
Fast and Accurate Environment Modelling using
Omnidirectional Vision

Patrick Heinemann, Thomas Rückstieß, and Andreas Zell

Wilhelm-Schickard-Institute, Department of Computer Architecture,
University of Tübingen, Sand 1, 72076 Tübingen, Germany

 {heinemann, trueckst, zell}@informatik.uni-tuebingen.de

Abstract. This paper describes an algorithm to detect obstacles and landmarks,
using the omnidirectional vision system of a RoboCup robot, to build an inter-
nal representation of the robot’s environment. The restriction to pixels corre-
sponding to an equally spaced grid on the floor around the robot and a biologi-
cally inspired fault-tolerant colour segmentation of this grid result in a fast and
robust detection. The performance of the environment modelling concerning
computation time and accuracy is addressed by comparing experimental results
to object positions given by an absolute positioning system.

Introduction

A major task for a mobile robot that has to localise itself and plan collision free paths
avoiding stationary and moving obstacles is to build an internal representation of its
environment. In many situations it is sufficient to maintain a two dimensional repre-
sentation, i.e. a bird's eye view of the floor, on which the robot moves, including ob-
stacles and landmarks for self-localisation. In order to create the environment model
from the images obtained with an omnidirectional vision system, two basic steps have
to be performed. First, the objects and landmarks in the image are identified and sec-
ond, the real world position of objects and landmarks is calculated from their pixel
coordinates. These steps have to be performed in real time for a robot moving in a
dynamic environment. The next section gives a detailed description of the environ-
ment modelling algorithm, followed by a description of experimental results concern-
ing computation time and accuracy. The last section concludes this paper and gives an
outlook on future work.

The Object Detection Algorithm

The major steps of the environment-modelling algorithm are as follows:
1. Transformation of the image pixels into colour classes
2. Segmentation of the image pixels by colour class
3. Clustering of segments that are believed to belong to the same object
4. Mapping of the cluster to world coordinates

2 Patrick Heinemann, Thomas Rückstieß, and Andreas Zell

Colour Transformation

As the RoboCup environment is well defined with all relevant objects and landmarks
being coded in a distinct colour, the first step to model the environment is to trans-
form the colours of the omnidirectional images into several classes. As our frame
grabber supplies 25 levels per colour dimension, a colour lookup table (colour LUT) is
trained. With the 32 values per dimension this colour LUT has a size of 32 KB, which
easily fits into the second level cache of a standard PC.

Still, transforming the whole image of 768x576 pixels is too time consuming. Al-
though a transformation of the whole image could give some topological information
(e.g. colour regions as obtained by the run length encoding process in Bruce et al.
[1]), this algorithm transforms only some pixels to reduce the computational load.

For a partial transformation of the image it has to be decided, which pixels of the
image should be transformed. There is obviously a trade-off between an efficient
transformation and the coverage of the image. The proposed solution to this problem
is a regular grid defined in world coordinates with a grid resolution of 10cm to be sure
to cover even the smallest robot on the field with at least one gridline in each direc-
tion. This is similar to the receptor approach in Bonarini et al. ([2]). Although the
white field lines are only 5-12cm wide, they are covered lengthwise at least with some
gridlines of the rectangular grid. The resolution along the gridlines was set to 2cm.

The mapping of real world coordinates to pixel coordinates, known as perspective
mapping, is learned from a set of automatically measured correspondences to retrieve
the pixels that correspond to the grid points. After removing grid points that were
mapped to the same pixel coordinates, the number of pixels of this grid is approxi-
mately 40.000 and thus only 9% of the image pixels are processed. These grid points
can be easily stored into a list to serve as a grid LUT for every frame.

Colour Segmentation

To find sequences of a given colour class in the colour-transformed grid, a fast and
fault-tolerant algorithm is needed. Similar problems are subject to ongoing research in
molecular biology, where sequences of amino acids (aa) are compared to retrieve the
best matching subsequence. A standard algorithm for this is the Smith-Waterman
algorithm for local alignment of common molecular subsequences ([3]). It finds best
matching substrings by comparing the aa of two strings one by one, assigning high
scores for exact matches and lower or negative scores for unequal pairs. In the end of
this process, the substring with the best score is considered as the best matching sub-
string. This algorithm is fault-tolerant, as it allows a certain number of unequal aa in
the two strings. This number is based on the scores given to the compared aa, which
in turn are based on statistical analysis of how likely two aa may be exchanged with-
out affecting the characteristics of the whole sequence.

Regarding the colour transformed gridlines as an aa string, with the colour class of
the pixels being an identifier similar to the character of an aa, substrings (segments) of
a given colour class can be found. The algorithm assigns positive scores to pixels
belonging to the examined colour class and a negative score to pixels of a different

Fast and Accurate Environment Modelling using Omnidirectional Vision 3

colour class. Pixels of a different colour class would usually end a segment without
consideration of errors in the colour transformation step due to noise in the image.
Using the Smith-Waterman algorithm, however, segments are extended over small
gaps of pixels of a different colour class.

While parsing through the grid lines, the algorithm processes the different colour
classes in parallel. A new segment is started, if there is currently no unfinished seg-
ment of the pixel’s colour class. The algorithm adds a score of +2 for pixels of the
same colour class, -1 for pixels of a different colour class, which is known to occur
frequently in segments of that colour class, and -3 for pixels of a colour class that is
unlikely to occur in a segment of that colour class to a grand total for each unfinished
segment. A segment is finished, when its score drops below zero, or when the current
gridline is finished. However, the end of the segment is determined as the last position
which reached the maximum score in the segment, as this is the point of the highest
number of matching pixels and only some small errors in a row.

The number of non-matching pixels that can be skipped without finishing a seg-
ment depends on the number of matching pixels that occur before and after. Therefore
the fault-tolerance would be higher for long segments, probably connecting two long
segments, which do not belong together. To enforce a common number of pixels that
can be skipped, the score is limited to a maximum, which cannot be exceeded. This
maximum score depends on the size of the objects and the grid resolution. If the seg-
ment never reached the maximum score, it is considered as too small and is dropped.

Fig. 1 gives an example of a gridline being parsed by the segmentation algorithm.

Clustering of Segments

The clustering step clusters the segments based on their centre points in pixel coordi-
nates. This is only done for segments of black colour (robots) and orange colour (ball)
as these are the only objects that appear on a RoboCup field. For the white line mark-
ings no further processing is needed after the segmentation step.

Prior to the clustering, the segments are sorted by the distance rp to the image cen-
tre1. For each segment the clustering algorithm then tests if there already exists a
cluster in the list of clusters. If this list is empty or the angle scp,ϕ of the segment’s
centre point does not lie inside the minimum and maximum angle of any cluster, a
new cluster is started. The cluster centre is initialised with the centre of the current
segment and a minimum/maximum angle is calculated as scp,ϕ minus/plus the open-
ing angleψ of the object. This opening angle is determined as

()

+

=
max,

maxarctan
Rrf

R
ccp

ψ ,

1 Coordinates are given as polar coordinates ()ppr ϕ, and ()wwr ϕ, originating in the image

centre and the robot centre, respectively.

4 Patrick Heinemann, Thomas Rückstieß, and Andreas Zell

Fig. 1. Example of a gridline being parsed by the segmentation algorithm for orange and black
segments. The computed segments are marked with a coloured bar over the gridline. Both
segments reach their maximum scores at least once.

where Rmax=35cm is the maximum radius of a robot in RoboCup MSL (Rmax=15cm
for orange segments which show the ball), and f(rp,cc) is the inverted perspective map-
ping function of step 1, known as inverse perspective mapping function ([4]).
If the current centre point's angle lies inside the angular range of an existing cluster,
the centre point is added to that cluster. The new centre of the cluster is finally up-
dated as the mean of all centre points contained in this cluster.

Fig. 2 visualises the results of the first three steps of the environment modelling al-
gorithm applied to an example image.

Transformation to Real World Coordinates

As the inverse perspective mapping function was learned in respect to the floor plane,
only coordinates on the ground level are mapped correctly. Thus, from all segment
points of a cluster only the point nearest to the image centre is mapped to its world
coordinates as follows:

)(, pwpw rfr ==ϕϕ .
Most likely this is a contact point of the object to the floor. The radius R of the object
is determined as

()()2/tan minmax ϕϕ −= wrR ,
where maxϕ and minϕ are the maximum and minimum angles based on the start and
endpoints of the segments. The centre point of the object in world coordinates is then
simply ()ww Rr ϕ,+ .

Results

To give exact results of the estimation errors of the environment modelling algorithm,
the estimations were compared to measured positions of the highly accurate absolute
positioning system W-CAPS ([5]).

A second robot drove to different positions and several measurements were taken
with the W-CAPS and the robot vision system at each point. The position estimates
from the W-CAPS were averaged to serve as the ground truth, and the mean of the
algorithm's estimates was compared to this value resulting in an estimation error for

Fast and Accurate Environment Modelling using Omnidirectional Vision 5

Fig. 2. The grey grid points are transformed into colour classes and used as input to the seg-
mentation step. The computed segments are visualised as blue and red grid points. The green
crosses show the centre points of the segments which are clustered into the different objects.

each position. The linearly interpolated error at these points is shown in the error
surface in Fig. 3. The mean error over all positions is 8.16cm, with values ranging
from 0.77cm to 60.11cm. As can be seen, the system is very accurate in a range of
0.7m to 3m around the robot. The low image resolution for distances of more than
3m, result in a higher estimation error at those distances. Near the robot the contact
point between the object and the floor was occluded by the robot’s body. Thus, the
estimated distance was overestimated.

The computation time for the whole algorithm was 10ms on a Pentium III 850MHz
that is used on our robots, leaving enough time for other tasks while processing the
full 25 frames per second of the camera.

Conclusion and Future Work

In this paper a fast and accurate environment modelling algorithm based on the im-
ages of an omnidirectional vision system was presented. The image is transformed
into colour classes based on a trained colour LUT and segmented with a biologically
inspired segmentation algorithm. These segments are clustered into objects, which are

6 Patrick Heinemann, Thomas Rückstieß, and Andreas Zell

Fig. 3. The Euclidian distance of the mean of the W-CAPS measurements (plotted as black
dots) to the mean of the algorithm’s estimates is shown in this figure. The robot is situated in
the origin of the coordinate system.

then mapped to their real world coordinates with a learned inverse perspective map-
ping function.

The comparison of the results with an absolute positioning system shows that the
object detection algorithm is able to accurately detect the position of objects. With a
local search in the region of an object in the image could result in even more precise
distance estimations. It will be easy to extend the object detection to detect team col-
ours distinguishing team mates from opponents by simply learning the colour classes
and assigning the segments to the same clusters as the black object segments. This
algorithm can be easily applied to a perspective camera, too.

References

[1] J. Bruce, T. Balch, and M.Veloso. Fast and inexpensive color image segmentation for inter-
active robots. In Proc. of the 2000 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS ’00), volume 3, pages 2061-2066, 2000.
[2] A. Bonarini, P. Aliverti, and M. Lucioni. An omnidirectional vision sensor for fast tracking
for mobile robots. In Proceedings of the IEEE IMTC99, volume 1, pages 151-155, 1999.
[3] T.F. Smith and M.S. Waterman. Identification of common molecular subsequences. In
Journal of Molecular Biology, volume 147(1), pages 195-197, 1981.
[4] H.A. Mallot, H.H. Bülthoff, J.J. Little, and S. Bohrer. Inverse perspective mapping simpli-
fies optical flow computation and obstacle detection. In Biological Cybernetics, volume 64,
pages 177-185, 1991.
[5] A. Lilienthal and T. Duckett. An Absolute Positioning System for 100 Euros. In Proceed-
ings of the IEEE International Workshop on Robotic Sensing (ROSE 2003).

