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Feature Selection for Descriptor Based Classification Models. 1. Theory and GA-SEC
Algorithm
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The paper describes different aspects of classification models based on molecular data sets with the focus
on feature selection methods. Especially model quality and avoiding a high variance on unseen data
(overfitting) will be discussed with respect to the feature selection problem. We present several standard
approaches and modifications of our Genetic Algorithm based on the Shannon Entropy Cliques (GA-SEC)
algorithm and the extension for classification problems using boosting.

INTRODUCTION Scheme 1.Modified QSAR Paradigf® with Focus on Feature/
Descriptor Selectich

This work gives an introduction to the creation of e o |
classification models on molecular data sets and testing their OPI;?;‘Z;’:LS \;:l'f;r;mema
model quality. The focus lies on tHé¢P-completé feature va
(descriptor) selection problem, with a special emphasis on Descriptor calculation|
aspects most interesting for the chemoinformatics, bioinfor- and P"Stf"’fccssmg
matics, and machine learning community. T P——r—

This paper is divided into two main parts. A theory part, fold for modél assessment (4L validation
giving a short introduction of the basic principles of ¥ : =
hypothesis testing and the generalization etrdiThe notion build cross-validation = B
of entropy, especially in the context of machine learning, is fold for model validation | & 3
explained, wh_ich is an importgnt elem(_ent of the presented Tnitial des;ﬁpmr sets §
GA-SEC hybrid-feature selection algorittfnizurthermore, Optimized e §
the difference betweefeature extractiorandfeature selec- P P = |
tion is presented and also thHeature selection-filterand | Classification model |
-wrappermethods used in our work. Finally, the creation of Optimization (GA)|
ensemble models, which can be used in combination with Teat dm'ﬂpmr =
our feature selection algorithm, conclude the theory part. The on all CV folds
second part explains some relevant points to be considered,

when preparing chemical data sets and describes the new 2 The inner loop is necessary for optimizing the feature set and the
GA-SEC variants for classification in more detail. outer validation loop for assessing the model quality.

In general, there existNpossibilities to pick an optimal
feature subset of any size, wheéMe= |D| is the number of
descriptors in the data spa@® which is also called the
descriptor space. When choosing a descriptor subsef
sizeNs = |Dg| out of a descriptor set of sidé requires the
evaluation of

optimizationproblem® We will present filter and wrapper
methods for the feature selection used in our work and our
modified GA-SEC hybrid-feature selection algorithiBcheme

1 shows the modified QSAR paradi§fhaddressing the
feature selection problem using a combingider and
wrapper approachlit can be seen that thverapper approach

N NI contains two additional loops, the optimization loop for
N, = NJ(N — Ns)_l 1) picking an optimal descriptor set and the validation loop for
s ' the model assessment. So it is obvious, that grdiy

approachesare much faster thamwrapper approaches
dWrappersutiIize the learning machine of interest as a black
Iﬂpox to score subsets of variables according to their predictive
power.Filters select subsets of variables as a preprocessing
step, independently of the chosen predictor.

subsets.

The complete glossary of mathematical symbols used an
two huge QSAR feature selection benchmark data sets cal
be found in the Supporting Information.

There exist two basic principles for feature selection. One
is thefilter approach which picks only a good feature subset
once, the other is thevrapper approach which tries to
optimize the feature subsets by solving twmbinatorial Hypothesis Testing.Inductive inference or hypothesis
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best explains the dataFour approaches to the problem of If M is the input to the inducer (training set) the effectiveness

multiple hypotheses are common tode§:Epicurus’ prin- of the inducer afty is
ciple of multiple explanations; Occam’s principle of the R ) )
simplest explanation (known as Occam’s razor); Bayesian (f(m) — f(M))” = (¢, — f(M)) (4)

inference?1°and Vapnik’s structural risk minimizatighThe _ . o
first two principles are used for the initialization of our Taking the performance with respect to the training Met
feature selection algorithm, creating model ensembles and(i-e., averaging over all possible training sets of the given

selecting the models. size) we obtain the expected risk
Epicurus’ Principle of Multiple Explanationsf more than . _ 2
one theory is consistent with the data, keep themTaie RisKM,m) = E[(¢; — f(M))"Im] (5)

Greek philosopher of science Epicurus maintained that if
several explanations are equally in agreement with a
phenomena, we must keep them all for two reagdfisst,

which represents the ability to yield a good performance for
all the possible situations (at], M pairs) and is thus called

by making use of multiple explanations it may be possible the generalization error. To assess the generalization error
to achieve a higher degree of precision. Second, it would be©f @ given model independently of the training set, itis
unscientific to choose one explanation over another when Suitable to consider the expected generalization error:

both explain the phenomena equally well. _ -

The Principle of indifference considers events to be equally v f(Mm) Te
probable if we have not the slightest knowledge of the E(e) =0
conditions under which each of them is going to occur. For
the case of a die, this actually coincides with the so-called Var(e) = 0.2

“maximum entropy principle®! which states that we should

choose probabilitiep; for facel to be the outcome of a trial, . . A N2

| =1,2, ..., 6 such that yp: log pi is maximized under the RiskM,m) = E[(c; — f(m)) Im]

only constrainty p = 1. Here we obtain precisely = 1/6. _ Q 5 .\ I .
Occam’s Razor Principle: Let the generalization error of RisSKM,m) = o.” + [E[f(M)] — f(M)]" + E[(f(T) —

a model be its error rate on unseen examples, and the ErF (/12
i ; ; : [F(M)D°]

training-set error be its error on the examples it was derived

with. Then the formulation of the razor that is perhaps closest . N : . ~

to Occam'’s original intent is as followsGiven two models RisKM,m) = Irreduciblerror -+ Blasz(M,rq) + _

with the same generalization error, the simpler one should Var(M,m) (6)

be preferred because simplicity is desirable in its®lfp- ) o ]

nik’s* theory of structural risk minimization shows that the ~ Accordingly, the generalization error can be separated into

generalization ability of a class of classification models is thrée components: the irreducible noise level, the squared

not a function of the number of features but of WC b|as_|nduced by the ch0|ce_ of a model, _and the variance

dimensior(capacity). Th&/C dimensiorof a hypothesis class ~ c0ming from the data sampling. A large bias causes simple

H over an instance spa@is the size of the largest subset Models with a low variance. On the other side a small bias,

of D for which H can generate all possible binary labelings. following the training points almost exactly, can cause a high

Although the number of features are sometimes related, inVariance for unseen data (overfitting). _
general they are not. The often usedholdout method divides the data into two

mutually exclusive subsets called the training and the test
set or holdout set. Because this method causes a high bias
for a small test set or a wide confidence interval for a huge
test set, we will use thie-fold-crosswvalidation methoc€ The

we would like to estimate the future performance of a data seM is randomly split intdk mutually exclusive subsets

classifier induced by the given data set for getting a good (the f°|d,s)M1,' Mz, ..., Mi of a'ppro'ximately equal size. The

tradeoff between bias and variance (Bias-Variance—Decom-!n_duce_r is trained and tes_tkdlmes, eachtimee {1,2,.. k},

position)5# itis trained onM\Mt (M without M) gnd tested oM. If M;
The bias of a method that estimates a parantgterf(i) is the test set which includes the instange= [i,GLJ then

(predicted value) using the induc@(ﬁy) is defined as the the accuracy is

expected estimated valug[{;]) minus the value o€, = (M)

1
(true value) A acq(M) = a%é(f(M\Mt,ﬁ]LCj) (7)
BiagM,m) = E[¢] — ¢ = E[f(M)] — (M)  (2)

Generalization Error. Because feature selection is a
particular form of model selection: ‘the good practice of
diziding the aailable data into separate training and test
sets should not be forgotte® Given a finite data sem,

with 6(i,j)) = 1 if i = j and O otherwise.

Empirical tests have shown that for model selection 5-fold
or 10-fold cross-validation gives a good tradeoff between
bias and variancéLeave-one-out(LOO) crosswalidation,
where the number of folds is equal to the number of samples
available, can be used in the inner loop (Scheme 1) to guide
_ o P the search of the feature selection, but it should not be used
Var(M,m) = E[(f(M) — E[f(M)])] ) to compare feature selection methdd3lt was also shown

wheremm is a descriptor set for a molecule with indgXAn
unbiased estimation method is a method that has zero bias
The variance of a method is the statistical variance of the
estimate:
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that cross-validation mostly outperforms the metric-based with D;;(P;,P;) =0 andD,;(P;,P;) = 0 if P;
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P; andHe is

model selection methods, and there could be a benefit whenan entropy measure. When we use the Shannon entropy as
using the meta-model-selection methods combining the cross-an entropy measure, we obtain the generalized Jensen
validation and the metric based model selection methods with Shannon measure of directed divergéié&®*and ford =

lower variancée?

THEORY — ENTROPY

The entropy principle can be found in publications
covering the information conteht* 1" the relation to statisti-
cal thermodynamic¥ analytical chemistry?2°crystal struc-
ture estimatiort! information theony!?>23text classifica-
tion,2* dimensionality reductio?>?® and general machine
learning algorithmg?-28

Entropy and Information Theory. For characterizing the
information content of discrete probability distributioRs
= {piuPpi2---pixt for one descriptord; we can use a
generalized entropy measure, likérigés entropy!2829

1 B
Hro(P) = log (zlp{‘k), a>0,a=1 (8)

1 - k= '
Using the L'Hospital's rulé® limg s, f(0)/g(c) = limg—q,
f'(a)/g' (o), usingopy = 1, we obtain the relation between
the Shannon entropyHsgP)) and the Rayi entropy
HRu(Pi):

B
Hse(P) = limHg,(P) = _lei,k log ,p;
o—1 k=

Hra(P)) = Hs(P) = Hgy(P)), if 1 > o > O andf > %9)

Applied_to the information content of a discretized
descriptord; into B bins we obtain

B
Hsg(d;,B) = — Zp(&(k»log A(di(K)
k=

M
P = P(di(K) = cik/;ci. (10)

wherepy is the probability of a data point or “counti to
adopt a value within a specific data intenkalvith B bins
andM is the number of molecules. Here we ch&se 20.

In this fashionHsg(P;) values for different data sets can be
directly compared, provided a uniform binning scheme can
be defined. As discussed in previous papésgP;) values
alone may not be sufficient to select descriptors with
significant discriminatory poweéf. Furthermore this method

1/2 the JenseaShannon measure

DJS(Pi’Pj) = HSE(%(Pi - Pj)) - %(HSE(Pi) - HSE(Pj))

(12)
which is a well known definition and is an analogue to the
recently introduced differential entropy definitié#*1°

The success for picking the best feature set With+ 1
features is less certain than using= |D| features, under
the assumption that the picking probability is uniformly
distributed overg experimentsg?

HelP(d?), -+, p(dM) = Help(c" ), -+, p(c"2)

1 1 1 1
HSE(H' ’ﬁ) = HSE(m' ,m
gt oyt (13)
—)-log— = — og
.Zm n =Zn+1 n+1

In other words, the average entropy rates of suliseid.)

in bits of a randomly drawn subset witjDy features
decreases monotonically with the size of the subsets. If one
feature is more probable than others, the result of the
experiment is less uncertain

g1 1 1 1 91 1
Z—Iog -+ —log—=< Y -log-
Sn n m m &n n
1 1 1 1
mIog - < nIog . (14)

wheren is the number of times that the feature is picked
overg experimentsmis the number of times of the feature
which was picked more oftem(> n). In other words, we

will need less decisions for picking the final feature set, if
we start with a more probable feature. We can avoid a huge
success uncertainty when starting with a small number of
features and using features which are more probable to be
selected.

Unfortunately this does not grant the best feature set and
does not guarantee the best hypothés®o following
Shannon'’s first theorer,good models can be found with
a higher probability, but it does not make them more
predictivel® There can still exist a hypothesis with higher
generalization ability with using much more featufés.

is characterized by a strong tendency to oversample remotePractical algorithms, however, are not given access to the
areas of the feature space and to produce unbalancednderlying distribution, because we are still using only a

designsY’
A direct way for comparing two discrete probability
distributionsP; = {pi1,pi2,...Pid andP; = {pj 1,052, P}

sampling of the real world distribution, so most practical
algorithms attempt to fit the data by solving tR® complete
optimization problems of finding the smallest feature set with

is to use the generalized Jensen’s measures of directedhe highest generalization abilitye.g. using genetic algo-

divergencé' to avoid highly correlated features, which are

rithms®31 or tabu searck?33

in this case two discrete descriptor distributions (histograms) ~Additionally, following Jensen’s inequality for convex

D;,(P;,P) = He(AP; — (1 — 4)P) — AHg(P) —
(1= MHe((R) (A1)

functiong?

f(2x, + (1 = A)%;) = Af(x) + (1 = A)f(x;), 0= 4 S(%5)
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we obtain the chain rule for entropies depend only on the number of instances/molecules 1&g
fourth, serving as a bridge between the harsh reality of the
Nz real world, and the cozy idealistic environments inhabited
Hsdp(d}), ===, p(dy.) = S Heelp(d))  (16) by most machine learning algorithrits;fifth, avoiding
° = irrelevant features for similarity analysis. For example, it was
n shown that inferior similarities were obtained, when finger-
with equality if and only if thed! are independent\; = prints were applied on the complete molecule and not only
ID}| is the number of features in the best feature set found on the biologically relevant substituerfts’ _
D?, d} is the descriptor in DY. Hence when initializing our Feature Selection: Filter Approach. For a numeric
feature selection algorithm with the entropy values of the attrlbute, thg feature must first be discretized into sgveral
single features (right-hand of eq 16), the uncertainty can be intervals, using, for example, the entropy-based discretization

much greater than the entropy of the best feature set foundMethod;” because we want to compare discrete probability

Hse(p(d?), *++,p(dy.)), when features depend on each other.

THEORY — FEATURE EXTRACTION/SELECTION

distributions using the entropy. The number of the features

to select must be defined. _
Theinformation gain(mutual information) ¢(d;,C) evalu-

ates the worth of a featurd, with respect to_the class

Th_ere exist two ways for redu_ciryg th_e data input space. information€. The relatedgain ratio measure(d;,¢) and
One is to extract features by building linear and nonlinear symmetrical uncertaintysl(d;,¢) uses other entropy based
combinations of a lower dimension of the input features normalization factorg®

which is calledfeature extractionThe other alternative is

to select the features with respect for their generalization 14(d;,€) = Heg(d) — Heg(di|€) = Hs(€) — He(T| )

ability, which is calledfeature selection
Feature Extraction. Feature extraction is not the topic

of this paper, but we will give a short overview to show the

principle difference between these methods. féature
extraction we try to find the best linear or nonlinear
combination of features to fulfill a dimensionality reduction

criteria, e.g. in PCA each eigenvalue represents a portion of
variation in the data and the eigenvalues are ranked by their

ability to account for the variation in the data.

There exists feature extractidn®” methods using Reyi
entropy?® principal component analysis (PCA),PCA-
GA 3L3239PCA-SA2 CROMsel*! hierachical discriminant
regression (HDR}? independent component analysis (ICA),
multidimensional scaling (MDSY, nonlinear mapping
(NLM),#>4¢ partial least squares (PL%),>® and kernel
PCA.54'55

Feature Selection: Introduction. The problem ofeature
selectionis that of finding a subset of the original features
of a data sett58 such that an induction algorithm that is

17)

- I(d,
I15(d,©) = i i dc)) (18)
214(d;,©) 19)

'SUT H(@) + Hee )

Because decision trees (recursive partitiomhg)so use
discrete features and tiformation gain &(di,C) as decision
criteria, they can be used for feature selection, &$6.

The Relief algorithrf7” assigns a relevance weigRtto
each feature, which is meant to denote the relevance of the
feature for the target concept. It is a randomized algorithm
which finds all weakly relevant features but does not help
with redundant features. The OneR algorithffi can be
regarded as a one level decision tree, which tests only one
attribute and ranks features wiy,.r Another method to

run on data containing only these features generates ameasure the association between two features in a contin-

classifier with the highest possible accuracy. Overviéi®

gency table is based on ti@hi-squared te$f 82

over feature selection are already available, and the problem

of overfitting for feature selectiéi?was already addressed.
Typical algorithms use genetic algorithms (G}, 2 sup-
port vector machines (SVM¥; %> entropy?32*decision trees
(recursive partitioning§®6” tabu search?33 stochastic prox-
imity embedding (SPE¥ model selection metric's,artificial
neural networks (ANNY? grafting/® multitask learning
(MTL), ™ feature ranking8’°® and text classifierd*’273

, , 2
, o B (C ik Ejk)
X E E ;
= k= C Jk

where B is the number of intervalsg’ is the number of
classes, an&j = (C.,C.)/|M| is the expected frequency of
ci wherecj is the number of samples in theh interval

(20)

From a purely theoretical standpoint, the question is not and thejth class,c., is the number of samples in th¢h

of much interest. The optimal Bayes rule is monotonic, i.e.,

interval, ¢« is the number of samples in thth class, and

adding features cannot decrease the accuracy, and hencgM| is the total number of samples (here molecules). Larger
restricting the induction algorithm to a subset of features is x? values reflect more important features. The degree of
never advised. From the practical standpoint this problem is freedom is B — 1)(c' — 1). For instance, iB = 2 (binary

highly interesting, because feature subset selectiorNB a
completeproblem! So the objective is 5-fold? 7 first,

feature) and’ = 2 (binary classification problem), the degree
of freedom is one and thg? value at the 5% significance

improving the prediction performance of the predictors; level is 3.841. If oury? value is larger than that, the
second, providing a better understanding of the underlying probability is less than 5% that discrepancies this large are
process; third, providing faster and more cost-effective attributable to chance, and we are led to reject the null
predictors. [Not all model types have an improved perfor- hypothesis of independence between the feature and the class
mance for a smaller feature set used, because they mayalues.
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Feature Selection: Wrapper Approach.A wide range Chart 1. Our Hash Code Calculation Method Uses the Modified

i i i _firap5 Morgan Algorithni9%.191|mplemented in JOEL® Which Has Some
el strategies can be u§é?§,|nclud|ng best fIrSE Analogues to the JochunGasteiger Canonical Numbering

simulated annealin®, and genetic algorithmfs?®> We used  pjqorithme.102a

the recently introduced Recursive Feature Elimination (m:E) create canonicalized molecule using modificd Morgan algorithm
method, which uses Support Vector Machines (SWR1§5:8586

to compare our GA-SEC algorithm with. Support Vector hash := 31*(number of rotatable bonds) + (number of SSSR rings);
Machines (SVM) were initiated by Vaprikwith the for all atoms

introduction of thestructural risk minimization principle,

which defines a tradeoff between the approximation quality hash = 31*hash + atomic number of actual atom;

of a given data set and the complexity of the approximating hash = 31*hash + heavy valence of actual atom;

function. The main aspect of a SVM is the “kernel-trick”,

which projects the data into a high dimensional (possibly hash :=31*hash + implicite valence of actual atom;

infinite) feature space where a simple linear learning machine hash := 31*hash + 100%(partial charge of actual atom);

can be applied®8 Recursive Feature Elimination (RFE) end

is a wrapper method which performs a backward feature  athe number of SSSR rings is the number of the smallest set of
elimination: The idea is to find th?| features which lead  smallest ringg?2107.108

to the largest margin of class separation. This combinatorial

problem is solved in a greedy fashion. In the 2-class case The Bagging algorithm @ootstrap aggegaing) votes

the algorithm begins with the set of all features and classifiers generated by different bootstrap samples (repli-
successively eliminates the feature which induces the smallestates)??

change in the cost function Boostingwas introduced for boosting the performance of
M " vAvgall; classl\i/l;ifrAs(.j Thg mé)st imp(;r;ant boolsting algtt)nlrithm is
* — _ = — aBoost. aptive Boosing) for two class problems,
Wz(a ) ;a |jzla a G6 k(”\’”}) (1) with variants called M2, MH for multiclass problems and
MR for regression problent$.Like Bagging, the AdaBoost
wherea* is the tuple of the Lagrangian multipliers which  algorithm generates a set of classifers and votes them. The
are obtained by solving the SVM problem akgiiy,m) is AdaBoost algorithm generates the classifers sequentially,
an entry in the kernel matrix. In the literature often the terms while bagging can generate them in parallel. AdaBoost also
x = My andy; = ¢ are used. As for SVM'$\?is a measure  changes the weights of the training instances provided as
of the predictive ability (and is inversely proportional to the input to each inducer based on classifers that were previously
margin), the algorithm at each step eliminates the feature built. [In difference feature selection can be regarded as a
which keeps this quantity small. Assuming that the change binary weighting of the features/descriptors.] It was already
of the set of support vectors (and hence of the tupie shown that boosting outperforms bagdihy and that
when removing only one feature is negligible, this is done boosted decision trees (recursive partitionf&)°"perform
by performing the following iterative procedure over all as well as or close to support vector machines (SVM). Zhang
features|D|:%3 et al. showed this on examples for classifying gene se-
« Given a tuplex* of Lagrangian multipliers as a solution  quences$?
of the SVM learning algorithm, calculate for each feature

™I METHODS

Wg(or) = 3 of ofeck i) (22) Data Preparation. It is clear that all models we build
=1 should use a representative data set without duplicates, or
our model will not have a valid generalization abilfyTo
eliminate duplicates we calculated the hash code for mol-
ecules based on the basic atom properties in JOEL#ing
a modified Morgan algorithd%1°with some analogues to
the Jochum-Gasteiger canonical numbering algoritBif?
Additionally we used the canonicalized SMILE%103-105
code for molecules with cis/trans and E/Z information for
calculating the SMILES hash code. More complex hash code
calculation methods can be applied to reduce the number of
mappings of nonidentical molecules with the same hash code,
but these statistical tests depend on the data set'ffsed.
Additionally, hash codes are limited to the size of the integer
Building Models. Following Epicurus’s principle and  used, here to®2 — 1 possible unique numbers. Because we
taking model diversity into account, we should combine inspected molecules where a duplicate hash code occurred
multiple predictors, to obtain more precise results. Obviously, by the graph based equality of the atoms and bonds and then
combining the output of multiple predictors is useful only if “by hand”, avoiding multiple hash code mappings for
there is a disagreement between them, which follows nonidentical molecules can reduce work but cannot com-
Occam’s razor to avoid multiple entities. Two principles are pletely avoid detailed equality checks. For these data sets
combining unweighted ensemb#é$* or voting meta algo-  we did not find any noncorrect hash code mappings.
rithms such as baggifjor boosting® Potentially similar molecules occur when the hash code for

where i{™" means that thdth feature from the training
vectorm has been removed.

e Remove the feature with the smallest valDg(t) =
[WX(o¥) — W/ (a*)| and retrain the SVM with the reduced
set of features.

RFE originally was designed to solve 2-class problems
only, but extensions to a multiclass versions are pos§ible.
Finally, RFE computes a ranking of the selected features.
The number of the features to select must be defined.

THEORY — ENSEMBLE MODELS
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Chart 2. The SMILES00.103-105 Hash Code Uses Also the Modified
Morgan Algorithn#90-102 for a Unique Renumbering of the Molecule,
Which Contains Also E/Z and Cis/Trans Information and Is More
Specific than the Plain Hash Code Which Does Not Use Stereo- or
Chirality-Atom-Properties

us := create canonicalized/unique SMILES

for all characters in us
hash := 31*hash + actual character in us;

end

two molecules is identical, so we inspected all instances of

WEGNER ET AL

Table 1. Number of Duplicate and Wrong Molecules in Already
Published LogS;11+116  ogP §109110and HIA*?>11%Data Sets

doublets/size incorrect structures/size

data set train test validation train test validation
LogS 2/1016 2/253 1/21 6/1016 0/253 0/21
LogP 1/1853 84/138 15/19 1/1853 2/138 0/19
HIA  0/67CV 0/9CV 0/10 0/67CV 0/9CV 0/10

aFor the HIA data set eight fold cross-validation (CV) were used.

feature sets, called Shannon entropy cliques (SEC), which
have a high information content and are little correlated to

identity when this happened. We used well-known data setSg5ch other. When using a genetic algorithm (GA¥3as

for logP 8:109.1109gS 811116 and Human Intestinal Absorp-
tion (HIA)#2117.11%rom the literature to show that only one

wrapper and the SEC for initializing the GA population
Pca(0) as filter, we obtain the already introduced hybrid

of these three data sets contained no duplicate moIecuIesGA_SEC feature selection algorithfn.

We combined the test, training, and validation data sets

Because we ignored until now the class information of

and found 100 duplicates in the Wang data set and threeg,, cjassification problem, the variants presented here also
more duplicates, because the molecular structures Werg se multiple filter (MF) approaches to improve the perfor-

wrong. The Huuskonen data set contained only four dupli-

mance of the standard GA-SEC algorithm.

cates and contained six uracil derivates with wrong atom By taking feature information content, feature diversity,

types caused by Corina’s 3D structure generatt®mhe

complete list of duplicate molecules and incorrect structures

and feature prediction ability with respect to our classification
problem into account, we try to avoid a high final feature

can be found in the Supporting Information. Especially the gq¢ uncertainty (see eqs-86) for reducing the number of
84 duplicated molecules in the test set and the 15 duplicatedg,, 5 yation steps. A matrik.q(i ) is defined

molecules in the validation set of the LogP datef¥8t110
lead to invalid numbers for the generalization ability.

For comparing models it should be guaranteed that the
descriptors are using all the same atom type, aromaticity-
and hybridization-model. Because many programs use text

definitions for the atom typé%'2*we recommended using

the same definitions or the same data processing workflow

to avoid bad prediction results for new molecules.

Furthermore the data sets should not contain missing
e

descriptor values or at least common techniques should b
used to avoid missing valué$All descriptor values) were
normalized'”-118 We did this by using the z-transformed
descriptor distribution with a mean of zero and a standar
deviation of on&

M (g — )2
ai=o§'“”'”=\/ ”ﬁlwﬂ'f"l Y ey
. d,.—d
= (24)

wherei is the index number of the descriptor anis the
index number of the moleculd, is the averagé , over all
moleculesM| anda; = /™~ is the standard deviation of
descriptord;. |D| is the number of all available features/
descriptors.D and M are descriptor or molecule based
formulations of the data set or instance space.

Feature Selection: Hybrid Approach. The GA-SEC
algorithn? tries to avoid the often criticized “brute-force”
method of standard-wrapper approachdsy taking the

1 if MSE(i 1]) > SEcutandMJs(ivj) > Dcut
0 otherwise
(25)

whereMsg(i,j) = Hsg(Pi)-Hse(Py) is the quadratic information
contentMydi,j) = DygP;,P)) is the diversity information for
a descriptor pairSEk, is the minimally allowed quadratic
information content value, arid is the minimally allowed
JensenShannon entropy value. Thé,q(i,j) matrix can be

Madj(iaj) = {

used to find descriptors with a high information content
which will correlate little with other descriptors by using a

4 maximum clique detection algorithf!*%> A maximum

complete subgraph (clique) is a complete subgraph that is
not contained in any other complete subgréfftComplete
means that every node of the clique is connected to every
other node of the clique. In our case a clique will be the
descriptor subset which has a high information content and
where every descriptor is maximally diverse to any other
descriptor in this clique.

A subset-selection grapBy is created fromMagi,j) by
using the Bron-Kerbosch (BR clique detection algorithm.
We call theGy subsets of théVlaq(i,j) matrix the Shannon
entropy cliques (SEC). The run time of clique detection
algorithms depends strongly on the edge/node density in
graphs and an overview was recently publiské&df one
choosesSE,;= 0 andD,;: = o the initialization is analogous
to a standard genetic algorithm wrapper approach, with
picking features randomly. An overview over the different
GA-initialization methods is given in Table ZA-SECis
the algorithm we have presented already, without using any
additional class informatiohGA-SEC-MHmultiple filters)

problem of overfitting also into account, caused by coarse uses the default initialization of the populati®gaa(0)and

search strategiéd.So we use the Shannon entropy (as given
in eq 10) to find features which contain a high information

adds randomly the best descriptors found by the different
filter approaches using the class information (see egs 17

content. Then we apply a divergence measure by using the20). GA-SEC-MFRmultiple filters for prescreening) reduces

differential JensenShannon entropy (as defined in eq 12)
combined with a clique detection algorithm to find initial

the adjacency matrix for finding uncorrelated descriptors to
the best descriptors found by the different filter approaches.
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Table 2. Definitions of the Alternatives for the GA-SEC Algoritdm

Pca(0) initialization method (filter) description
GA-SEC l.Madj(i ,]) =1, if MSE(I ,]) > SEut andMJS(i ,]) > Deug otherWisel\/Iadj(Pi,Pj) =0
GeneticAlgorithm based oshannonEntropy Cliques 2.Pga(0) from randomly pickedq of SizeSciique
GA-SEC-MF 1.Pca(0) from randomly pickedsy of sizeScique _
GeneticAlgorithm based oshannonEntropy Cliques 2. And pickinggiter randomly frompeiter Of the greatests(d;,C),
andM ultiple Filters Ir(di,€), 1sU(d;,€), Ry, Roner 2 values

3. Replace six individuals with sisciigue best ofIG(ai ,0), Ir(Gi,C),
ISU(di,E), Ry, Roner XZ

GA-SEC-MFP 1 Maqi j) = 1, if Msg(i,}) > SEy, Mudi,j) > Dew,_andP; or P is one of
GeneticAlgorithm based oishannonEntropy Cliques and th@gier highestl (di,C) or 1r(d;,C) or Isy(ftal [d;,C) or Ry
Multiple Filters for Prescreening ORonerOr %2 Values, otherwislag(Pi,P) = 0

2. Pga(0) from randomly pickedq of SizeScique _. _
3. Replace six individuals with siscique best ofls(d;,C), 1r(d;,C),
ISU(di,é), Ry, Roner XZ

GA-MF 1. Pga(0) picking nrier randomly frompeizer Of the greatest
16(d;,€), 1r(6i,C), 1su(di,€), Ry, Roner x? values _
GeneticAlgorithm based oM ultiple Filters 2. Replace six individuals with ssgiique best ofl ¢(d;,€), Ir(d;,C),
without using clique detection Isu(dh,€), R, Roner %2
Chart 3. The Hybrid GA-SEC Algorithm for Feature Selection betweenfeature selection wrapperand feature selection
// GASEC hybrid filter-wrapper feature selection) filters were presented to show that there are already many

different approaches available, which can be helpful for
selecting and understanding molecular features.
initPopulation(P,,(0));  // filter approach Finally, we presented three new hybrid feature selection
algorithms GA-SEC and its two variants GA-SEC-MF and
GA-SEC-MFP. We are taking also the class information of
repeat /I wrapper approach our classification problem into account, to reduce the
uncertainty of the features used to be picked for the final
feature set. This set has the highest generalization ability
recombine(P,’); and a small number of features used. In contrast to standard
filter approaches and the RFE wrapper approach, the number
of features to be selected must not be defined for applying
evaluate(P,); our GA-SEC algorithm and its variants.

t:=0;

evaluate(P,, (0));

P, "= selectForVariation(P, (1));

mutate (P,,"); // mutation operator

P, (t + 1) :=selectForSurvival(P,, (1), P,,);
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