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Abstract. This paper describes the Attempto Tübingen Robot Soccer
Team which played at RoboCup 2003 in Padova. The robot platform,
its sensors and actuators, and the software system running on the on-
board computer are presented. The main part of the paper concentrates
on our current scientific work on modelling and tracking a dynamic en-
vironment. Information about dynamic objects moving around in the
environment can be useful especially in RoboCup to predict the motion
of the ball, to avoid collisions, or to consider objects which can not be
detected over a short period of time. In our robot soccer team we im-
plemented an object tracking approach which on the one hand combines
the specific advantages of Kalman- and particle filters and on the other
hand uses an interacting multiple model filtering approach to model ob-
ject dynamics as accurately as possible. In addition to the general track-
ing techniques we present a new real-time approach to detect and track
uncoloured objects, such as a standard soccer ball.

1 Introduction

Teams of cooperative robots for solving a given task are often based on the idea
of a highly precise sensor system giving the robot a complete and accurate view
of its environment. In our RoboCup Middle Size League team we followed this
idea by building our robots around a very precise laser scanner, at the cost of
loosening other constraints like small size and light weight. Although we still
played with the laser scanner at RoboCup 2003 at Padova, several aspects in-
cluding recent rule changes force us to remove that sensor from our robots. In this
paper we will present our current team of robots and our reconstruction plans
for being competitive in future events. We believe that our scientific research
on tracking dynamic objects will help us to cope with imperfect and incomplete
sensor data. In any case we are prepared for future rule changes concerning the
orange ball through our new real-time approach to track uncoloured objects,
such as a standard FIFA soccer ball. The remainder of this paper is structured
as follows: Section 2 briefly describes the robot, sensor and computer hardware
of the Attempto robots, whereas Section 3 focuses on the software controlling



the robots. The main part of the paper, however, deals with our current scientific
research on object tracking in Section 4. Section 5 concludes the paper with a
short summary.

2 Hardware

2.1 Robot Platform

We are currently using the Pioneer2 DX platform from ActivMedia Inc. as the
basic robot platform for our field players. This platform is driven by a differential
drive system which can achieve translational speeds up to 1.5 m/s and rotational
speeds up to 2π/s. Due to the heavy load the robots were carrying at Padova
(cf. section 2.2) we reduced the maximum translational speed to 1.0 m/s. The
Pioneer2 DX can carry weights up to 20 kg and can be equipped with a maximum
of three 7,2 Ah batteries, which allow an operating time of nearly three hours
including all additional hardware like onboard PC and additional sensors and
actuators.

The two driving motors are equipped with 500 tick position encoders. With
the data from these encoders the speed and the relative position and orientation
of the robot can be calculated by the onboard Siemens C166 microcontroller
board which is also responsible for controlling the actuators of the robot.

The communication between the controller board and a remote computer
is done via a RS232 serial connection at a maximum speed of 38400 baud. The
controller sends status data packets to the remote computer at a rate of 20 Hz and
accepts commands from it at the same rate. Therefore the minimal achievable
response time for a closed loop controller is about 50 ms. To reduce this time
delay and to get a higher precision of odometry we are currently working on a
custom designed Motorola MC68332 CPU board to replace the old C166 board.
This board already proved to be useful in our goalkeeper in RoboCup 1998 but
was never transfered to the field players.

Our goalkeeper at Padova was based on an old Pioneer AT platform by
ActivMedia Inc. The skid steering drive used by this platform involves several
problems when used as a goalkeeper. This type of drive is suitable for a goal-
keeper that stays on the goal line but as the speed of robots and the ball rises
there is a need for a more agile platform, especially for the goalkeeper. Therefore
we plan to replace the Pioneer AT platform of our goalkeeper with an omnidi-
rectional platform developed by the University of Dortmund for their own robot
team ([1]).

2.2 Sensors and Actuators

In the past we were employing a diversity of sensors, being convinced that the
use of several sensors can result in a highly redundant system and, by the use
of suitable data fusion techniques, a better assessment of the situation around
the robot. A maximum of six different sensor types including sonars, a 2D laser



range finder, two different types of vision systems, infrared proximity sensors,
and a digital compass was used on our robots in several configurations. However,
the constantly changing environment in RoboCup reduced the applicability of
several sensors while others, such as the sonars, and infrared proximity sensors
where simply outperformed by better sensors like the high accuracy laser scanner.
This led to a reduced number of three sensor types during RoboCup, the laser
scanner, an omnidirectional vision system, and a standard perspective camera
pointing forward which are described in this section. The trend towards a small
number of sensors is further pushed by the need of fast and reactive robots
that are able to handle a ball shot by the new kicking devices that are able to
accelerate the ball to several metres per second. Therefore we are thinking about
removing our heavy laser scanner to get lighter and faster robots.

Apart from the motors we have our robots equipped with only one more
actuator. This pneumatic kicking device will be described in this section, too.

Laser Scanner: The LMS200 laser measurement system by SICK AG was
our main sensor for precise object localisation and self-localisation in the past. Its
characteristics are a 180◦ field of view, an angular resolution of 1◦, 0.5◦, or even
0.25◦ (software programmable), and an accuracy of 10 mm up to a distance of
10 m. With a resolution of 1◦ and a 500 kbps data transfer rate over a highspeed
RS422 serial device it is possible to achieve a scan rate of nearly 40 Hz. However,
the main drawbacks of this sensor are its size (137x156x185 mm), weight (4.5
kg), and power consumption (max. 17.5 W).

We had achieved a very accurate self-localisation based on scan matching
methods when there were walls around the field ([10]). We had some problems
with these methods when the walls were replaced by a row of posts around the
field, but we were still able to localise based on laser scans. For RoboCup 2003,
however, we had to implement an entirely new self-localisation method based on
our omnidirectional vision systems, as all borders around the field were removed
except a security border, below the sensing half-plane of the laser scanner.

With this new situation the laser scanner was reduced to recognise objects
on the field at a very high and sometimes unnecessary accuracy. Therefore, and
keeping the drawbacks as heavy weight and the power consumption in mind,
we now decided to replace the object recognition by the omnidirectional vision
system, too. Doing so we could remove the laser from the robot and undo the
speed limitation we introduced to protect the motor controllers from overheating.

Cameras: The two vision systems we have installed on the robot (perspective
camera and omnidirectional vision system) both use a Siemens SICOLOR C810
CCD-DSP color camera with a 1/3 inch CCD chip and a resolution of 752x582
pixels. The output of the camera is a regular CCIR-PAL signal with 625 rows
and 50 half frames per second.

One of the cameras is equipped with a 2,8f wide angle lens and is mounted
at the front of the robot. It is used for a precise detection of the ball.

The second camera is equipped with a 4,2f lens and is placed on top of
the robot pointing upwards. A hyperbolic mirror of the Fraunhofer Gesellschaft
(FhG-AiS) is mounted above the camera enabling the vision system to get a



mapping of the complete surrounding of the robot up to the horizon. Although
the mirror was designed for a vision system on top of the FhG Volksbot ([2]) we
are achieving good results with our system, too.

Kicker: Our kicking device is a self-made construction actuated by com-
pressed air. The air is compressed into a 2 litre tank before the games at a
pressure of 10 bar. The air reservoir is connected via an electric valve to two
pneumatic actuators that can accelerate a metallic bar which shoots the ball.
The special feature of this device compared to others is that the bar is mounted
and connected to the pnematic cylinders in a way that accelerate the bar in a
circular motion forwards and also upwards. This reduces the overall speed of the
ball but leaves the possibility to lift the ball over a goalkeeper as we could show
in a game against ISePorto at RoboCup 2003 (see videos on [3]).

2.3 Onboard Computer

Our onboard computer is a custom designed system based on a PISA-3P4I Back-
plane by JUMPtec which provides 4 ISA/PISA slots and 3 PCI slots. One of
these slots is used to plug a CoolMonster/P3 PISA board by Jumptec which in-
tegrates the complete functionality of a motherboard, like a network controller,
IDE controller, and USB controller. This board is equipped with a low power
Pentium-3 running at 850 MHz, 128 MB of RAM and a 20 GB harddisk. Ad-
ditionally two PCI framegrabber boards based on the Booktree BT848 chipset
are added to the computer to simultaneously grab the images of the two vi-
sion systems at 25 fps. The laser scanner is connected via a high speed RS422
serial device card which was modified to achieve the 500 kbps data rate. The
computers of different robots can communicate via IEEE 802.11b wireless LAN
by ARtem Datentechnik over an external access point. Therefore each robot is
equipped with a WLAN client which is connected to the onboard computer via
RJ45 network cable. The communication to the controller board of the robot is
done over the RS232 serial device and a crosslink cable. We are running RedHat
7.3 Linux on the computer.

3 Software

The software system of the Attempto Tübingen Robot Soccer Team is based on
a Client/Server architecture and can be divided into three layers: the data server
layer, an intermediate layer and the high level robot control layer.

In the data server layer several server programs perform the communication
with the sensor and robot hardware. They provide the data from the sensors
and the robot to the preprocessing clients in the intermediate layer via shared
memory segments. These segments are organised in a ring buffer structure to
provide a free buffer for the next data packet even if one or more clients are
processing data from other segments and thus blocking the use of these segments.
The robot server that supplies odometry data is actually a client, too, as it reads
command data from a shared memory segment and makes the robot fulfill these



commands. All the servers in this layer can be replaced by simulation servers
which provide previously recorded or artificial data for simulation purposes.

The intermediate layer acts as a data compression layer. Several prepro-
cessing stages extract the relevant information out of the raw sensor data and
provide it to the high level layer, again being both client and server. The im-
age preprocessing stage computes the position of objects (own robots, opponent
robots, and the ball) relative to the robot and extract points on the white field
markings. The laser preprocesing stage extracts objects and line segments from
the laser scan. In an object tracking stage the objects generated from the image
and the laser preprocessing stage are fused to further reduce the amount of data
and to remove inconsistencies and the remaining objects are tracked over time
by our tracking system presented in section 4.1. A localisation stage processes
the line segments from the laser scan, the field markings from the images, and
the odometry data from the robot to generate new position estimations. These
estimations are used to update a filter that keeps track of the robot’s position.
The output of the stages in the intermediate layer provide a consistent world
model to the high level layer.

The high level robot control layer realises the hybrid robot control archi-
tecture [5]. It consists of a reactive component where a set of independent be-
haviours like obstacle avoidance, ball search, or ball following try to fulfill their
tasks. The behaviours can react quite fast to changes in the environment because
they can work on the compact world model data from the immediate layer. The
behavioural system is easy to expand beacuse it is possible to start and stop
behaviours at runtime. Control commands are passed to the robot via the robot
server. A detailed description of the software system is given in [10].

4 Research Topics

4.1 Tracking Dynamic Objects

Modelling the environment of autonomous mobile robots has proven to be very
useful for planning tasks and robot control. Early approaches concentrated on
modelling the static environment by map building and self localization within
such global maps. Recent research also tries to model the dynamic objects mov-
ing around in the environment. Most of this work concentrates on the aspect of
tracking multiple targets. Different techniques of modelling like multiple hypoth-
esis tracking (MHT) [12] or joint probabilistic data association filters (JPDAF)
and their extensions to particle filters [13], among others [8], were suggested.
Here we will concentrate on a sophisticated single object tracker based on an
interacting multiple model (IMM) filtering approach first proposed by Blom [6].

Tracking a maneuvering target with a filter which utilises a single dynamic
model for target motion like a single Kalman filter or a particle filter usually
involves artificial high process noise. This noise is used for compensating target
movements which are not complying with the dynamic model and deteriorates
the filter outcome. Additionally the prediction of the further target track for



planning purpose is of little value, if the target motion is not governed by the
assumed dynamic model.

So if tracking a maneuvering target with a single dynamic model has the
mentioned drawbacks, it is obvious to try to use an approach which utilises a set
of dynamic models for target tracking. Consider such a set of s models, where
at each point in time at least one model i is appropriate to describe the target
movement. At discrete points k in time a certain probability exists for the target
to switch the mode of movement, which means at time k a different model j

characterizes the target movement. Although the mathematical structure of the
optimal solution of such multi model tracking problems is well understood, it
is practically not tractable, since the complexity of the solution is increasing
exponentially in time. The reason for this exponential behavior is the increasing
number of possible model sequences. For each single model sequence at time k

there are s successors under the assumption that the transition probability from
one model to another is not zero. As a result various suboptimal approximations
have been proposed. One of these suboptimal algorithms that is widely used
for state estimation in target tracking is the interacting multiple model (IMM)
algorithm, which we will describe next.

With the restriction on linear dynamic models, the multiple model tracking
approach can formally be seen as a jump Markov linear system. Consider the
following system, which can be in one of s modes with rk identifying the mode
of the system at time k:

xk+1 = F
rk+1

k xk + B
rk+1

k vk (1)

yk = Hrk

k xk + wk (2)

where vk and wk are independent white Gaussian noise processes with covariance
Qrk

k and Rrk

k respectively. The matrix functions F rk

k , Brk

k , Hrk

k are assumed to
be known. rk is modeled as a discrete, first order Markov chain with s modes.
Let S = {1, 2, . . . , s}. The transition probability from mode i to mode j given
by:

pij = Pr{rk+1 = j|rk = i} and 0 ≤ pij ≤ 1 i, j ∈ S,

s
∑

j=1

pij = 1 (3)

is also assumed to be known. The initial state distribution of the Markov chain
is π = [π1, . . . , πs] where

0 ≤ πj ≤ 1, j ∈ S,

s
∑

j=1

πj = 1 (4)

Now our aim is to recursively estimate the state xk of the system from a
sequence of given measurements {yk, k ∈ N}. For this we apply the IMM algo-
rithm consisting of a bank of Kalman filters, each representing a certain mode of
target movement and a logic to combine the filtered outcome for a target state



estimate. In the following x̂m|n denotes the target state estimate at time m con-
ditioned on all measurements yk up to time n. Pm|n is the associated covariance
matrix. Quantities relevant to mode or Kalman filter j are denoted with super-
script j. Hence x̂

j

m|n and P
j

m|n describe the state estimate and covariance matrix

of Kalman filter j respectively. x̂
0j

k−1|k−1 and P
0j

k−1|k−1 are the mixed prior for the

same filter j. µ
j
k is the probability for Kalman filter j to match model movement

at time k. N(x, x̄, P ) refers to the Gaussian density function of x with mean x̄

and covariance matrix P . Apart from the initialization step the IMM consists of
three steps, which are recursively applied.

Initialization:
µ0(j) = πj , ∀j ∈ S, , x̂0 ∼ N(0, P0) (5)

Recursion:
Step 1) Filter input calculation

∀i, j ∈ S µk−1(i|j) =
1

c̄j

pijµk−1(i) with c̄j =
∑

i

pijµk−1(i) (6)

x̂
0j

k−1|k−1 =
∑

i∈S

µk−1(i|j)x̂
i
k−1|k−1 (7)

P
0j

k−1|k−1 =
∑

i

µk−1(i|j){P
i
k−1|k−1+[x̂i

k−1|k−1−x̂
0j

k−1|k−1][x̂
i
k−1|k−1−x̂

0j

k−1|k−1]
T }

(8)
Step 2) Kalman filtering

Kalman filter time prediction

x̂
j

k|k−1 = F
j
k x̂

0j

k−1|k−1 + B
rk+1

k v̄k (9)

P
j

k|k−1 = F
j
kP

0j

k−1|k−1F
j
k

T
+ Q

j
k (10)

Kalman filter measurement update

x̂
j

k|k = x̂
j

k|k−1 + K
j
kr

j
k (11)

r
j
k = yk −H

j
kx̂

j

k|k−1 (residual) (12)

K
j
k = P

j

k|k−1H
j
k

T
S

j
k

−1
(kalman gain matrix) (13)

S
j
k = H

j
kPk|k−1H

j
k

T
+ R

j
k (residual covariance) (14)

mode probability update

Λ
j
k = N(rj

k, 0, Sj
k) (likelihood function) (15)

µk(j) =
1

c
Λ

j
k

∑

i

pijµk−1(i) =
1

c
Λ

j
k c̄j (16)



Step 3: Output combination

x̂k|k =
∑

j

x̂
j

k|kµk(j) (17)

Pk|k =
∑

j

µk(j){P j

k|k + [x̂j

k|k − x̂k|k][x̂j

k|k − x̂k|k]T } (18)

In the concrete case of tracking robots in a robocup environment we are using
two different (s = 2) models for the target dynamics. The first is the following
constant velocity model, in which target acceleration is modeled as white noise.
The states of the filter are given by the target position (x, y) and velocity (vx, vy),
x̂ = [x, vx, y, vy ]. The complete model according to (1) is given by:

x̂k+1 =
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(19)

where T denotes the elapsed time between k + 1 and k. This model matches
robot movements along a straight line with acceleration parallel to the movement
direction.
The second model denotes a robot performing a turn. The states of this filter
are given also by the target position (x, y) and velocity (vx, vy). Additionally
the target turning rate ω is modeled, x̂ = [x, vx, y, vy , ω]. The nonlinear target
dynamics x̂(k + 1) = f(x̂(k), v(k)) is given by:

x(k + 1) = x(k) +
sin(ωT )vx(k)

ω
−

1− cos(ωT )vy(k)

ω
) (20)

y(k + 1) = y(k) +
1− cos(ωT )vx(k)

ω
) +

sin(ωT )vy(k)

ω
(21)

vx(k + 1) = vx(k) cos(ωT )− vy(k) sin(ωT ) (22)

vy(k + 1) = vx(k) sin(ωT ) + vy(k) cos(ωT ) (23)

ω(k + 1) = ω(k) (24)

Since the target dynamics is nonlinear we are using an Extended Kalman
filter (EKF). Therefore the Kalman filter equations of the second step in IMM
must be replaced by the appropriate equations from the EKF. We plan to in-
tegrate these filtering techniques in our system to satisfy the need for a better
compensation of imperfect and noisy data coming from an image processing sys-
tem in contrast to a precise laser measurement system. Preliminary tests have
already shown the applicability to the RoboCup environment.

4.2 Tracking Uncoloured Objects

In the RoboCup environment every object is marked with a special colour so that
fast and robust colour segmentation algorithms can be used for object detection



[7][14]. In the future these colour markers will be removed in order to come to a
more realistic setup. Therefore, the aim of our research is to introduce algorithms
to detect and track objects that do not have colour information. In a first step
we want to be able to replace the orange soccer ball and play with a standard
FIFA ball. In this section we will give a short overview of this work. A more
detailed description can be found in [4].
To build a colourless model of the ball we use an algorithm proposed by Viola and
Jones [9] that has been used to detect faces in real-time based on simple gray-
level features. We used their approach to come to a feature based description of
the ball. As proposed in [9] we use four different types of features (see figure 1).

Fig. 1. Four different types of rectangle features within their bounding box. The sum
of pixels in the white boxes are subtracted from the sum of pixels in the black areas.

The advantage of using these features is that they can be calculated very fast
on top of a so called integral image (see [9] for details). To build a ball classifier
based on these gray level features one has to select the most relevant features.
Remember that within a box sized 24x24 there are more than 160000 features,
which is far more than the number of pixels. As proposed by Viola et. al., we use
the machine learning procedure called Adaboost [15] to select a small number of
relevant features. For the offline training of the ball classifier we collected a set of
1100 pictures (sized 19x19) showing the ball under different viewing conditions
and 10000 pictures that do not contain the ball. These sets are randomly split
into a training and a test set. To classify the training set correctly, Adaboost
selects 137 features. On the test set we achieve a detection rate of 91.64% and a
false positive rate of 0.015%.
To track the ball we use a particle filter: The ball is described by the state vector

x
(i)
t = [xI , yI , sI , vx, vy, vs]

T (25)

where (xI , yI) is the position of the ball in the image, (vx, vy) is the velocity in
x- an y-directions, sI represents the size of the ball and vs is the velocity in size.
The dynamics of the ball are modelled as a movement with constant velocity
and small random changes in velocity (random walk). Every particle is weighted
with the classification result of the ball classifier that has been learned offline
by the Adaboost mechanism. Instead of using the binary value we weight every
particle with the result of the linear combination of the features. We use random
initialization for the particle filter.



Using 300 samples and a ball classifier with 40 features, one timestep of the
tracking algorithm requires about 30ms on a Pentium III 850MHz processor so
that we are able to track the ball with more than 25 fps. In different experiments
the tracker has shown to be robust against occlusion and distraction. Examples
of our ball tracking system can be seen in figure 2 and 3.

Fig. 2. Tracking the ball at different scales.

Fig. 3. Tracking the ball through occlusion.

We treat the weighted mean of the best 30% of the particles to be the final
hypothesis of the ball position. Nevertheless, there are situations were we get
false detections so that the tracker is not able to recover from distraction. To
improve robustness further, we will implement methods to measure the shape.
Besides the work of Hanek et. al. [11] who do not deal with the problem of
global detection, our approach is one of the first to detect and track a “normal”,
non-coloured FIFA-ball in real-time. The presentation of this work was the main
reason for winning the Technical Challenge Award of the Middle Size League at
the RoboCup world championship in Padova 2003.

5 Summary and Diskussion

In this paper we introduced our current and new approaches to stay competitive
in future RoboCup competitions. Besides the need to reduce weight to get faster
and more flexible robots, we mainly focus on research to improve the capabilities
of our team. We believe that our ideas on object tracking with IMM filtering
techniques will enhance the internal representation of the environment and thus
the overall performance of our robots. First tests with previously recorded data



seem to confirm this but we still have to prove the results in our robots. Being
able to detect and track a standard uncoloured FIFA ball in real-time as one of
the first teams in the world we are also prepared for a further reduction of the
colour markings on the field. In Padova 2003 we could successfully present this
new ability.
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