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Abstract. This paper describes an algorithm to detect obstacles and landmarks, 
using the omnidirectional vision system of a RoboCup robot, to build an inter-
nal representation of the robot’s environment. The restriction to pixels corre-
sponding to an equally spaced grid on the floor around the robot and a biologi-
cally inspired fault-tolerant colour segmentation of this grid result in a fast and 
robust detection. The performance of the environment modelling concerning 
computation time and accuracy is addressed by comparing experimental results 
to object positions given by an absolute positioning system.  

Introduction 

A major task for a mobile robot that has to localise itself and plan collision free paths 
avoiding stationary and moving obstacles is to build an internal representation of its 
environment. In many situations it is sufficient to maintain a two dimensional repre-
sentation, i.e. a bird's eye view of the floor, on which the robot moves, including ob-
stacles and landmarks for self-localisation. In order to create the environment model 
from the images obtained with an omnidirectional vision system, two basic steps have 
to be performed. First, the objects and landmarks in the image are identified and sec-
ond, the real world position of objects and landmarks is calculated from their pixel 
coordinates. These steps have to be performed in real time for a robot moving in a 
dynamic environment. The next section gives a detailed description of the environ-
ment modelling algorithm, followed by a description of experimental results concern-
ing computation time and accuracy. The last section concludes this paper and gives an 
outlook on future work. 

The Object Detection Algorithm 

The major steps of the environment-modelling algorithm are as follows: 
1. Transformation of the image pixels into colour classes 
2. Segmentation of the image pixels by colour class 
3. Clustering of segments that are believed to belong to the same object 
4. Mapping of the cluster to world coordinates  
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Colour Transformation 

As the RoboCup environment is well defined with all relevant objects and landmarks 
being coded in a distinct colour, the first step to model the environment is to trans-
form the colours of the omnidirectional images into several classes. As our frame 
grabber supplies 25 levels per colour dimension, a colour lookup table (colour LUT) is  
trained. With the 32 values per dimension this colour LUT has a size of 32 KB, which 
easily fits into the second level cache of a standard PC. 

Still, transforming the whole image of 768x576 pixels is too time consuming. Al-
though a transformation of the whole image could give some topological information 
(e.g. colour regions as obtained by the run length encoding process in Bruce et al. 
[1]), this algorithm transforms only some pixels to reduce the computational load. 

For a partial transformation of the image it has to be decided, which pixels of the 
image should be transformed. There is obviously a trade-off between an efficient 
transformation and the coverage of the image. The proposed solution to this problem 
is a regular grid defined in world coordinates with a grid resolution of 10cm to be sure 
to cover even the smallest robot on the field with at least one gridline in each direc-
tion. This is similar to the receptor approach in Bonarini et al. ([2]). Although the 
white field lines are only 5-12cm wide, they are covered lengthwise at least with some 
gridlines of the rectangular grid. The resolution along the gridlines was set to 2cm.  

The mapping of real world coordinates to pixel coordinates, known as perspective 
mapping, is learned from a set of automatically measured correspondences to retrieve 
the pixels that correspond to the grid points. After removing grid points that were 
mapped to the same pixel coordinates, the number of pixels of this grid is approxi-
mately 40.000 and thus only 9% of the image pixels are processed. These grid points 
can be easily stored into a list to serve as a grid LUT for every frame.  

 

Colour Segmentation 

To find sequences of a given colour class in the colour-transformed grid, a fast and 
fault-tolerant algorithm is needed. Similar problems are subject to ongoing research in 
molecular biology, where sequences of amino acids (aa) are compared to retrieve the 
best matching subsequence. A standard algorithm for this is the Smith-Waterman 
algorithm for local alignment of common molecular subsequences ([3]). It finds best 
matching substrings by comparing the aa of two strings one by one, assigning high 
scores for exact matches and lower or negative scores for unequal pairs. In the end of 
this process, the substring with the best score is considered as the best matching sub-
string. This algorithm is fault-tolerant, as it allows a certain number of unequal aa in 
the two strings. This number is based on the scores given to the compared aa, which 
in turn are based on statistical analysis of how likely two aa may be exchanged with-
out affecting the characteristics of the whole sequence. 

Regarding the colour transformed gridlines as an aa string, with the colour class of 
the pixels being an identifier similar to the character of an aa, substrings (segments) of 
a given colour class can be found. The algorithm assigns positive scores to pixels 
belonging to the examined colour class and a negative score to pixels of a different 
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colour class. Pixels of a different colour class would usually end a segment without 
consideration of errors in the colour transformation step due to noise in the image. 
Using the Smith-Waterman algorithm, however, segments are extended over small 
gaps of pixels of a different colour class. 

While parsing through the grid lines, the algorithm processes the different colour 
classes in parallel. A new segment is started, if there is currently no unfinished seg-
ment of the pixel’s colour class. The algorithm adds a score of +2 for pixels of the 
same colour class, -1 for pixels of a different colour class, which is known to occur 
frequently in segments of that colour class, and -3 for pixels of a colour class that is 
unlikely to occur in a segment of that colour class to a grand total for each unfinished 
segment. A segment is finished, when its score drops below zero, or when the current 
gridline is finished. However, the end of the segment is determined as the last position 
which reached the maximum score in the segment, as this is the point of the highest 
number of matching pixels and only some small errors in a row.  

The number of non-matching pixels that can be skipped without finishing a seg-
ment depends on the number of matching pixels that occur before and after. Therefore 
the fault-tolerance would be higher for long segments, probably connecting two long 
segments, which do not belong together. To enforce a common number of pixels that 
can be skipped, the score is limited to a maximum, which cannot be exceeded. This 
maximum score depends on the size of the objects and the grid resolution. If the seg-
ment never reached the maximum score, it is considered as too small and is dropped. 

Fig. 1 gives an example of a gridline being parsed by the segmentation algorithm.  

Clustering of Segments 

The clustering step clusters the segments based on their centre points in pixel coordi-
nates. This is only done for segments of black colour (robots) and orange colour (ball)  
as these are the only objects that appear on a RoboCup field. For the white line mark-
ings no further processing is needed after the segmentation step.  

Prior to the clustering, the segments are sorted by the distance rp to the image cen-
tre1. For each segment the clustering algorithm then tests if there already exists a 
cluster in the list of clusters. If this list is empty or the angle scp,ϕ of the segment’s 
centre point does not lie inside the minimum and maximum angle of any cluster, a 
new cluster is started. The cluster centre is initialised with the centre of the current 
segment and a minimum/maximum angle is calculated as scp,ϕ minus/plus the open-
ing angleψ of the object. This opening angle is determined as 
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1 Coordinates are given as polar coordinates ( )ppr ϕ,  and ( )wwr ϕ,  originating in the image 

centre and the robot centre, respectively. 
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Fig. 1. Example of a gridline being parsed by the segmentation algorithm for orange and black 
segments. The computed segments are marked with a coloured bar over the gridline. Both 
segments reach their maximum scores at least once. 
 
where Rmax=35cm is the maximum radius of a robot in RoboCup MSL (Rmax=15cm 
for orange segments which show the ball), and f(rp,cc) is the inverted perspective map-
ping function of step 1, known as inverse perspective mapping function ([4]). 
If the current centre point's angle lies inside the angular range of an existing cluster, 
the centre point is added to that cluster. The new centre of the cluster is finally up-
dated as the mean of all centre points contained in this cluster. 

Fig. 2 visualises the results of the first three steps of the environment modelling al-
gorithm applied to an example image. 

Transformation to Real World Coordinates 

As the inverse perspective mapping function was learned in respect to the floor plane, 
only coordinates on the ground level are mapped correctly. Thus, from all segment 
points of a cluster only the point nearest to the image centre is mapped to its world 
coordinates as follows: 

)(, pwpw rfr ==ϕϕ .  
Most likely this is a contact point of the object to the floor. The radius R of the object 
is determined as 

( )( )2/tan minmax ϕϕ −= wrR , 
where maxϕ and minϕ are the maximum and minimum angles based on the start and 
endpoints of the segments. The centre point of the object in world coordinates is then 
simply ( )ww Rr ϕ,+ . 

Results 

To give exact results of the estimation errors of the environment modelling algorithm, 
the estimations were compared to measured positions of the highly accurate absolute 
positioning system W-CAPS ([5]).  

A second robot drove to different positions and several measurements were taken 
with the W-CAPS and the robot vision system at each point. The position estimates 
from the W-CAPS were averaged to serve as the ground truth, and the mean of the 
algorithm's estimates was compared to this value resulting in an estimation error for 
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Fig. 2.  The grey grid points are transformed into colour classes and used as input to the seg-
mentation step. The computed segments are visualised as blue and red grid points. The green 
crosses show the centre points of the segments which are clustered into the different objects. 

each position. The linearly interpolated error at these points is shown in the error 
surface in Fig. 3. The mean error over all positions is 8.16cm, with values ranging 
from 0.77cm to 60.11cm. As can be seen, the system is very accurate in a range of 
0.7m to 3m around the robot. The low image resolution for distances of more than 
3m, result in a higher estimation error at those distances. Near the robot the contact 
point between the object and the floor was occluded by the robot’s body. Thus, the 
estimated distance was overestimated. 

The computation time for the whole algorithm was 10ms on a Pentium III 850MHz 
that is used on our robots, leaving enough time for other tasks while processing the 
full 25 frames per second of the camera. 

Conclusion and Future Work 

In this paper a fast and accurate environment modelling algorithm based on the im-
ages of an omnidirectional vision system was presented. The image is transformed 
into colour classes based on a trained colour LUT and segmented with a biologically 
inspired segmentation algorithm. These segments are clustered into objects, which are  
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Fig. 3.  The Euclidian distance of the mean of the W-CAPS measurements (plotted as black 
dots) to the mean of the algorithm’s estimates is shown in this figure. The robot is situated in 
the origin of the coordinate system. 

then mapped to their real world coordinates with a learned inverse perspective map-
ping function. 

The comparison of the results with an absolute positioning system shows that the 
object detection algorithm is able to accurately detect the position of objects. With a 
local search in the region of an object in the image could result in even more precise 
distance estimations. It will be easy to extend the object detection to detect team col-
ours distinguishing team mates from opponents by simply learning the colour classes 
and assigning the segments to the same clusters as the black object segments. This 
algorithm can be easily applied to a perspective camera, too. 
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