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The paper describes different aspects of classification models based on molecular data sets with the focus
on feature selection methods. Especially model quality and avoiding a high variance on unseen data
(overfitting) will be discussed with respect to the feature selection problem. We present several standard
approaches and modifications of our Genetic Algorithm based on the Shannon Entropy Cliques (GA-SEC)
algorithm and the extension for classification problems using boosting.

INTRODUCTION

This work gives an introduction to the creation of
classification models on molecular data sets and testing their
model quality. The focus lies on theNP-complete1 feature
(descriptor) selection problem, with a special emphasis on
aspects most interesting for the chemoinformatics, bioinfor-
matics, and machine learning community.

This paper is divided into two main parts. A theory part,
giving a short introduction of the basic principles of
hypothesis testing and the generalization error.2-5 The notion
of entropy, especially in the context of machine learning, is
explained, which is an important element of the presented
GA-SEC hybrid-feature selection algorithm.6 Furthermore,
the difference betweenfeature extractionandfeature selec-
tion is presented and also thefeature selection-filterand
-wrappermethods used in our work. Finally, the creation of
ensemble models, which can be used in combination with
our feature selection algorithm, conclude the theory part. The
second part explains some relevant points to be considered,
when preparing chemical data sets and describes the new
GA-SEC variants for classification in more detail.

In general, there exist 2Npossibilities to pick an optimal
feature subset of any size, whereN ) |D| is the number of
descriptors in the data spaceD, which is also called the
descriptor space. When choosing a descriptor subsetDs of
sizeNs ) |Ds| out of a descriptor set of sizeN requires the
evaluation of

subsets.7

The complete glossary of mathematical symbols used and
two huge QSAR feature selection benchmark data sets can
be found in the Supporting Information.

There exist two basic principles for feature selection. One
is thefilter approach, which picks only a good feature subset
once, the other is thewrapper approach, which tries to
optimize the feature subsets by solving thecombinatorial

optimizationproblem.8 We will present filter and wrapper
methods for the feature selection used in our work and our
modified GA-SEC hybrid-feature selection algorithm.6 Scheme
1 shows the modified QSAR paradigm8,9 addressing the
feature selection problem using a combinedfilter and
wrapper approach. It can be seen that thewrapper approach
contains two additional loops, the optimization loop for
picking an optimal descriptor set and the validation loop for
the model assessment. So it is obvious, that greedyfilter
approachesare much faster thanwrapper approaches.
Wrappersutilize the learning machine of interest as a black
box to score subsets of variables according to their predictive
power.Filters select subsets of variables as a preprocessing
step, independently of the chosen predictor.

THEORY - INDUCTION

Hypothesis Testing. Inductive inference or hypothesis
testing may be expressed as the following:giWen a data set
D and a set of hypotheses H, choose the hypothesis that
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Scheme 1.Modified QSAR Paradigm8,9 with Focus on Feature/
Descriptor Selectiona

a The inner loop is necessary for optimizing the feature set and the
outer validation loop for assessing the model quality.
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best explains the data. Four approaches to the problem of
multiple hypotheses are common today:2,10 Epicurus’ prin-
ciple of multiple explanations; Occam’s principle of the
simplest explanation (known as Occam’s razor); Bayesian
inference;2,10and Vapnik’s structural risk minimization.4 The
first two principles are used for the initialization of our
feature selection algorithm, creating model ensembles and
selecting the models.

Epicurus’ Principle of Multiple Explanations:if more than
one theory is consistent with the data, keep them all. The
Greek philosopher of science Epicurus maintained that if
several explanations are equally in agreement with a
phenomena, we must keep them all for two reasons.2 First,
by making use of multiple explanations it may be possible
to achieve a higher degree of precision. Second, it would be
unscientific to choose one explanation over another when
both explain the phenomena equally well.

The Principle of indifference considers events to be equally
probable if we have not the slightest knowledge of the
conditions under which each of them is going to occur. For
the case of a die, this actually coincides with the so-called
“maximum entropy principle”,11 which states that we should
choose probabilitiespi for faceI to be the outcome of a trial,
I ) 1,2, ..., 6 such that- ∑pi log pi is maximized under the
only constraint∑pi ) 1. Here we obtain preciselypi ) 1/6.

Occam’s Razor Principle: Let the generalization error of
a model be its error rate on unseen examples, and the
training-set error be its error on the examples it was derived
with. Then the formulation of the razor that is perhaps closest
to Occam’s original intent is as follows:3 GiVen two models
with the same generalization error, the simpler one should
be preferred because simplicity is desirable in itself. Vap-
nik’s4 theory of structural risk minimization shows that the
generalization ability of a class of classification models is
not a function of the number of features but of itsVC
dimension(capacity). TheVC dimensionof a hypothesis class
H over an instance spaceD is the size of the largest subset
of D for which H can generate all possible binary labelings.
Although the number of features are sometimes related, in
general they are not.

Generalization Error. Because feature selection is a
particular form of model selection: “...the good practice of
diViding the aVailable data into separate training and test
sets should not be forgotten”.12 Given a finite data setM,
we would like to estimate the future performance of a
classifier induced by the given data set for getting a good
tradeoff between bias and variance (Bias-Variance-Decom-
position).5,8

The bias of a method that estimates a parameterĉj ) f̂(mb j)
(predicted value) using the inducerf̂(mb j) is defined as the
expected estimated value (E[ĉj]) minus the value ofcj ) f(mbj)
(true value)

wheremb j is a descriptor set for a molecule with indexj. An
unbiased estimation method is a method that has zero bias.
The variance of a method is the statistical variance of the
estimate:

If M is the input to the inducer (training set) the effectiveness
of the inducer atmb j is

Taking the performance with respect to the training setM
(i.e., averaging over all possible training sets of the given
size) we obtain the expected risk

which represents the ability to yield a good performance for
all the possible situations (allcj, mb j pairs) and is thus called
the generalization error. To assess the generalization error
of a given model independently of the training set, it is
suitable to consider the expected generalization error:

Accordingly, the generalization error can be separated into
three components: the irreducible noise level, the squared
bias induced by the choice of a model, and the variance
coming from the data sampling. A large bias causes simple
models with a low variance. On the other side a small bias,
following the training points almost exactly, can cause a high
variance for unseen data (overfitting).

The often usedholdout method6 divides the data into two
mutually exclusive subsets called the training and the test
set or holdout set. Because this method causes a high bias
for a small test set or a wide confidence interval for a huge
test set, we will use thek-fold-cross-Walidation method.8 The
data setM is randomly split intok mutually exclusive subsets
(the folds)M1, M2, ..., Mk of approximately equal size. The
inducer is trained and testedk times; each timet ∈ {1,2,...,k},
it is trained onM\Mt (M without Mt) and tested onMt. If Mt

is the test set which includes the instanceIj ) 〈mb j,cj〉, then
the accuracy is

with δ(i,j) ) 1 if i ) j and 0 otherwise.
Empirical tests have shown that for model selection 5-fold

or 10-fold cross-validation gives a good tradeoff between
bias and variance.8 LeaWe-one-out(LOO) cross-Walidation,
where the number of folds is equal to the number of samples
available, can be used in the inner loop (Scheme 1) to guide
the search of the feature selection, but it should not be used
to compare feature selection methods.8,12 It was also shown

Bias(M,mbj) ) E[ĉj] - cj ) E[ f̂(mbj)] - f(mbj) (2)

Var(M,mbj) ) E[( f̂(mbj) - E[ f̂(mb j)])
2] (3)

( f̂(mbj) - f(mbj))
2 ) (cj - f(mbj))

2 (4)

Risk(M,mb j) ) E[(cj - f̂(mbj))
2|mbj] (5)

Y ) f(M,mb j) + ε

E(ε) ) 0

Var(ε) ) σε
2

Risk(M,mbj) ) E[(cj - f̂(mbj))
2|mbj]

Risk(M,mb j) ) σε
2 + [E[ f̂(mbj)] - f(mbj)]

2 + E[( f̂(mbj) -

E[ f̂(mbj)])
2]

Risk(M,mb j) ) IrreducibleError + Bias2(M,mbj) +
Var(M,mbj) (6)

accCV(M) )
1

m
∑
Ij∈M

δ(f(M\Mt,mbj),cj) (7)
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that cross-validation mostly outperforms the metric-based
model selection methods, and there could be a benefit when
using the meta-model-selection methods combining the cross-
validation and the metric based model selection methods with
lower variance.13

THEORY - ENTROPY

The entropy principle can be found in publications
covering the information content,6,14-17 the relation to statisti-
cal thermodynamics,18 analytical chemistry,19,20crystal struc-
ture estimation,21 information theory,11,22,23 text classifica-
tion,24 dimensionality reduction,25,26 and general machine
learning algorithms.27,28

Entropy and Information Theory. For characterizing the
information content of discrete probability distributionsPi

) {pi,1,pi,2,...,pi,k} for one descriptordBi we can use a
generalized entropy measure, like Re´nyi’s entropy11,28,29

Using the L’Hospital’s rule30 limRfR0 f(R)/g(R) ) limRfR0

f′(R)/g′(R), using R0 ) 1, we obtain the relation between
the Shannon entropyHSE(Pi) and the Re´nyi entropy
HRR(Pi):

Applied to the information content of a discretized
descriptordBi into B bins we obtain

wherepik is the probability of a data point or “count”cik to
adopt a value within a specific data intervalk with B bins
andM is the number of molecules. Here we choseB ) 20.
In this fashion,HSE(Pi) values for different data sets can be
directly compared, provided a uniform binning scheme can
be defined. As discussed in previous papersHSE(Pi) values
alone may not be sufficient to select descriptors with
significant discriminatory power.14 Furthermore this method
is characterized by a strong tendency to oversample remote
areas of the feature space and to produce unbalanced
designs.17

A direct way for comparing two discrete probability
distributionsPi ) {pi,1,pi,2,...,pi,k} and Pj ) {pj,1,pj,2,...,pj,k}
is to use the generalized Jensen’s measures of directed
divergence11 to avoid highly correlated features, which are
in this case two discrete descriptor distributions (histograms)

with DJ,λ(Pi,Pj) g0 andDJ,λ(Pi,Pj) ) 0 if Pi ) Pj andHE is
an entropy measure. When we use the Shannon entropy as
an entropy measure, we obtain the generalized Jensen-
Shannon measure of directed divergence11,23,24and forλ )
1/2 the Jensen-Shannon measure

which is a well known definition and is an analogue to the
recently introduced differential entropy definition.6,14,15

The success for picking the best feature set with|D| + 1
features is less certain than usingn ) |D| features, under
the assumption that the picking probability is uniformly
distributed overg experiments:22

In other words, the average entropy rates of subsetsHSE(Ds)
in bits of a randomly drawn subset with|Ds| features
decreases monotonically with the size of the subsets. If one
feature is more probable than others, the result of the
experiment is less uncertain

wheren is the number of times that the feature is picked
overg experiments,m is the number of times of the feature
which was picked more often (m > n). In other words, we
will need less decisions for picking the final feature set, if
we start with a more probable feature. We can avoid a huge
success uncertainty when starting with a small number of
features and using features which are more probable to be
selected.

Unfortunately this does not grant the best feature set and
does not guarantee the best hypothesis.3 So following
Shannon’s first theorem,22 good models can be found with
a higher probability, but it does not make them more
predictive.10 There can still exist a hypothesis with higher
generalization ability with using much more features.3,4

Practical algorithms, however, are not given access to the
underlying distribution, because we are still using only a
sampling of the real world distribution, so most practical
algorithms attempt to fit the data by solving theNP complete
optimization problems of finding the smallest feature set with
the highest generalization ability,8 e.g. using genetic algo-
rithms6,31 or tabu search.32,33

Additionally, following Jensen’s inequality for convex
functions22

HRR(Pi) )
1

1 - R
log (∑

k)1

B

pi,k
R ), R > 0, R * 1 (8)

HSE(Pi) ) lim
Rf1

HRR(Pi) ) -∑
k)1

B

pi,k log 2pi,k

HRR(Pi) g HSE(Pi) g HRâ(Pi), if 1 > R > 0 andâ > 1
(9)

HSE(dBi,B) ) - ∑
k)1

B

p(dBi(k))log 2(dBi(k))

pik ) p(dBi(k)) ) cik/∑
l)1

M

cil (10)

DJ,λ(Pi,Pj) ) HE(λPi - (1 - λ)Pj) - λHE(Pi) -
(1 - λ)HE(Pj) (11)

DJS(Pi,Pj) ) HSE(12(Pi - Pj)) - 1
2
(HSE(Pi) - HSE(Pj))

(12)

HSE(p(d1
(n)), ‚‚‚, p(dg

(n))) e HSE(p(d1
(n+1)), ‚‚‚, p(dg

(n+1)))

HSE(1n, ...,
1
n) e HSE( 1

n + 1
, ...,

1
n + 1)

-∑
i)1

g 1

n
log

1

n
e - ∑

i)1

g 1

n + 1
log

1

n + 1
(13)

∑
i)1

g-11

n
log

1

n
+

1

m
log

1

m
e ∑

i)1

g 1

n
log

1

n

1
m

log
1
m

e
1
n
log

1
n

(14)

f(λx1 + (1 - λ)x2) e λf(x1) + (1 - λ)f(x2), 0 e λ e 1
(15)
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we obtain the chain rule for entropies

with equality if and only if thedBi
/ are independent.Ns

/ )
|Ds

/| is the number of features in the best feature set found
Ds

/, dBi
/ is the descriptori in Ds

/. Hence when initializing our
feature selection algorithm with the entropy values of the
single features (right-hand of eq 16), the uncertainty can be
much greater than the entropy of the best feature set found
HSE(p(dBi

/), ‚‚‚,p(dBNs*
/ )), when features depend on each other.

THEORY - FEATURE EXTRACTION/SELECTION

There exist two ways for reducing the data input space.
One is to extract features by building linear and nonlinear
combinations of a lower dimension of the input features
which is calledfeature extraction. The other alternative is
to select the features with respect for their generalization
ability, which is calledfeature selection.

Feature Extraction. Feature extraction is not the topic
of this paper, but we will give a short overview to show the
principle difference between these methods. Infeature
extraction, we try to find the best linear or nonlinear
combination of features to fulfill a dimensionality reduction
criteria, e.g. in PCA each eigenvalue represents a portion of
variation in the data and the eigenvalues are ranked by their
ability to account for the variation in the data.34

There exists feature extraction34-37 methods using Re´nyi
entropy,26 principal component analysis (PCA),38 PCA-
GA,31,32,39PCA-SA,40 CROMsel,41 hierachical discriminant
regression (HDR),42 independent component analysis (ICA),43

multidimensional scaling (MDS),44 nonlinear mapping
(NLM),45,46 partial least squares (PLS),47-53 and kernel
PCA.54,55

Feature Selection: Introduction.The problem offeature
selectionis that of finding a subset of the original features
of a data set,56-58 such that an induction algorithm that is
run on data containing only these features generates a
classifier with the highest possible accuracy. Overviews8,56,59

over feature selection are already available, and the problem
of overfitting for feature selection8,12 was already addressed.
Typical algorithms use genetic algorithms (GA),6,60-62 sup-
port vector machines (SVM),63-65 entropy,23,24decision trees
(recursive partitioning),66,67 tabu search,32,33stochastic prox-
imity embedding (SPE),68 model selection metrics,13 artificial
neural networks (ANN),69 grafting,70 multitask learning
(MTL),71 feature rankings,57,58 and text classifiers.24,72,73

From a purely theoretical standpoint, the question is not
of much interest.3 The optimal Bayes rule is monotonic, i.e.,
adding features cannot decrease the accuracy, and hence
restricting the induction algorithm to a subset of features is
never advised. From the practical standpoint this problem is
highly interesting, because feature subset selection is aNP
completeproblem.1 So the objective is 5-fold:12,70 first,
improving the prediction performance of the predictors;
second, providing a better understanding of the underlying
process; third, providing faster and more cost-effective
predictors. [Not all model types have an improved perfor-
mance for a smaller feature set used, because they may

depend only on the number of instances/molecules used.4,54,55];
fourth, serving as a bridge between the harsh reality of the
real world, and the cozy idealistic environments inhabited
by most machine learning algorithms;12 fifth, avoiding
irrelevant features for similarity analysis. For example, it was
shown that inferior similarities were obtained, when finger-
prints were applied on the complete molecule and not only
on the biologically relevant substituents.74,75

Feature Selection: Filter Approach. For a numeric
attribute, the feature must first be discretized into several
intervals, using, for example, the entropy-based discretization
method,27 because we want to compare discrete probability
distributions using the entropy. The number of the features
to select must be defined.

The information gain(mutual information)IG(dBi,cb) evalu-
ates the worth of a featuredBi with respect to the class
information cb. The relatedgain ratio measureIR(dBi,cb) and
symmetrical uncertainty ISU(dBi,cb) uses other entropy based
normalization factors.58

Because decision trees (recursive partitioning)27 also use
discrete features and theinformation gain IG(dBi,cb) as decision
criteria, they can be used for feature selection, also.66,67

The Relief algorithm76,77 assigns a relevance weightRf to
each feature, which is meant to denote the relevance of the
feature for the target concept. It is a randomized algorithm
which finds all weakly relevant features but does not help
with redundant features. The OneR algorithm78,79 can be
regarded as a one level decision tree, which tests only one
attribute and ranks features withRoneR. Another method to
measure the association between two features in a contin-
gency table is based on theChi-squared test80-82

where B is the number of intervals,c′ is the number of
classes, andEij ) (c′*k‚c′j*)/|M| is the expected frequency of
c′jk wherec′jk is the number of samples in thekth interval
and thejth class,c′*k is the number of samples in thekth
interval, c′j* is the number of samples in thejth class, and
|M| is the total number of samples (here molecules). Larger
ø2 values reflect more important features. The degree of
freedom is (B - 1)(c′ - 1). For instance, ifB ) 2 (binary
feature) andc′ ) 2 (binary classification problem), the degree
of freedom is one and theø2 value at the 5% significance
level is 3.841. If ourø2 value is larger than that, the
probability is less than 5% that discrepancies this large are
attributable to chance, and we are led to reject the null
hypothesis of independence between the feature and the class
values.

HSE(p(dB1
/), ‚‚‚, p(dBNs*

/ )) e ∑
i)1

Ns
/

HSE(p(dBi
/)) (16)

IG(dBi,cb) ) HSE(dBi) - HSE(dBi|cb) ) HSE(cb) - HSE(cb|dBi)
(17)

IR(dBi,cb) )
IG(dBi,cb)

HSE(dBi)
(18)

ISU )
2IG(dBi,cb)

HSE(cb) + HSE(dBi)
(19)

ø2 ) ∑
j)1

c′

∑
k)1

B (c′jk - Ejk)
2

c′jk
(20)
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Feature Selection: Wrapper Approach.A wide range
of search strategies can be used,56,83 including best-first,25

simulated annealing,40 and genetic algorithms.6,62 We used
the recently introduced Recursive Feature Elimination (RFE)84

method, which uses Support Vector Machines (SVM),4,54,55,85,86

to compare our GA-SEC algorithm with. Support Vector
Machines (SVM) were initiated by Vapnik4 with the
introduction of thestructural risk minimization principle,
which defines a tradeoff between the approximation quality
of a given data set and the complexity of the approximating
function. The main aspect of a SVM is the “kernel-trick”,
which projects the data into a high dimensional (possibly
infinite) feature space where a simple linear learning machine
can be applied.56,86 Recursive Feature Elimination (RFE)84

is a wrapper method which performs a backward feature
elimination: The idea is to find the|Ds

/| features which lead
to the largest margin of class separation. This combinatorial
problem is solved in a greedy fashion. In the 2-class case
the algorithm begins with the set of all features and
successively eliminates the feature which induces the smallest
change in the cost function

whereR* is the tuple of the Lagrangian multipliers which
are obtained by solving the SVM problem andk(mb i,mb j) is
an entry in the kernel matrix. In the literature often the terms
xj ) mb j andyj ) cj are used. As for SVM’sW2 is a measure
of the predictive ability (and is inversely proportional to the
margin), the algorithm at each step eliminates the feature
which keeps this quantity small. Assuming that the change
of the set of support vectors (and hence of the tupleR*)
when removing only one feature is negligible, this is done
by performing the following iterative procedure over all
features|D|:63

• Given a tupleR* of Lagrangian multipliers as a solution
of the SVM learning algorithm, calculate for each featuret

where mb i
(-t) means that thetth feature from the training

vectormb i has been removed.
• Remove the feature with the smallest valueDw(t) )

|w2(R*) - w(-t)
2 (R*) | and retrain the SVM with the reduced

set of features.
RFE originally was designed to solve 2-class problems

only, but extensions to a multiclass versions are possible.63

Finally, RFE computes a ranking of the selected features.
The number of the features to select must be defined.

THEORY - ENSEMBLE MODELS

Building Models. Following Epicurus’s principle and
taking model diversity into account, we should combine
multiple predictors, to obtain more precise results. Obviously,
combining the output of multiple predictors is useful only if
there is a disagreement between them, which follows
Occam’s razor to avoid multiple entities. Two principles are
combining unweighted ensembles87-91 or voting meta algo-
rithms such as bagging92 or boosting.93

The Bagging algorithm (Bootstrapaggregating) votes
classifiers generated by different bootstrap samples (repli-
cates).92

Boostingwas introduced for boosting the performance of
weak classifiers. The most important boosting algorithm is
AdaBoost.M1 (Adaptive Boosting) for two class problems,
with variants called M2, MH for multiclass problems and
MR for regression problems.93 Like Bagging, the AdaBoost
algorithm generates a set of classifers and votes them. The
AdaBoost algorithm generates the classifers sequentially,
while bagging can generate them in parallel. AdaBoost also
changes the weights of the training instances provided as
input to each inducer based on classifers that were previously
built. [In difference feature selection can be regarded as a
binary weighting of the features/descriptors.] It was already
shown that boosting outperforms bagging94,95 and that
boosted decision trees (recursive partitioning)87,96,97perform
as well as or close to support vector machines (SVM). Zhang
et al. showed this on examples for classifying gene se-
quences.98

METHODS

Data Preparation. It is clear that all models we build
should use a representative data set without duplicates, or
our model will not have a valid generalization ability.81 To
eliminate duplicates we calculated the hash code for mol-
ecules based on the basic atom properties in JOELib99 using
a modified Morgan algorithm100,101with some analogues to
the Jochum-Gasteiger canonical numbering algorithm.9,102

Additionally we used the canonicalized SMILES100,103-105

code for molecules with cis/trans and E/Z information for
calculating the SMILES hash code. More complex hash code
calculation methods can be applied to reduce the number of
mappings of nonidentical molecules with the same hash code,
but these statistical tests depend on the data set used.106

Additionally, hash codes are limited to the size of the integer
used, here to 231 - 1 possible unique numbers. Because we
inspected molecules where a duplicate hash code occurred
by the graph based equality of the atoms and bonds and then
“by hand”, avoiding multiple hash code mappings for
nonidentical molecules can reduce work but cannot com-
pletely avoid detailed equality checks. For these data sets
we did not find any noncorrect hash code mappings.
Potentially similar molecules occur when the hash code for

W2(R*) ) ∑
i)1

|M|
Ri
/ -

1

2
∑
i,j)1

|M|
Ri
/ Rj

/cicjk(mbi,mbj) (21)

w(-t)
2 (R*) ) ∑

i,j)1

|M|
Ri
/ Rj

/cicjk(mbi
(-t),mbj

(-t)) (22)

Chart 1. Our Hash Code Calculation Method Uses the Modified
Morgan Algorithm100,101Implemented in JOELib99 Which Has Some
Analogues to the Jochum-Gasteiger Canonical Numbering
Algorithm9,102a

a The number of SSSR rings is the number of the smallest set of
smallest rings.101,107,108
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two molecules is identical, so we inspected all instances of
identity when this happened. We used well-known data sets
for logP,6,109,110logS,6,111-116 and Human Intestinal Absorp-
tion (HIA)42,117,119from the literature to show that only one
of these three data sets contained no duplicate molecules.

We combined the test, training, and validation data sets
and found 100 duplicates in the Wang data set and three
more duplicates, because the molecular structures were
wrong. The Huuskonen data set contained only four dupli-
cates and contained six uracil derivates with wrong atom
types caused by Corina’s 3D structure generation.120 The
complete list of duplicate molecules and incorrect structures
can be found in the Supporting Information. Especially the
84 duplicated molecules in the test set and the 15 duplicated
molecules in the validation set of the LogP data set6,109,110

lead to invalid numbers for the generalization ability.
For comparing models it should be guaranteed that the

descriptors are using all the same atom type, aromaticity-
and hybridization-model. Because many programs use text
definitions for the atom types99,121 we recommended using
the same definitions or the same data processing workflow
to avoid bad prediction results for new molecules.

Furthermore the data sets should not contain missing
descriptor values or at least common techniques should be
used to avoid missing values.10 All descriptor valuesdBi were
normalized.117,118 We did this by using the z-transformed
descriptor distribution with a mean of zero and a standard
deviation of one81

wherei is the index number of the descriptor andm is the
index number of the molecule,di is the averagedi,m over all
molecules|M| andσi ) σi

(|M|-1) is the standard deviation of
descriptordBi. |D| is the number of all available features/
descriptors.D and M are descriptor or molecule based
formulations of the data set or instance space.

Feature Selection: Hybrid Approach. The GA-SEC
algorithm6 tries to avoid the often criticized “brute-force”
method of standard-wrapper approaches56 by taking the
problem of overfitting also into account, caused by coarse
search strategies.12 So we use the Shannon entropy (as given
in eq 10) to find features which contain a high information
content. Then we apply a divergence measure by using the
differential Jensen-Shannon entropy (as defined in eq 12)
combined with a clique detection algorithm to find initial

feature sets, called Shannon entropy cliques (SEC), which
have a high information content and are little correlated to
each other. When using a genetic algorithm (GA)122,123 as
wrapper and the SEC for initializing the GA population
PGA(0) as filter, we obtain the already introduced hybrid
GA-SEC feature selection algorithm.6

Because we ignored until now the class information of
our classification problem, the variants presented here also
use multiple filter (MF) approaches to improve the perfor-
mance of the standard GA-SEC algorithm.

By taking feature information content, feature diversity,
and feature prediction ability with respect to our classification
problem into account, we try to avoid a high final feature
set uncertainty (see eqs 8-16) for reducing the number of
evaluation steps. A matrixMadj(i,j) is defined

whereMSE(i,j) ) HSE(Pi)‚HSE(Pj) is the quadratic information
content,MJS(i,j) ) DJS(Pi,Pj) is the diversity information for
a descriptor pair,SEcut is the minimally allowed quadratic
information content value, andDcut is the minimally allowed
Jensen-Shannon entropy value. TheMadj(i,j) matrix can be
used to find descriptors with a high information content
which will correlate little with other descriptors by using a
maximum clique detection algorithm.124,125 A maximum
complete subgraph (clique) is a complete subgraph that is
not contained in any other complete subgraph.124 Complete
means that every node of the clique is connected to every
other node of the clique. In our case a clique will be the
descriptor subset which has a high information content and
where every descriptor is maximally diverse to any other
descriptor in this clique.

A subset-selection graphGd is created fromMadj(i,j) by
using the Bron-Kerbosch (BK)124 clique detection algorithm.
We call theGd subsets of theMadj(i,j) matrix the Shannon
entropy cliques (SEC). The run time of clique detection
algorithms depends strongly on the edge/node density in
graphs and an overview was recently published.126 If one
choosesSEcut ) 0 andDcut ) ∞ the initialization is analogous
to a standard genetic algorithm wrapper approach, with
picking features randomly. An overview over the different
GA-initialization methods is given in Table 2.GA-SECis
the algorithm we have presented already, without using any
additional class information.6 GA-SEC-MF(multiple filters)
uses the default initialization of the populationPGA(0)and
adds randomly the best descriptors found by the different
filter approaches using the class information (see eqs 17-
20).GA-SEC-MFP(multiple filters for prescreening) reduces
the adjacency matrix for finding uncorrelated descriptors to
the best descriptors found by the different filter approaches.

Chart 2. The SMILES100,103-105 Hash Code Uses Also the Modified
Morgan Algorithm100-102 for a Unique Renumbering of the Molecule,
Which Contains Also E/Z and Cis/Trans Information and Is More
Specific than the Plain Hash Code Which Does Not Use Stereo- or
Chirality-Atom-Properties

σi ) σi
(|M|-1) ) x∑m)1

|M| (di,m - di)
2

|M| - 1
(23)

d̂i,m )
di,m - di

σi
(24)

Table 1. Number of Duplicate and Wrong Molecules in Already
Published LogS,6,111-116 LogP,6,109,110and HIA42,119 Data Setsa

doublets/size incorrect structures/size

data set train test validation train test validation

LogS 2/1016 2/253 1/21 6/1016 0/253 0/21
LogP 1/1853 84/138 15/19 1/1853 2/138 0/19
HIA 0/67CV 0/9CV 0/10 0/67CV 0/9CV 0/10

a For the HIA data set eight fold cross-validation (CV) were used.

Madj(i,j) ) {1 if MSE(i,j) > SEcut andMJS(i,j) > Dcut

0 otherwise
(25)
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GA-MF initializes PGA(0) directly without using Shannon
entropy clique detection and taking only the best descriptors
found by the filters into account. All multiple filter (MF)
variants contain always one individual with sizesClique with
the best descriptors found by the plain filter approaches. An
additional scheme containing the filter and GA wrapper with
additional descriptions is available in the Supporting Infor-
mation.

The number of features to select is identified automatically,
in contrast to the previously presented RFE.

In part 2 of this two-part paper we show how these GA-
SEC algorithms can be used to find the most relevant features
for predicting human intestinal absorption (HIA) coefficients
out of a large data set of 2934 descriptors.

CONCLUSIONS

We presented basic principles for hypothesis testing
(induction) and the generalization error in context of the
feature selection problem. The entropy terms were described
in detail to appreciate previous publications in this area and
avoid misleading terms. The difference betweenfeature
extractionand feature selectionand the further distinction

betweenfeature selection wrappersand feature selection
filters were presented to show that there are already many
different approaches available, which can be helpful for
selecting and understanding molecular features.

Finally, we presented three new hybrid feature selection
algorithms GA-SEC and its two variants GA-SEC-MF and
GA-SEC-MFP. We are taking also the class information of
our classification problem into account, to reduce the
uncertainty of the features used to be picked for the final
feature set. This set has the highest generalization ability
and a small number of features used. In contrast to standard
filter approaches and the RFE wrapper approach, the number
of features to be selected must not be defined for applying
our GA-SEC algorithm and its variants.
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