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Abstract— In this paper we present a novel feature selection
algorithm for SVMs which works by decreasing the regularized
risk in an iterative manner by using a combination of a backward
elimination procedure together with an exchange algorithm. It is
applicable to linear as well as to nonlinear problems. We test this
new algorithm on toy and real life data sets and show its good
performance in comparision to state-of-the-art feature selection
methods.

I. INTRODUCTION

A. Overview

In many pattern classification tasks we are confronted with
the problem, that we have a very high dimensional input space
and we want to find out the combination of the original input
features which contribute most to the classification. Supposed
we want to classify cells whether they are cancer cells or not
based upon their gene expressions. Surely on one hand we
want to have a combination of genes as small as possible. On
the other hand we want to get the best possible performance
of the learning machine.

Let us assume we have a training data set D =
{(xi, yi)|xi ∈ X , yi ∈ Y, i = 1, ..., n} (drawn i.i.d. from some
unknown probability distribution P (x, y)) where X is a vector
space of dimension d and Y = {+1,−1}. Then the problem
of feature selection can be formally addressed in the following
two ways [13]:

1) Given m � d, find out the m features that give the
smallest expected generalization error; or

2) Given a maximum allowable generalization error γ, find
the smallest number m of features.

It can be shown that problem 2 is NP-complete [4].
Unlike e.g. Gaussian Processes in regression, Support Vec-

tor Machines (SVMs) do not offer the opportunity of an au-
tomated relevance detection and hence algorithms for feature
selection play an important role. In the literature two general
approaches are known to solve the feature selection problem:
The filter approach and the wrapper approach [7]: In a filter
method feature selection is performed as a preprocessing
step to the actual learning algorithm, i.e. before applying the
classifier to the selected feature subset. Features are selected

with regard to some predefined relevance measure which is
independent of the actual generalization performance of the
learning algorithm. This can mislead the feature selection
algorithm [1, 7]. Wrapper methods, on the other hand, train the
classifier system with a given feature subset as an input and
return the estimated generalization performance of the learning
machine as an evaluation of the feature subset. This step is
repeated for each feature subset taken into consideration.

B. Feature selection as capacity control

A goal of every classifier f is to mimimize the expected
generalization error (or risk) over all possible patterns drawn
from the unknown distribution P(x, y) (see e.g. [10])

R[f ] =

∫

X×Y

`(x, y, f(x))dP(x, y) (1)

with ` being some loss-function. However, we cannot compute
this quantity as we do not know P . On the other hand it
is a crucial insight of Statistical Learning Theory [10] that
minimizing the empirical risk (or training error)

Remp[f ] =
1

n

n
∑

i=1

`(xi, yi, f(xi)) (2)

does not guarantee a minimum of R[f ]. Thus instead we
minimize the regularized risk [9]

Rreg[f ] = Remp[f ] + λΩ[f ] (3)

which is an upper bound on R[f ]. In the case of SVMs one
usually chooses Ω[f ] = 1

2
‖w‖2 where ‖w‖ is inverse to the

size of the margin and ‖ · ‖ is the 2-norm. That means that
by maximizing the margin between the two classes +1 and -1
we are minimizing our regularized risk and hence a bound on
the true risk.

In SVMs this idea is exactly implemented by solving the
dual quadratic program [3, 8]

minα W 2(α) = 1
2

∑n

i,j=1 αiαjyiyjk(xi,xj)−
∑n

i=1 αi

subj. to 0 ≤ αi ≤ C, i = 1, ...n, and
∑n

i=1 αiyi = 0
(4)



where k is a kernel function and the constant C regularizes
the trade-off between training error and margin maximization.

To perform feature selection we wish to minimize our
regularized risk. Hence we should increase the margin between
classes +1 and -1. In this way feature selection can be viewed
as controling the capacity of the underlying classifier.

One way of doing so is the Recursive Feature Elimination
(RFE) algorithm [6]. Let α∗ be the solution of (4) with regard
to the current feature subset, and let x

−t denote that feature
t has been removed from pattern x. Assuming that the set of
support vectors does not change significantly when eliminating
just one feature, then RFE removes the r features for which
the change in margin

DW 2 =

∣

∣

∣

∣

∣

∣

n
∑

i,j=1

α∗
i α

∗
jyiyjk(xi,xj)−

n
∑

i,j=1

α∗
i α

∗
jyiyjk(x−t

i ,x−t
j )

∣

∣

∣

∣

∣

∣

(5)

(t = 1, ..., d) is smallest. Usually r is set to half of the
number of existing features. This procedure is repeated until
the desired number m of features has been reached. (This
refers to problem 1.) As an output of the algorithm we receive
a ranking of all features according to the time of their removal
and the measure DW 2.

II. OUR ALGORITHM

RFE is a powerful and fast feature selection algorithm, but
as it uses a greedy strategy to perform backward elimination it
can lead to suboptimal solutions. In our algorithm we wish to
combine the speed of RFE as a feature ranking algorithm with
a method to further improve accuracy of the classifier. Our
basic idea is as follows: Given some ranking of all features, we
can divide our features in a set S of m features which are used
for our classifier and a set R of d−m features which are the
removed features. However, there might be features in R which
should be combined with some of S to further improve our
accuracy, i.e. reduce our regularized risk. If we view our set R

as a queue, then naturally the first η features are those which
should be tested first to improve our performance. Hence we
add them to our set S. Afterwards we remove the η worst
features from S according to the RFE criterion (5). These
features are then put at the end of the queue. For each feature
subset S we calculate the regularized risk. If our regularized
risk did not change significantly any more (e.g. less than 10−5

in 5 steps in a row), we assume the algorithm to be converged.
This is usually achieved after a few loops. We then resort the
queue by performing RFE and restart the whole algorithm. If
again we converge to the same solution, we stop, otherwise
we restart the algorithm.

It is clear that the the inner loop of the algorithm converges
after c� d steps, because otherwise (if it would not converge)
there would always have to be a significant improvement of
the regularized risk whenever η features from R are added
to S. This would mean that RFE ranked all features exactly

Fig. 1. Basic idea of the IRRM algorithm

in the wrong direction. On the other hand it is clear, that the
better the orignal RFE ranking is, the faster convergence will
occur.

The reason, why we do not resort the queue after each
step is, that changing just a few features from the queue will
not change our ranking significantly. Hence we would put
almost the same features at the beginning of our queue as
those which we have removed before. Additionally, note that
a resorting after each step would impose an inacceptable high
computational burden.

The details of the algorithm, which we call Incremental
Regularized Risk Minimization (IRRM), are given below:

Algorithm 1 IRRM algorithm
perform RFE
S = set of selected features
R = set of removed features (queue)
t = 0
repeat
Sold = S

repeat
Rold

reg = Rreg

compute Rreg for features in S

if Rold
reg < Rreg

restore old S

C = η highest ranked features
from R

S ← S ∪ C

R← R− C

remove η features from S

according to (5)
put removed features at end of
queue R

until convergence
resort queue R by means of RFE
t← t + 1

until S == Sold AND t > 1
return best solution S∗

We empirically tested η-values of m, m
2

, 0.1m and 1 and
found η = 1 to perform best. Thus the following results refer
to this situation.
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Fig. 2. Linear toy problem: class separation between classes +1 (blue crosses)
and -1 (red circles) induced by features 3 and 6

III. EXPERIMENTS

A. Data Sets

We compare our method to feature selection based on
mutual information (e.g. [2]), RFE [6] and (where possible) to
the `2-AROM algorithm [12]. RFE and `2-AROM are wrapper
methods which are especially designed for SVMs. Usually
`2-AROM cannot handle nonlinear problems, but on linear
problems Weston et al. showed that it could perform very well.

We investigated the following two artificial and two real life
data sets:

a) Linear toy problem: We created 500 training and
10000 independent test points with 202 features following the
same method as described in [13]: Six of the 202 features were
relevant, but still have inner redundancy. The probability of
classes y = +1 and y = −1 was equal. The first three features
X1, X2, X3 were drawn as Xi = yN (i, 1) and the second
three features X4, X5, X6 were drawn as Xi = N (0, 1) with
a probability of 0.7, otherwise the first three were drawn as
Xi = N (0, 1) and the second three as Xi = yN (i−3, 1). Note
that features 3 and 6 are the most important features (fig. 2).
The rermaining features are randomly drawn from N (0, 20).

b) Nonlinear toy problem: We created 500 training and
10000 independent test points with 52 features again following
[13]: Two dimensions of 52 were relevant (fig. 3). The
probability of classes y = +1 and y = −1 was equal. If
y = −1, then the first two features X1, X2 are drawn from
N ((− 3

4
,−3)T , I) or N (( 3

4
, 3)T , I) with equal probability. If

y = 1 then X1, X2 are drawn with equal probability from
N ((3,−3)T , I) or N ((−3, 3)T , I). The remaining features are
randomly drawn from N (0, 20).

c) Lymphoma data set: In the lymphoma problem [5] the
gene expression of 96 samples is measured with microarrays
to give 4026 features, 61 of the samples are malignant and 35
are labelled “otherwise”.
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Fig. 3. Nonlinear toy problem: class separation between classes +1 (blue
crosses) and -1 (red circles) induced by features 1 and 2

d) Hia data set: The HIA (Human Intestinal Absorption)
data set [11] consists of the description of 196 molecules based
on 2934 features which were calculated from the 3D structure
of the molecules. The molecules are divided into 2 classes
“high oral bioavailability” and “low oral bioavailability”.

Preparations: All features for the data sets were normal-
ized to mean 0 and standard deviation 1.

For the nonlinear toy problem a polynomial kernel of degree
2 with soft margin parameter C = 10000 was taken. For the
HIA data set we chose a RBF kernel of width σ = 256 and
parameter C = 110. For all other data sets we used a linear
kernel with C = 10000.

B. Results

Figure 4 and 5 show the test errors on the 10000 in-
dependent test points for the linear and the nonlinear toy
problem depending on the number of training points which are
randomly subsampled from the set of all 500 training points.
Each subsampling was repeated 30 times, and the shown test
errors are the averages over these 30 trials.

In both cases, for the linear as well as for the nonlinear
problem, our algorithm shows the overall best performance.
On the linear problem, for more than 30 training points our
algorithm is clearly superior to all other methods, and for the
nonlinear problem its error rate is always below that of the
other methods.

Tables I and II show the cross-validation errors for the real
life data sets. On the Lymphoma data set IRRM shows the
overall best performance. The results show that even with a
very low number of features it gives good results.

On the HIA data set our our algorithm works very well,
too. It induced the best model of all methods with 16.84%
cross-validation error and using just 50 features.
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Fig. 4. Linear toy problem: test error in dependency of number of training
points

0 20 40 60 80 100 120
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

# training points

te
st

 e
rr

or
 (

lo
g 10

)

std. SVM
RFE
IRRM
mut. inf

Fig. 5. Nolinear toy problem: test error in dependency of number of training
points

TABLE I

LYMPHOMA DATA SET: 8-FOLD CROSS-VALIDATION ERROR ± STANDARD

ERROR (%). THE STANDARD SVM ACHIEVED 28.12% ± 3.84%.

#features IRRM `2-AROM RFE mut. inf.

10 4.17 ± 1.58 11.46 ± 4.44 7.29 ± 1.89 11.46 ± 3.84

20 5.21 ± 2.19 12.5 ± 3.15 6.25 ± 3.05 6.25 ± 2.08

50 3.13 ± 1.53 7.29 ± 2.46 4.17 ± 2.23 3.13 ± 1.53

100 2.08 ± 1.36 2.08 ± 1.36 3.13 ± 1.53 4.17 ± 2.22

250 2.08 ± 1.36 2.08 ± 1.36 2.08 ± 1.36 3.13 ± 2.19

TABLE II

HIA DATA SET: 7-FOLD CROSS-VALIDATION ERROR ± STANDARD ERROR

(%). THE STANDARD SVM ACHIEVED 19.38% ± 3.47%.

#features IRRM `2-AROM RFE mut. inf.

10 25 ± 3.21 - 24.49 ± 2.86 40.82 ± 2.8

20 19.39 ± 3.1 - 19.39 ± 3 39.8 ± 2.64

50 16.84 ± 3.4 - 19.9 ± 3 23.47 ± 2.31

100 18.88 ± 3.19 - 17.35 ± 3.16 19.39 ± 3

250 18.88 ± 2.43 - 18.37 ± 3.25 19.39 ± 3.56

IV. CONCLUSION

We have presented a new feature selection algorithm for
SVMs which works by incrementally decreasing the regular-
ized risk. It is a combination of a backward elimination and an
exchange algorithm. It is fully applicable to linear as well as to
nonlinear problems. Our algorithm shows a good performance
on toy data and real life data which is at least comparable to
state-of-the art methods. On toy data we demonstrated that it
is stable against a low number of training points.

It is also worth to mention that our algorithm still has a
moderate compution time of O(k ·(c+log2 d)) SVM trainings
where d is the number of input features and c� d the number
of steps needed for convergence. In our experiments the factor
k was always less than 5.
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