
BIOINFORMATICS APPLICATIONS NOTE Vol. 20 no. 9 2004, pages 1459–1461
DOI: 10.1093/bioinformatics/bth083

ParSeq: searching motifs with structural and
biochemical properties

M. Schmollinger∗, I. Fischer, C. Nerz, S. Pinkenburg, F. Götz,
M. Kaufmann, K.-J. Lange, R. Reuter, W. Rosenstiel and A. Zell

Center for Bioinformatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany

Received on October 7, 2003; revised and accepted on December 16, 2003

Advance Access publication February 12, 2004

ABSTRACT
Summary: Searches for variable motifs such as protein-
binding sites or promoter regions are more complex than
the search for casual motifs. For example, in amino acid
sequences comparing motifs alone mostly proves to be insuf-
ficient to detect regions that represent proteins with a special
function, because the function depends on biochemical prop-
erties of individual amino acids (such as polarity or hydrophobi-
city). Pure string matching programs are not able to find these
motifs; hence, we developed ParSeq, a program that combines
the search for motifs with certain structural properties, the
verification of biochemical properties, an approximate search
mechanism and a stepwise creation of the motif description by
allowing to search on previously obtained results.
Availability: http://www-pr.informatik.uni-tuebingen.de/
parseq
Contact: parseq@informatik.uni-tuebingen.de

Searching for regions with specific characteristics in DNA
or amino acid sequences is a frequent problem in biology
that has many facets. Beginning with the search for start
and stop codons in DNA, the search becomes more com-
plicated when looking for more variable motifs. These are,
e.g. protein-binding sites or promoter regions, the latter often
indicated by characteristic motifs in variable distance. In
amino acid sequences, comparing motifs alone mostly proves
to be insufficient in detecting regions that represent proteins
with a special function, as the function depends, among
others, on biochemical properties of individual amino acids
(such as polarity, hydrophobicity or electric charge). Amino
acids with similar biochemical properties can be exchanged
without loss of function, but the character string is changed
and will not be found by mere string-matching programs.
In some cases, the functional sub-units of a protein can
be described by defining length and order of parts of the
sequence, which have predominantly certain defined chemical
properties. For example, signal peptides of staphylococcus
consist of three parts that can be approximately described

∗To whom correspondence should be addressed.

in the following way: (1) positively charged region, average
length of six amino acids, with usually three positive charges,
(2) hydrophobic region, average length of 19 amino acids and
(3) SPase-I cleavage site, consensus sequence: AXA. Such
a defined sequence of motifs so far could only be searched
for with purpose-built programs, e.g. search for lipoproteins
(Babu and Sankaran, 2002) or signal peptids (Nielsen et al.,
1997, http://www.cbs.dtu.dk/services/SignalP/). In order to
be able to search for user-defined motif sequences, regular
expressions must be available to describe the motif sequence
in a machine-readable way. In addition to that, the pro-
gram has to provide the following options: (1) search for
motifs that may have errors, (2) search for motifs at vari-
able distances and (3) search for motifs of variable length
with certain biochemical properties. ParSeq can be considered
as a filter that allows finding interesting parts on a DNA
or amino acid sequence. Afterwards, the hits can be ana-
lyzed with specific programs or in the laboratory (thus the
program serves to narrowdown of the search area). With
ParSeq, we are able to search for motif sequences on a
whole bacterial genome in a few seconds. The quality of
the results depends on how accurate the motif sequence can
be described. A more accurate description results in less
hits, but this approach bears the danger that regions that
represent proteins with the desired function will not be con-
sidered. In contrast, a less accurate description may result
in too many hits that are too extensive for further invest-
igation. The program allows a stepwise approach to find
the appropriate degree of accuracy because the query can
be repeated using an increased amount of information. At
the moment, scoring tables are used to estimate biochemical
properties like those used in ProtScale (ProtScale, 2002/2003,
http://us.expasy.org/cgi-bin/protscale.pl).

The structural properties of motifs can be formulated
using regular expressions. Hence, we decided to choose the
regular expression library as the main method for search-
ing motifs. The main task is the integration of tests of
biochemical constraints for amino acid sequences and the
search for approximate patterns for amino acid and DNA
sequences (Edit and Hamming distance). In the first step,

Bioinformatics 20(9) © Oxford University Press 2004; all rights reserved. 1459

http://www-pr.informatik.uni-tuebingen.de/
http://www.cbs.dtu.dk/services/SignalP/
http://us.expasy.org/cgi-bin/protscale.pl


M.Schmollinger et al.

a language was designed with which it is possible to incor-
porate queries for these two aspects. In the second step, a
search algorithm that combines calls to regular expression
libraries and verification routines for biochemical constraints
had to be built. Concerning the query language, it is allowed
to use the powerful possibilities of regular expressions as
defined by the existing libraries. In general, a query is
nothing else than a chain of valid regular expressions. The
chain links are separated by the character ‘@’. The fol-
lowing example shows a chain of three regular expressions:
<regex>@<regex>@<regex>. In order to assign a test of a
biochemical constraint to a regular expression, a semicolon
separated list of calls to functions is added with a leading
character ‘/’ before the separation sign ‘@’ as illustrated in
the following example

<regex>@<regex>/fct1(arg1, .. , argn); .. ;

fctm(arg1, .. , argk)@<regex>.

Each function corresponds to the test of one biochem-
ical constraint. In general, for each biochemical constraint
there is one table in which a certain value for each amino
acid is given. Within the function, a test is implemen-
ted that works on the values of a particular table and its
result is either true or false. For example, a rational func-
tion is to test whether the mean value of a certain con-
straint is larger (equal, smaller) than a given value. The
search for approximate patterns can be regarded as a spe-
cial case of a constraint. We use the same syntax, but
the functions can only be applied to fix query strings and
not to general regular expressions. Both functions, the
Edit (ed) as well as the Hamming distance (hd), take the
number of allowed errors as their argument. An example
query, with a maximal error of 1, might look like this:
AAGGT/ed(1)@.

After we defined the query language, the search can be
sketched as follows. First, the query is divided into parts that
are pure regular expressions and into the constraints. Second,
we start the search for candidates by using the pure regu-
lar expression. In the final step, the candidates are tested if
they are valid concerning the biochemical constraints. Quer-
ies containing variable ranges with biochemical constraints
are more complex, because, by default, regular expression
libraries return the largest match. This match might not ful-
fill the biochemical requirements, but there might be others
within the match that fulfill the constraints. Hence, we have
to continue the search at this position until a match ful-
fills the requirements or no further match exists. Concerning
the approximate search, the procedure is different. Roughly
speaking, before the search starts the fixed string is translated
into a more complex regular expression that covers all pos-
sibilities of its appearance. This is mainly done by creating a
large expression that combines all possibilities by the logical
OR operation.

Additionally, the search is also able to work on results
achieved in earlier searches. This is a very important concept
with respect to the running time and the interactive use of the
program. The usual batch approach to motif search assumes
that the query motif is known. Hence, the task of the search
engine is simply to find its occurrences in the sequences. This
is a very idealized view, which seldom describes the reality.
More often, the motif itself is also not completely known, and
the researcher has only a more or less rough idea what he is
looking for. In such a constellation, the search is a lengthy
trial-and-error process, in which the biologist starts with a
simple and very general query and gradually narrows the pos-
sibilities as he or she approaches the result. Sometimes the
refinement of the query leads to a wrong direction, or to no
matches at all. In that case, it is desirable to be able to recall
the previous query and modify it before repeating the search.
On the other hand, repeating the whole search each time when
the query is modified is unnecessary and, for complex quer-
ies, can be a real annoyance and can take minutes, or even
hours. But if the new search is simply a refinement of an older
one, it can be limited to the results of the old search. Our
search engine supports this kind of incremental searching by
keeping track of previous searches and allowing the user to
take any of them as the basis for further searches. The history
of searches is represented graphically as a tree. By default, a
search starts from the root node of the tree, which represents
a search on the whole sequence. Results of the search are the
child nodes in the tree. If the user selects a node for further
searching, the search is limited to the results associated with
the node and is performed around the positions at which a
hit was encountered. The engine compares the new, refined
query with the previous one and decides in which direction
to search further. If the new query differs from the old one
only by a prefix, the search is performed only to the left of
the hits. The same holds for the right direction. The results
are assigned to a new node, one hierarchy level below. This
interactive approach is not only intuitive, but can also be much
faster than the straightforward search for complex motifs in the
whole database. Finding fixed patterns in sequences, or even
with few mismatches, can be performed very fast. Checking
the biochemical properties of the matches is a much harder
problem. Therefore, it makes sense to first narrow the search
scope to sequences and positions in them containing easy-to-
find ‘anchor’ patterns, and only then perform the expensive
biochemical search. In our experiments, the sum of times
needed for each step of the iterative search was up to an order
of magnitude less than the duration of the same search when
performed as a single, complex query.

ParSeq is written in Java (version 1.4+) and can be
started using Java-Web-Start technology (SUN Microsystems,
2002, http://java.sun.com/products/javawebstart/). From up
to this version, Java includes a regular expression lib-
rary (Nourie and McCloskey, 2001, http://developer.
java.sun.com/developer/technicalArticles/releases/1.4regex/).

1460

http://java.sun.com/products/javawebstart/
http://developer


ParSeq

ACKNOWLEDGEMENT
This work is supported by the ‘Landesforschungsschwer-
punktprogramm’ of Baden-Württemberg, Germany.

REFERENCES
Babu,M.M. and Sankaran,K. (2002) DOLOP—database of bacterial

lipoproteins. Bioinformatics, 18, 641–643.

Nielsen,H., Engelbrecht,J., Brunak,S. and von
Heijne,G. (1997) A neural network method for identification of
prokaryotic and eukaryotic signal peptides and prediction of their
cleavage sites. Int. J. Neural Syst., 8, 581–599.

Nourie,D. and McCloskey,M. (2001) Regular Expressions and the
Java Programming language.

ProtScale (2002/2003) The ExPASy (Expert Protein Analysis Sys-
tem) proteomics server of the Swiss Institute of Bioinformatics.

SUN Microsystems (2002) Java-Web-Start Technology.

1461


