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Abstract. The task of speeding up the optimization process on prob-
lems with very time consuming fitness functions is a central point in
evolutionary computation. Applying models as a surrogate of the real
fitness function is a quite popular idea. The performance of this approach
is highly dependent on the frequency of how often the model is updated
with data from new fitness evaluations. However, in generation based al-
gorithms this is only done every A-th fitness evaluation. To overcome this
problem we use a steady-state strategy, which updates the model imme-
diately after each fitness evaluation. We present a new model assisted
steady-state Evolution Strategy (ES), which uses Radial-Basis-Function
networks as a model. To support self-adaption in the steady-state algo-
rithm a median selection scheme is applied. The convergence behavior
of the new algorithm is examined with numerical results from extensive
simulations on several high dimensional test functions. It achieves better
results than standard ES, steady-state ES or model assisted ES.

1 INTRODUCTION

Evolution Strategies (ES) were developed in the late 60s by Rechenberg and
Schwefel [10] [11]. They are known as excellent optimization tools for complex
high dimensional multimodal real valued problems. However, they require a very
high number of fitness function evaluations. In many real world applications, like
high throughput material science or design optimization, the fitness evaluation
is very expensive and time consuming. Therefore standard ES methods are not
practical for such applications.

One approach to overcome this problem is the application of modeling tech-
niques: To decrease the number of expensive fitness evaluations, approximation
models, also known as metamodels, are used instead of the exact fitness function.
These models are orders of magnitude cheaper to evaluate than the real fitness
function.

The use of metamodeling techniques in evolutionary computation receives in-
creasing attention [9] [7] [3] [4]. A survey on this research field can be found in

[8].



The selection of an appropriate model to approximate the fitness function is
a central point. Neural networks are widely used for function approximation and
are therefore used for modeling in evolutionary optimization [7] [6]. Gaussian
processing and kriging are statistical modeling techniques which are also used
for modeling [9] [2] [3].
The coupling of the metamodel with the evolutionary optimization process con-
trols how the optimization process is affected by replacing the expensive real
fitness evaluation by the approximation of the model. The adaptive evolution
control concept [6] [7] controls the impact of the model on the evolutionary
optimization process. The Metamodel-Assisted Evolution Strategy (MA-ES) [4]
uses the estimation of the model to preselect the most promising individuals
before applying the expensive real fitness function. Another approach is to use
the criterion confidence given by statistical models like kriging [4] or gaussian
processing [3] to control the interaction of the metamodel with the evolutionary
optimization process.
Our work aims at improving the coupling between the metamodel and the ES
by using a steady-state strategy. The remainder of this paper is organized as fol-
lows: We first describe the modeling technique of Radial-Basis-Function (RBF)
networks, which is used in this work as a surrogate for the expensive real fitness
function, in section 2. Section 3 introduces the synthesis of the metamodel with
a standard generation based ES. We propose the new Model Assisted Steady-
State ES (MASS-ES) with median selection scheme in section 4.
Numerical results from extensive simulations on several high dimensional test
functions are presented in section 5. The paper closes with a brief conclusion
and outlook on future work.

2 RBF NETWORK MODEL

Counsider a d-dimensional real valued problem with fitness function f(x), which
has to be minimized. As stated in the introduction, a model is needed to predict
the fitness f(x) of an individual to save time consuming and expensive evalua-
tions of the real fitness function f(x).

We chose in our study Radial-Basis-Function (RBF) networks, which are
known to be general and proper real valued function approximators. A compre-
hensive description of RBF-networks is given in [1].

The RBF network maps the objective variable  of an individual to its corre-
sponding fitness value f(x). The network consists of an input layer of d units
(one for each input dimension), a single hidden layer of h nonlinear processing
units and an output layer of linear weights w; (see figure 1).

The output f of the RBF network is given as a linear combination of a set of
radial basis functions:
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Fig. 1. Structure of a RBF network. Left Fig.2. Model output of RBF network for
side input layer of d units (one for each an one dimensional Rastrigin’s test func-
input dimension), hidden layer and output tion(see A.5).

unit.

The term ¢;(||x — ¢;||) represents the i-th radial basis function which evaluates
the distance between the input  and the center c;. For ¢; we use the gaussian
kernel, which is the most common used in practice.

b1 (Il — esll) = exp (—u> (@)
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The centers c¢; are determined by a simple k-means clustering algorithm. The
parameter o represents the width of the radial basis functions, which is given
here by the mean euclidian distance of all nearest neighbor pairs on the data
inputs x;.

Inserting the fitness cases (x;, f(x;)) from previous fitness evaluations into equa-
tion 1 leads to a linear equation system from which the weight parameter vector
w can be computed by least squares.

We used the RBF network without regularisation. In figure 2 a RBF network
output can be seen for a model which is trained with 10 data points from a one
dimensional test function (see A.5).

3 MODEL ASSISTED STANDARD EVOLUTION
STRATEGY

The start of our research is based on a standard (u,A\) ES which will be later
coupled with the model.

3.1 STANDARD (u,A) EVOLUTION STRATEGY

An ES works on a population of potential solutions x (individuals) by manipu-
lating these individuals with evolutionary operators. A offspring individuals are



generated from p parents by applying the evolutionary operators reproduction,
recombination and mutation (see pseudocode in figure 3). After evaluating the
fitness of the offspring, p individuals with the best fitness are selected to built
the parent population for the next generation.

The most important evolutionary operator for an ES is the mutation of the ob-
jective variables representing the solution of the problem, which is responsible
for the self-adaptation capability of the ES. Throughout our study we use Co-
variance Matrix Adaption (CMA) developed by Hansen et al. [5], which is still
the most powerful method, without recombination. The algorithm terminates
when a maximum number of fitness function evaluations have been performed.

Procedure ES Procedure MA-ES
Begin Begin
eval=0; eval=0;
Pop=CreateInitialPop(); Pop=CreateInitialPop();
Pop.EvaluateRealFitness(); Pop.EvaluateRealFitness();
RBFModel .update (Pop) ;
while (eval<maxeval); while (eval<maxeval);
Offspring=Pop.Reproduce () ; PrePop=Pop.Reproduce (Aprc) ;
Offspring.Mutate(); PrePop.Mutate() ;

PrePop.EvaluateWithRBFModel () ;
Offspring=PrePop.SelectBest () ;

Offspring.EvaluateRealFitness() ; Offspring.EvaluateRealFitness();
RBFModel.update (0ffspring) ;
Pop=0ffspring.SelectBest (1) ; Pop=0ffspring.SelectBest (1) ;
eval=eval+lambda; eval=eval+lambda;
end while end while
End End

Fig. 3. Standard (u, \) Evolution Strategy Fig. 4. Model Assisted Evolution Strategy
(ES). (MA-ES).

3.2 MODEL ASSISTED EVOLUTION STRATEGY

To couple the ES with the model we use a preselection concept similar to the
one described by Emmerich et al. [4] (see pseudocode in figure 4).

Compared to the standard ES Ap,. > A new offspring individuals are repro-
duced and mutated from p parents. These offspring individuals are evaluated by
using the prediction f(m) of the model. Out of these Ap,. individuals A individ-
uals with the best predicted fitness are preselected to build the new offspring
population. Finally the offspring were evaluated with the real fitness function.
The model is updated after each generation step with A\ new fitness cases.

The idea behind this preselection approach is that only the most promising indi-
viduals with a good fitness prediction are evaluated with the real fitness function.



We use a comma selection strategy which selects the p best individuals out of
the A offspring individuals instead of a plus selection strategy which selects the
best p out of the A offspring individuals plus its u parents. The comma selection
strategy has the advantage of a better support of the self-adaption mechanism for
the mutation step size control [12], which is necessary to solve complex problems.

The size of the preselected population Ap,. controls the impact of the model
on the evolutionary optimization process. For Ap,. = A the algorithm performs
like a standard (p,A) ES. Increasing Ap,. results in a stronger impact of the
model on the convergence behavior of the optimization process.

4 MODEL ASSISTED STEADY-STATE EVOLUTION
STRATEGY

It is obvious that the performance of a metamodeling approach for an evolution-
ary optimization process is highly dependent on the quality of the model used.
The more often the model is updated with already evaluated fitness cases the
better is the quality of the model.

The MA-ES described in the last section has hereby a problem. It is generation
based and its model is updated only after A\ fitness evaluations. This problem
could be fixed by dividing the preselection of the X\ offspring individuals into A
steps. Within each step the model should be updated by only one preselected
and evaluated individual. But this method leads to a much more complicated
algorithm. Therefore we discuss an alternative approach of applying steady-state
strategies:

A standard steady-state ES is equivalent to a (u + 1) ES [10]. Only one indi-
vidual is generated and evaluated at each step and gets immediately integrated
into the population. Compared to generation based algorithms the information
of new evaluated individuals can be integrated directly into the optimization
process. But standard steady-state strategies have one big disadvantage. They
are missing the ability of self-adaption, which is the most important property of
ES. As a result of this the application of standard steady-state ES is not very
promising. However, this problem can be solved by the median selection scheme,
suggested by Wakunda [13].

The idea is to approximate the selection mechanism of a standard (u, \) ES, by
using a fitness buffer containing fitness values of the last np evaluations. Given
a relative rate of acceptance rp = §. A newly evaluated individual substitutes
the worst individual of the population, if it has a better fitness than the rp -np
best individuals in the buffer. The pseudocode for the steady-state ES is given
in figure 5.

The model is coupled with the steady-state ES in the same way as MA-ES,
which results in the new Model Assisted Steady-State ES (MASS-ES) (see pseu-
docode figure 6). The median selection scheme is again used. The main difference
as mentioned before is, that the model will be updated after each fitness evalu-
ation.



Procedure SS-ES Procedure MASS-ES

Begin Begin

eval=0; eval=0;

Pop=CreateInitialPop(); Pop=CreateInitialPop();

Pop.EvaluateRealFitness(); Pop.EvaluateRealFitness();

RBFModel .update (Pop) ;

while (eval<maxeval); while (eval<maxeval);
Individual=Pop.Reproduce(1); PrePop=Pop.Reproduce (Ap,.) ;
Individual.Mutate(); PrePop.Mutate() ;

PrePop.EvaluateWithRBFModel () ;
Individual=PrePop.SelectBest (1) ;

Individual.EvaluateRealFitness(); Individual.EvaluateRealFitness();
RBFModel.update (Individual) ;
Pop = Pop.SelectMedian(Individual); Pop=Pop.SelectMedian (Individual) ;
eval=eval+l; eval=eval+l;
end while end while
End End

Fig. 5. Steady-State Evolution Strategy Fig.6. Model Assisted Steady-State Evo-
(SS-ES) with median selection scheme. lution Strategy (MASS-ES) with median
selection scheme.

5 EXPERIMENTAL RESULTS AND DISCUSSION

To analyze and compare the performance of the algorithms extensive simulations
were performed for several well-known-real valued 10-dimensional test functions.
For each test function the following strategies were compared:

— Standard (u, A\)-ES (p =2, A =38),

— RBF network model assisted ES (1 =2, A = 8, Ape = 30),

— Steady-state ES with median selection (np = 10, rp = 0.15),

— RBF network model assisted steady-state ES with median selection (np =
10, rp = 0.15, Apyre = 10).

All four strategies use covariance matrix adaptation (CMA) for the adaptation
of the strategy parameters. For each test function two figures are presented,
first the best individual for each generation, and second the mean squared error
(MSE) of all N fitness predictions done by the model, both as a function of the
number of evaluations of the real fitness function.

1 L \2
MSE= %3 (1) - f(@) (3)

The MSE represents the quality of the RBF network model during the optimiza-
tion process. The values are always evaluated as the mean from 100 repeated
runs with different seed values for random number generation.

The model was built in all cases by the RBF network with 10 hidden neurons,



in section 2 described. The training data for the network consists of the 30 most
recently performed fitness evaluations. For this reason the RBF-network is a lo-
cal model of the individual’s neighborhood in object space. Using more training
data would improve the performance only slightly but comes along with much
higher computational costs for model training.

5.1 UNIMODAL TEST FUNCTIONS

The sphere function (A.1) and the weighted sphere function (A.2) are con-
tinuously, convex, smooth functions, which are appropriate tests for the self-
adaptation mechanism of ES.
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Fig. 7. Result for 10-dim. sphere function: Fig.8. MSE of model, for MA-ES vs
fitness of best individual. MASS-ES.
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Fig. 9. Result for 10-dim. weighted sphere Fig.10. MSE of model, for MA-ES vs
function: fitness of best individual. MASS-ES.
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Fig.11. Result for 10-dim. Rosenbrock Fig.12. MSE of model, for MA-ES vs
function: fitness of best individual. MASS-ES.

In Figure 7 the standard (1+1) steady-state ES without median selection has
the worst performance. In contrast steady-state ES (u = 1) with median selection
performs much better and also better than the generation based standard ES
due to the median selection.

This proves the effectiveness of median selection scheme by providing a self-
adaption mechanism comparable to the one of a standard generation based (u, A)
ES. For this reason standard (141) steady-state ES results are not compared
later.

The support by the model results in an improvement of convergence both for
standard ES and steady-state ES. But the relative enhancement due to the model
is in case of the steady-state strategy much higher than in the standard ES case.
MASS-ES yields orders of magnitude better solutions than all other strategies
(see figure 7 and 9).

This amazing result can be explained by the smaller model error (MSE) of
the model for the steady-state ES compared to standard generation based ES
(see figure 8, 10), due to the higher model update frequency of the steady-
state strategy. The MSE has a hyperbolic appearance, because of the decreasing
absolute prediction error of the model with increasing V.

The Rosenbrock function (A.3) is nonlinear, continuous and not symmetric. It
is a very popular test function and has a very hard to find global optimum.
Figure 11 shows again the superiority of the MASS-ES to the other strategies.
It reaches the best fitness value and has a remarkably higher convergence speed
at the beginning of the optimization process. Also the MSE of the steady-state
strategy is smaller than the standard ES one and is responsible for the better
performance of MASS-ES.

5.2 MULTIMODAL TEST FUNCTIONS

Multimodal functions evoke hills and valleys which are misleading local optima.
A simple optimization algorithm like hill-climbing would get stuck in a local
minimum. For multimodal functions a population size of u = 10 for steady state



is selected, in order not to converge too fast into a local optimum.

The Step function (A.4) consists of flat plateaus with slope=0 in an underlying
continuous function. It is hard to find the global optimum because minor changes
of the object variables do not affect the fitness.
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Fig. 13. Result for 10-dim. Step function: Fig.14. MSE of model, for MA-ES vs
fitness of best individual. MASS-ES.

Here the application of modeling results in an acceleration of the convergence
velocity at the beginning (first 500 fitness evaluations) of the optimization pro-
cess (figure 13). Again the benefit for the steady-state case is bigger and the MSE
lower (figure 14). However, both modeling approaches stall in local optima and
standard ES achieves a little better fitness values than MASS-ES. Rastrigin’s
(A.5) and Ackley’s (A.6) are very bumpy symmetric test functions. Ackley’s
function has a global optimum with very strong local features. It is the only
here analyzed test function, whose MSE increases temporary and is for MASS-
ES higher than for MA-ES (figure 18). This observation could be explained by
the very high complexity of Ackley’s function. However, MASS-ES reaches the
best fitness values (figure 15 and 17), although it has a lower convergence speed
at the beginning than the standard ES strategy for Ackley’s function. This ob-
servation is in contrast to results of Keane [3], whose modeling approach stalls
in situations where the optimum has strong local features.

6 CONCLUSIONS

We applied metamodeling with RBF networks to standard generation based ES
and a steady-state ES with median selection scheme. The strategies were tested
in extensive simulations on 6 high-dimensional test functions. Metamodeling en-
hances the performance in both cases, due to the effective preselection of only
very promising individuals by fitness value prediction.

However, the improvement for steady-state is much better than for the standard
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Fig. 17. Result for 10-dim Ackley’s func- Fig.18. MSE of model, for MA-ES vs
tion: fitness of best individual. MASS-ES.

ES strategies. This can be explained by its superior model quality due to its
higher model update frequency. Therefore steady-state strategies are more suit-
able for metamodeling assistance than generation based strategies.

The new model assisted steady-state ES with median selection achieves equally
good or much better results compared to standard ES, MA-ES or standard
steady-state ES. It outperforms other strategies especially at unimodal smooth
test functions, whereby it yields orders of magnitude better solutions. For mul-
timodal test functions it converges faster at the beginning and achieves equally
good or better fitness values compared to the other strategies.

For further work it is planned to develop a mechanism which controls the
impact of the model on the ES. The optimization time can be shortened by asyn-
chronous parallel fitness evaluation in a multiprocessor environment. Moreover
a comparison of different modeling techniques would be interesting.



A TEST FUNCTIONS

A.1 Sphere function

fsphere (x) = Z :L‘f (4)
i=1

=512<2; <512;n=10; min(fSphere) = fSphere(Oa :0) =0

A.2 Weighted Sphere function

n

fWSphere (w) = ZZ - -Tf (5)

i=1

=512<2; <512;n=10; min(fWSphere) = fWSphere(Oa 70) =0

A.3 Generalized Rosenbrock’s function

fRosen(CE) = Z(]—OO . (-Ti+1 - -'L'i)z + (ml - 1)2) (6)

i=1

=512 < x; <512 ;0 =10 ; min(frosen) = fRosen(1l,-,1) =0

A.4 Step function

fstep(x) = Z |:] (7)

=512 <x; <512 ; n=10; min(fstep) = fstep(0,..,0) =0

A.5 Rastrigin’s function

FRastrigin (€) = 100 + ) (aF — cos (2ma)) (8)

i=1

—32.768 < z; < 32.768 ; n = 10 ; min(fRastrigin) = fRastrigin(O: 70) =0
A.6 Ackley’s function

n

L wa) - (g > cos <zm>) ®
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—32.768 S ZT; S 32.768 = 10 H min(fACkley) = fAckley(O; ,0) =0



References

1.

2.

10.
11.

12.

13.

C.M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,
1995.

M. EL-Beltagy, P. Nair, and A.Keane. Metamodeling techniques for evolutionary
optimization of computationally expensive problems: promises and limitations. In
GECCO 2000 Proceedings of Genetic and Evolutionary Computation Conference,
pages 196-203, 1999.

M. A. El-Beltagy and A. J. Keane. Evolutionary optimization for computationally
expensive problems using gaussian processes. In CSREA Press Hamid Arabnia,
editor, Proc. Int. Conf. on Artificial Intelligence IC-AI’2001, pages 708-714, 2001.

. M. Emmerich, A. Giotis, M.Multlu Ozdemir, T. Bick, and K. Giannakoglou.

Metamodel-assisted evolution strategies. In Parallel Problem Solving from Nature
VII, pages 362-370, 2002.

N. Hansen and A. Ostermeier. Convergence properties of evolution strategies with
the derandomized covariance matrix adaptation: The (p/pi, A)-cma-es. In 5th
European Congress on Intelligent Techniques and Soft Computing, pages 650-654,
1997.

Y. Jin, M. Olhofer, and B. Sendhoff. On evolutionary optimisation with approxi-
mate fitness functions. In GECCO 2000 Proceedings of Genetic and Evolutionary
Computation Conference, pages 786-793, 2000.

Y. Jin, M. Olhofer, and B. Sendhoff. A framework for evolutionary optimization
with approximate fitness functions. IEEE Transactions on Evolutionary Compu-
tation. March 2002 (in press). (ISSN: 1089-778X), 2002.

Y. Jin and B. Sendhoff. Fitness approximation in evolutionary computing - a
survey. In GECCO 2002 Proceedings of Genetic and Evolutionary Computation
Conference, pages 1105-1111, 2002.

A. Ratle. Accelearating the convergence of evolutionary algorithms by fitness
landscape approximation. In A. Eiben et al, editor, Parallel Problem Solving from
Nature V, pages 87-96, 1998.

I. Rechenberg. Ewolutionsstrategie ’94. frommann-holzboog, Stuttgart, 1994.
H.-P. Schwefel. Numerische Optimierung von Computer-Modellen mittels der Evo-
lutionsstrategie. Birkh&user, Basel, 1977.

H.-P. Schwefel. Natural evolution and collective optimum-seeking. In PA. Sydow,
editor, Computational Systems Analysis: Topics and Trends, pages 5—14, 1992.

J. Wakunda and A. Zell. A new selection scheme for steady-state evolution strate-
gies. In Darell Whitley, David Goldberg, Erick Canti-Paz, Lee Spector, Ian
Parmee, and Hans-Georg Beyer, editors, Proceedings of the Genetic and Evolution-
ary Computation Conference, GECCO 2000, pages 794-801, Las Vegas, Nevada,
July 10-12 2000. Morgan Kaufmann Publishers, San Francisco, California.



