms (GA) he was able to
grow simple convex shapes but failed on non-convex shapes. Therefore de Garis
extended the cell model with sensors for gradients of biochemicals and added
iteration counters [4]. Also the cell behavior was enlarged by ’operons’ imitating
the dynamics of gene regulatory networks, that allowed rules to be switched on
or off. With additional sources of biochemicals placed in the environment he was
able to grow simple non-convex shapes.

Frank Dellaert examined a biologically defensible model of development and
evolved the shape and behavior of simple agents using a GA [6]. To emulate
the behavior of gene regulatory networks he used Random Boolean Networks
(RBN) and took the binary states of RBN’s to detect cell differentiation. Del-
leart was able to evolve differentiated agents with sensors and actuators, but to



do so he used asymmetrical division for the very first division to establish the
anterior/posterior orientation of the organism and he gave cells adjacent to the
horizontal midline of the organism a special input signal. Also only 64 cells were
allowed to be generated, then the simulation stopped.

Peter Eggenberger also used the concept of gene regulation to control the be-
havior of developing cells [9] [11]. The cell behavior was based on structural
genes, turned on or off by regulating genes depending on a local concentration
of biochemicals. Activated structural genes produced biochemicals, cell adhesion
molecules, receptors for biochemicals and caused cell division and death. The
activation states of genes were used for cell differentiation. Although Eggen-
berger used EA to optimize shapes, the results he presented relied on addition-
ally crafted exogenous sources of biochemicals that gave the necessary positional
information to the organism.

A topological model was introduced by Duvdevani-Bar and Segel [8]. The behav-
ior of the cells was based on the reaction-diffusion model devised by Gierer and
Meinhardt [15]. They crafted examples for animal/vegetal region differentiation
and examples for cell migration and neural differentiation in the visual system
of Drosophila.

Only Fleischer and Barr discussed the topic of limited growth in [12]. They gave
examples how to craft rules that produce limited growth by:

— using a threshold of a biochemical concentration to disable cell division.
— exhausting a limited, not regenerating factor necessary for cell division.

All other papers did not explicitly address the problem of limited growth, neither
did they mention, if the organism were able to maintain the cell differentiation
over a extended period of time. And although most researches were able to
produce more or less fancy shapes, we want to concentrate on the most basic
problems of AE first and then will start to evolve shapes and structure with EA.

3 ARTIFICIAL EMBRYOLOGY

To discuss our multi-cellular simulation environment we will distinguish between
cell behavior, cell mechanics and cell model that merges both. The cell behavior
computes the upcoming cell states given by concentrations of n biochemicals
B € [0;1]™. The cell model translates the cell state into cell actions like cell
differentiation, growth (mitosis), cell death, etc.. The cell mechanics simulates
the effect of cell actions on the neighborhood topology and spatial distribution
of cells in the organism.

Using the classification scheme suggested by Prusinkiewicz [20] our cell model
is continuous structure-oriented, synchronous, but time discrete, with a network
topology and dynamic neighborhood relations and the communication between
cells is based on lineage and endogenous interaction.

To simulate the development of an organism we start with a single cell ¢y with
B,y = [0]", compare fig. 1 at t = 0. Each discrete time step we compute the cell
model for each cell ¢; of the organism. The cell model determines if cell actions
take place and then calls cell behavior and cell mechanics successively.
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Fig. 1. Simulated organism with RBN (n = 3;k = 2), T = [0.5]>, Rproa = [1]°,
Ry, = [0, D = [0]* and B;—o = [0]®. The cells state equals the state of RBN.

3.1 CELL MODEL

All possible actions performed by cell ¢; are based on the current state of the
cell’s biochemicals B or on external causes, as for example in the case of cell
death or diffusion. Currently only few cell actions are possible:

Cell growth (mitosis): In the case of By = 1 cell mitosis can happen if enough
space is available. To prevent proliferation a cell is only allowed to split, if no
neighboring cell is closer than %i During mitosis the daughter cell inherits
all properties of ¢;, this is called communication through lineage. For both cells
the values of B are halved, assuming that both cells instantaneously reach the
original volume without generating additional biochemicals. Compare fig. 1 in
this example mitosis occurs at t =1, ¢t =3, t = 5 etc..

Cell death: Currently death can only be caused by external evens, see chap.
4.2. When dying the cell removes all connections to neighboring cells and is then
removed from the environment. In an alternative implementation the dying cell
injects an additional biochemical into neighboring cells indicating it’s death.
Diffusion of biochemicals: Endogenous interaction between cells is simulated
by exchanging biochemicals B between neighboring cells depending on a concen-
tration gradient and the diffusion rate D. In fig. 1 diffusion is disabled, D = [0]?.

3.2 CELL BEHAVIOR

The behavior of a cell is to resemble a gene regulatory network of n genes to
compute the concentration of biochemicals Byty1 = f(B¢). There are a number
of alternatives to model gene regulatory networks: Random Boolean Networks



(RBNs) [18], Qualitative Network models [2], Weight Matrices [24], Dynamic
Bayesian Networks [19], S-Systems [17], general differential equations [15] and
many more.

We decided to compare RBNs and S-systems since they are the most different
and are both well documented and examined.

Random Boolean Networks (RBN) are one example for a model of gene
regulatory networks [18] [25]. They consist of a state vector of n booleans, each
representing the state (on/off) of a single gene, in our cell model each one is
associated with a biochemical B;. The state transition rule S; for each state is
defined by n boolean functions with & biochemicals as input I;. An example for
state transition rules and the resulting phase portrait, describing the succession
to states, for a RBN is given in fig. 1.

Since this behavior can’t be considered realistic we extended the binary RBN to
a real-valued RBN. Here the boolean input states for the RBN are calculated
from B and each one is set true if the associated biochemical B; exceeds a given
threshold T;. If the subsequent boolean state is true, the activated gene produces
biochemicals proportional to the production rate R,,q or the deactivated gene
degrades the biochemical proportional to the degradation rate Rgg,-.

S-systems (synergistic and saturable systems) have been suggested by Irvine
and Savageau [17]. A S-system is given by a set of nonlinear differential equations:

D0 — i T Bs(0% — 6. ]] Bito™ 1)

dt ,
Jj=1
For each simulation time step At = 1 equation (1) is integrated using a Runge-
Kutta algorithm with fixed step size of tsep = 0.02. To prevent the S-system
running into a fixed state with B = [0]" we demand B; > 0.0001 Vi.

3.3 CELL MECHANICS

Our cell mechanics are based on a ’winged vertex’ structure which is given by
the cell’s position (vertex) and the cell’s neighborhood relations (wings). The cell
mechanics updates both, to achieve equally spaced cells with a smooth neighbor-
hood topology in two dimensional environments we used r..;; = 1 as cell radius,
taist = 2 - Tcenn @s target distance between cells and t,,e;4n = 7 as target number
of neighborhood relations.

Regarding the neighborhood relations each cell ¢; adds the ,.;gn most closest
cells as neighbors. An alternative method to calculate the neighborhood topol-
ogy are Voronoi diagrams.

To update the position of c;, we use the neighborhood topology to simulate
the forces of each neighbor exerted on ¢;. This is simulated repeatedly to reach
a state of equilibrium. To introduce an element of chance, brownian motion is
added to the cells position. An example distribution of cells can be seen in fig.



1. A broken symmetry in this example can occur due to limited space available
for cell mitosis or due to asymmetrical diffusion of biochemicals because of local
differences in neighborhood topology.

Although the example in fig. 1 connotes re-

producibility, the brownian motion of cells has o .-‘g\_-. )
a major impact on our results. Compare fig 2 }:f:,- .:.::’:.%
for four examples of the same real-valued RBN ‘.:‘i;;:?.: «'.,:-}“-
based cell behavior. Only in three simulations i

the organism developed the upper left convexity. 'fqp}:r

This can be explained by taking into account the {’-_";‘ e

discrete RBN behavior. Only slight changes in -‘_:?‘;:::3;

the neighborhood topology can cause variations
in the concentration of biochemicals. When us-
ing boolean discretization these variations can
lead to major changes in cell behavior and fi-
nally, the shape of the organism.

Fig. 2. Example organisms

4 RESULTS

We use an EA-hybrid to optimize the parameters of the RBN and the S-system
to evolve suitable cell behavior for organisms with the ability of limited growth
and self-repair formulated as maximization problem. The EA-hybrid allows us
to mix different EA genotypes and mutation/crossover operators on the level
of individuals. We use an (u = 50, A\ = 100) EA population strategy, tourna-
ment selection with #4,0up = 8 and a mutation and crossover probability of
Pmut = Peross = 0.7 for each selected EA operator. The GA mutation alters one
bit per mutation and uses one-point crossover on the GA genotype. On the ES
genotype we use global ES mutation and discrete recombination.

To evaluate the fitness each individual (organism) is simulated for t,,4, = 100
time steps. For each experiment we perform 10 independent optimizing runs and
the behavior of the best found organism of each run is averaged over at least 10
simulations.

4.1 LIMITED GROWTH

We define the EA fitness function for the problem of limited growth as the
inverse of minimizing the quadratic error, weighted with ¢ to prefer fast growing

organisms:
1

14350 (_t*<@f||0<zi>t||>2

tmax

D(zi) =

(2)
)

where © = 30 gives the desired size of the resulting organism and [|O(x;)¢|| is
the size of the organism at time ¢ based on the cell behavior suggested by the
EA individual z;.
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We examine the performance of RBNs and S-system with either two or three
genes on this problem. First we compare the binary and the real-valued RBN on
this problem optimizing the state transition rules for each state with a GA and
threshold values T € [0; 1]™, the production rate Rpoq € [0;1]™, the degradation
rate Rqgr € [0;1)" and the diffusion rate D € [0;0.5]" for each biochemical
with an ES if necessary. Fig. 3 shows that the binary RBN fails to evolve the
ability of limited growth, but that the real-valued RBN solves this problem even
with only two genes available. Regarding the S-system we achieved even better
results optimizing « € [0;10]", B € [0;10]", the matrices G € [—3;+3]"*" and
H € [—3;+3]"*" and again the diffusion rate D € [0;0.5]" and a GA optimized
bit-mask for a, 3, G and H to allow structure skeletalizing [23]. Fig. 4 gives the
behavior of sample solutions averaged over ten simulations the corresponding
parameters for the examples are given in tab. 1. Both solutions converge to the
target size, but in case of the real-valued RBN with a high standard deviation.

4.2 SELF-REPAIR

Next we want the EA to evolve limited growth with the additional ability of
self-repair, so that if partially destroyed or wounded, the organism regrows to
the former size. To prevent the EA to exploit loopholes, we use two test cases to
evaluate the fitness. First the organism is tested whether it is able to grow to a
limited size and remain stable, otherwise continuous or time dependent growth
could feign the ability of self-repair. Then an additional simulation run is done
as a second test case where the organism is wounded at ¢t = 60 by killing a group
of cells. For both cases the fitness (equ. 2) is used but with two sums under the
fraction bar, one for each test case. If the organism fails on the first test case,
the second test case is omitted and a penalty is added to the fitness.

Only RBNs with (n = 3;k = 2) are used on this problem and we compare the
standard cell model with the alternative version (compare sec. 3.3). It is shown
in fig. 5 that organisms with the additional indicator for wounds perform better
than the organisms without. Fig. 6 shows the averaged size of organisms on
the first test case without wounding. Here the organisms without the additional
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indicator fail to produce limited growth, but tend to use unlimited growth to
cope with wounds.

If no additional indicator for wounds was present, only one solution out of 10
runs emerged that reacted to the wound in the second test case in at least half of
the ten simulations performed to verify the behavior. If the additional indicator
is used, three organisms evolved that reliably reacted to the wound in the second
test case, see fig. 7 and fig. 8 for examples. In parenthesis the number of successful
simulations of the second test case is given.

5 CONCLUSIONS AND FUTURE RESEARCH

We have shown that Evolutionary Algorithms can be used to optimize mod-
els of gene regulatory networks to solve the AE problem of limited growth and
astonishingly only two genes seem to be necessary to achieve limited growth.
When comparing RBNs and S-systems as models for gene regulatory networks,
S-systems produce a more reliable behavior but seem to be harder to optimize
for the Evolutionary Algorithm. RBNs on the other hand converge faster to a
solution but are more prone to stochastic events due to the discrete nature of
the state transition rules.

Regarding the ability of self-repair we were able to show that only an additional



Table 1. Model parameter for given examples

Two genes RBN fig. 4 Two genes S-system fig. 4
I S T Rprod Rdgr D [0 g ﬁ H D
1;1  |1010/0.00 |1.00 |1.00 |0.18 ||6.35 |1.06 |1.33 |0.0 |0.0 |-0.57 |0.33
;1 |1110{0.50 [0.32 |0.00 |0.15 ||2.31 |-2.93 |2.85 (0.0 [2.49 [0.00 |0.00
Three genes RBN fig. 7 exp. 2 Three genes RBN fig. 8 exp. 2
I S |T Ryrod|Ragr |D I S |T Ryrod|Ragr |D
0;1 1001 |0.58 [0.52 |1.97 |0.45 ||0;2 1101 [0.97 |1.00 ]0.71 |0.04
0;1 [0010 |0.92 |[0.77 |1.00 |(0.06 ||0;3 |0101 [0.94 |0.56 [0.59 |0.49
1;1 |0100 [0.21 ]0.49 |0.28 |(0.32 {|0;3 1000 |0.73 [0.98 |0.48 |(0.13

biochemical, indicating the death of neighboring cells, enables the Evolutionary
Algorithm to solve this problem more easily and more reliably.

In future experiments we want to apply the S-system to the problem of self-
repair. Also we will focus on evolving organisms that differentiate into multiple

cell

types. Using RBN the cell differentiation can be determined using the at-

tractor cycles of RBN. We also want to extend the cell mechanics to allow cell
migration and tissue evagination to evolve more complex shapes.
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