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Abstract— With the invention of high throughput methods,
researchers are capable of producing large amounts of biological
data. During the analysis of such data the need of a functional
grouping of genes arises. In this paper, we propose a new
clustering algorithm for the partition of genes or gene products
according to their known biological function based on Gene On-
tology terms. Ontologies offer a mechanism to capture knowledge
in a shareable form that is also processable by computers. Our
functional cluster algorithm promises to automatize, speed up
and therefore improve biological data analysis.

I. I NTRODUCTION

In the past few years, DNA microarrays have become
major tools in the field of functional genomics. In contrast to
traditional methods, these technologies enable the researchers
to collect tremendous amounts of data, whose analysis itself
constitutes a challenge. On the other side, these high through-
put methods provide a global view on the cellular processes
as well as their underlying regulatory mechanisms and are
therefore quite popular among biologists. During the analysis
of such data, researchers are forced to group genes according
to their known biological function to build up their hypothesis
about the cellular processes taking place in their systems.

In gene expression analysis researchers tend to cluster genes
according to their expression profiles, in order to structure the
huge amounts of data that DNA microarrays produce. To our
experience the use of available biological knowledge is also
essential for the analysis of high throughput data. Therefore,
a second step is almost always applied: biologists categorize
their long lists of co-expressed genes to known biological
functions and thus try to combine a pure numerical analysis
with biological information.

So far, many approaches are known that address this prob-
lem. Some methods score whole clusterings or each single
cluster due to their biological relevance [9], [18], [11], [26].
Others evaluate all annotations in a group of genes and score
each single annotation using sophisticated methods [1], [29],
[30]. Approaches intending to find clusters of co-expressed
genes that share a common function directly incorporate the
biological knowledge into the clustering process [12], [33],
[31]. All these methods either require a clustering based on or
at least not independent of genes expression profiles or simply
produce again lists of scored annotations. But in many cases,
biologists just want to group lists of genes according to their
function independent of any other data.

So far, no automatic method is known to us, that groups
genes according to their function alone and thus, can be used
as a second step analysis for gene lists obtained by any kind
of prior analysis either clustering or statistical over- or under-
expression. Therefore, in that case biologists are still forced
to do a sequential analysis of their data. First they annotate
their genes by hand, which sometimes can be automatized
by scripting a database. But then, they go through each single
annotation, in some cases also doing time consuming literature
search to set the annotation found in a biological context, and
try to group the genes in this manner. Such an approach is
time consuming, exhausting and may take weeks depending
on the size of the dataset. In this paper, we present a method
that addresses this question. We use Gene Ontology terms as
information about the gene function.

Ontologies offer a mechanism to capture knowledge in a
shareable form that is also processable by computers. The
advantage of such a method is that it can be applied to any
kind of data that can be mapped to Gene Ontology terms.
No prior knowledge about relevant pathways is necessary,
except a mapping to the ontological information. The latter is
often available in public databases. In this paper, we propose
a new functional clustering method for genes and show its
performance on real world datasets.

The paper is organized as follows: a brief introduction to
the ontological information used, the Gene Ontology (GO),
is given in section II. The biological distance measure used
within the ontology is described in section III. In section IV
the memetic clustering algorithm is described in detail. The
cluster validation technique applied is described is section V.
The performance of our functional clustering algorithm on real
world gene expression datasets is shown in section VI. Section
VII discusses the paper and outlines areas of future research.

II. T HE GENE ONTOLOGY

The Gene Ontology (GO) is one of the most important
ontologies within the bioinformatics community and is de-
veloped by the Gene Ontology Consortium [34]. It is specifi-
cally intended for annotating gene products with a consistent,
controlled and structured vocabulary. The GO is limited to the
annotation of gene products and independent from any biolog-
ical species. It is rapidly growing, having over 16,600 terms



(as of June 2004) and additionally new ontologies covering
other biological or medical aspects are being developed.

The GO represents terms in a Directed Acyclic Graph
(DAG), covering three orthogonal taxonomies or ”aspects”:
molecular function, biological process and cellular compo-
nent. The GO-graph consists of a number of terms, represented
as nodes within the DAG, connected by relationships, repre-
sented as edges. Terms are allowed to have multiple parents as
well as multiple children. Two different kinds of relationship
exist: the ”is-a” relationship (neurogenesis and odontogenesis
are for example children of organogenesis) and the ”part-of”
relationship that describes, for instance, that histogenesis is
part of organogenesis or axongenesis is part of neurogenesis.
The GO terms are used to annotate gene products in the
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Fig. 1. Relations in the Gene Ontology. Each node is annotated with a unique
accession number.

widest sense, e.g. sequences in databases as well as measured
expression profiles. By providing a standard vocabulary across
any biological resources, the GO enables researchers to use
this information for automatic data analysis done by computers
and not by humans. The GO is available as flat files and XML
files and has also been ported to a MySQL database scheme
[34].

III. C ALCULATING DISTANCES WITHIN THE GENE

ONTOLOGY

There are a couple of semantic similarity and distances
measures of different complexity [16], [19], [25], [27], most of
them were originally developed for taxonomies like WordNet
[8]. In this paper we use a similarity measure based on the
information content [27] of each GO term developed by Lin in
[19] and show how it can easily be transformed into a distance.

The information content of a term is defined as the probabil-
ity with which this term or any child term occurs in a dataset.
Following the notation in information theory, the information
content (IC) of a termc can be quantified as follows:

IC(c) = − ln P (c) (1)

whereP (c) is the probability of encountering an instance of
term c.
In the case of a hierarchical structure, such as the GO, where
a term in the hierarchy subsumes those lower in the hierarchy,
this implies thatP (c) is monotonic as one moves towards the
root node. As the node’s probability increases, its information
content or its informativeness decreases. The root node has a

probability of 1, hence its information content is 0. As the three
aspects of the GO are disconnected subgraphs, this is still true
if we ignore the root node (”Gene Ontology”, GO:0003673)
and take, for example, ”cellular component” (GO:0005575)
as our root node instead.P (c) is simply computed using
maximum likelihood estimation:

P (c) =
freq(c)

N
(2)

whereN is the total number of terms occurring in the dataset
and freq(c) is the number of times termc or any child term
of c occurs in the dataset.

As the GO allows multiple parents for each term, two terms
can share parents by multiple paths. We take the minimum
P (c), if there is more than one parent. This is calledPms, for
probability of the minimum subsumer [20]:

Pms(ci, cj) = min
c∈S(ci,cj)

P (c) (3)

where S(ci, cj) is the set of parental terms shared by both
ci and cj . Given these probabilities, Lin [19] developed a
similarity measure. It defines the similarity of two termsci, cj

as follows:

simLin(ci, cj) =
2 lnPms(ci, cj)

ln P (ci) + ln P (cj)
(4)

It is obvious thatPms(ci, cj) ≥ P (ci) and Pms(ci, cj) ≥
P (cj). Thus, values for simLin(ci, cj) vary between 1 (for
similar terms) and 0 (for unsimilar terms).

Given the similarity score simLin(ci, cj), one can easily
transform the similarity into a distance, such that the distance
of two classesci, cj is defined as follows:

dLin(ci, cj) = simLin(ci, ci) + simLin(cj , cj)− 2(simLin(ci, cj))
(5)

It is obvious thatdLin(ci, cj) varies between 0 and 2. Since
genes are often annotated with more than one GO term, we
needed to combine the calculated similarities or distances. On
previous work, based on WordNet [8], a similar problem was
found, as individual words have more than one meaning [28].
In this case the maximum similarity, corresponding to the
minimum distance was taken, as generally only a single word
meaning is used at a time. In contrast, Lordet al. [20] used
average values. They argued that in contrast to WordNet, a
gene product will generally have all of the roles attributed to
it. Although this is a good argument we use the best distance
dLin calculated on maximum similarities, because in previous
experiments, we got much better results with these distances.

IV. T HE CLUSTERING ALGORITHM: MST-MA

Many popular clustering algorithms are based on calculating
cluster means (e.g. SOMs and k-means). In our case, we
cannot calculate means and also want to avoid it, since it
might become difficult and computationally very expensive
in directed graphs. Therefore, the clustering algorithm has to
satisfy a major criterion: no mean calculation should be used.
The most popular type of clustering algorithms, which do
not need means, are hierarchical methods, especially Average



Linkage clustering. In [32] we presented a Memetic Algorithm
(MA) based on Minimum Spanning Trees (MST) that highly
outperformed this method and also does not use means.
Therefore, we use this algorithm called MST-MA. The basic
idea of the MST-MA is to build an MST from the dataset
and find so called inconsistent edges in the tree to cut and
thus build the resulting clustering. In the next section we will
review the MST-MA briefly.

A. Memetic Algorithms

Memetic Algorithms, and Genetic Algorithms in general,
are population-based heuristic search approaches and have
been applied in a number of different areas and problem
domains, mostly combinatorial optimization problems. It is
known that it is hard for a ’pure’ Genetic Algorithm to ’fine
tune’ the search in complex spaces [7]. It has been shown
that a combination of global and local search is almost always
beneficial [21]. The combination of an Evolutionary Algorithm
with a local search heuristic is called Memetic Algorithm [23].
MAs are known to exploit the correlation structure of the
fitness landscape of combinatorial optimization problems [21],
[22]. They differ from non-hybrid evolutionary approaches in
that all individuals in the population are locally optimized,
since after each variation step, a local refinement is applied.

MAs are inspired by Dawkin’s notion of ameme [7]. A
meme is a ”cultural gene” and in contrast to genes,memes are
usually adapted by the people who transmit them before they
are passed to the next generation. From the optimization point
of view, it is argued that the success of an MA is due to the
tradeoff between the exploration abilities of the underlying EA
and the exploitation abilities of the local searchers used. This
means that during variation, the balance between disruption
and information preservation is very important: on the one
hand, the escape of local optima must be guaranteed, but on
the other hand, disrupting too much may cause the loss of
important information gained in the previous generation. The
pseudocode of a Memetic Algorithm is given in Fig. 2.

B. Minimum Spanning Trees

As described earlier we use a Minimum Spanning Tree
(MST) to represent the dataset. LetX = {x1, . . . , xn} be
a set of genes. LetG(X) = (V, E) be an undirected weighted
and complete graph, withV = {xi|xi ∈ X} being a set
of vertices (in our case genes) andE = {xi, xj |xi, xj ∈
X ∧ i �= j} a set of edges connecting the genes. Each edge
(u, v) ∈ E has been assigned with a weightw(u, v) that
represents the dissimilarity betweenu and v. We use the
functional distance measure based on the Gene Ontology as
dissimilarity (distance) measure. A tree is a connected graph
with no circuits and a spanning treeT of a connected weighted
graphG(X) is a weighted tree ofG(X) that contains every
vertex of G(X). If we define the weight of a tree to be the
sum of its edge weights, an MST is a spanning tree with
minimum total weight. An MST can be computed using either
Kruskal’s [17] or Prim’s algorithm [24] inO(|E| log |E|) and

Algorithm MA:
begin

t := 0;
P (t) := initPop();
P (t) := localSearch(P (t));
evaluateFitness(P (t));
while (stopping criteria not met) do

P ′(t) := selectForVariation(P (t));
P ′(t) := recombine(P ′(t));
P ′(t) := mutate(P ′(t));
P ′(t) := localSearch(P ′(t));
evaluateFitness(P ′(t));
P (t + 1) := selectNewPop(P (t),P ′(t));
t := t + 1;

end
end

Fig. 2: Pseudocode of a standard Memetic Algorithm.

O(|E| log |V |) time, respectively,| · | denoting the number
of elements in the set. We decided to use Prim’s algorithm,
since it is faster for fully connected graphs. For details on the
algorithm and its implementation see [4].

By utilizing this MST representation we transform the
multi-dimensional clustering problem (that is usually defined
as finding the best partitionP (X) according to an objective
function) into a tree partitioning problem: finding a set of tree
edges and deleting them, so that the resulting unconnected
components determine the clustering. Representing a multi-
dimensional dataset as a relatively simple tree structure leads
to a loss of information. In [32] our results indicated that no
indispensable information is lost that is needed to solve the
clustering problem. Instead, the MST representation of the
dataset allows us to deal with clusters of complex shapes,
with which classical algorithms, which are based on the idea
of grouping the data around a center, have problems.

C. Representation of an individual and Initialization

The representation used in the MA resembles the one in
Genetic Algorithms, since we reduced the multi-dimensional
clustering problem to a binary tree partitioning problem:
First, the MST is computed once using Prim’s [24] algorithm
and then copied to each individual. The individual itself is
represented as a bit vector of lengthn − 1, with n denoting
the number of genes. Each bit corresponds to an edge of the
MST indicating whether the edge is deleted (0) or not (1). The
resulting cluster memberships can then be calculated from the
MST partition.

To initialize the population,k−1 edges are randomly chosen
according to a uniform distribution and deleted from the MST,
with k denoting the number of clusters.

D. Fitness Function

A common fitness function for clustering is the minimum
sum of squared error (SSE) [15], the sum over all the squared
distances to the respective cluster mean. Since we cannot



calculate means, we use the total distance between all items
in the cluster. Therefore, our fitness function is defined as
follows:

min
k∑

i=1

∑
x,y∈Ci,x �=y

d(x, y) (6)

whered(·, ·) denotes the functional distance between genex
and geney, and k is the number of clusters. In contrast to
the SSE function, we do not use squared distances, because in
previous experiments, we did not receive significantly different
clustering results by using squared distances.

E. Local Search

The local search works as follows: for each individual a list
of deleted and non-deleted edges is created. During each step,
a deleted and a non-deleted edge is chosen randomly. Then
both states of the edges are reversed, the deleted becomes
undeleted and vice versa, if the resulting clustering has a
smaller objective value according to Eq. (6). This procedure
is repeated until no enhancement could be made or one of the
two lists is empty. Since for each deleted edge a non-deleted
edge is reversed as well, the number of clusters is preserved
during local search.

F. Selection, Recombination and Mutation

Selection is applied twice during the main loop of the
algorithm: selection for variation and selection for survival.
For variation (recombination and mutation) individuals are
randomly selected without favoring better individuals. To
determine the parents of the next generation, selection for
survival is performed on a pool consisting of all parents of
the current generation and the offspring. The new population
is derived from the best individuals of that pool. Hence, the
selection strategy is similar to the selection in a(µ + λ)-ES
[2]. To guarantee that the population contains each solution
only once, duplicates are eliminated.

As recombination operator we use Allelic Recombination
[5]. In this case, it works as follows: First the edge-bit vector
of parenta is copied to the child. Thus, it is guaranteed that
all alleles are there at least once. Then, for both parents, lists
of their deleted edges are created. For each pair of deleted
edges (one from each parent), with equal probability either the
deleted edge of parenta or the one of parentb is chosen to be
inherited to the child. If the edge of parentb has been chosen
and if it isn’t already deleted in the child, it is now deleted.
At the same time, the corresponding edge of parenta, that
has already been copied to the child, is undeleted. Otherwise,
nothing is done, because the deleted edge (of parenta) has
already been inherited to the child in the beginning. This is
repeated until both lists are empty. Thus, it is guaranteed that
the number of clusters is preserved.

As mutation operator a simple modified point mutation
is applied. Since each individual contains much more non-
deleted than deleted edges a normal point mutation (just
flipping a randomly chosen bit) would lead to more and more
clusters. To preserve the number of clusters, again the two lists

with either deleted and non-deleted edges are created. A pair
of a deleted and a non-deleted edge is randomly chosen and
both are reversed.

V. CALCULATING CLUSTER VALIDITIES

Beside the biological validation, we want to somehow
measure the result of our clustering, thus we need a cluster
validity index that can be applied and that does not utilize
means. A good cluster validity index should be independent
of the number of clusters, thus allowing to compare two
clusterings with different number of clusters. At the same time
it is desirable that items in one cluster have the minimum
possible distance to each other and maximum distance to the
genes in other clusters, in other words, we seek clusters that
are compact and well separated.

One well known cluster validity index is the Davies-Bouldin
(DB) index, which has been defined in [6]. Given a clustering
C = {C1, C2, . . . , Ck}, it is defined as:

DB(C) =
1
k

k∑
i=1

max
{

∆(Ci) + ∆(Cj)
δ(Ci, Cj)

}
(7)

where∆(Ci) represents the inner cluster distance of cluster
Ci and δ(Ci, Cj) denotes the inter cluster distance between
clusterCi andCj . k is the number of clusters. It is clear from
the above definition, thatDB(C) is the average similarity
between each clusterCi, i = 1, 2, . . . , k, and its most similar
one. It is desirable for the clusters to have minimum possible
similarity to each other. Therefore, we seek clusterings that
minimize DB(C).

Usually, ∆(Ci) and δ(Ci, Cj) are calculated as the sum
of distances to the respective cluster mean and the distance
between the centers of two clusters, respectively. Since mean
calculation in a DAG is difficult and computationally expen-
sive, we use the average diameter of a cluster as inner cluster
distance and the average linkage between two clusters as inter
cluster distance. Thus∆(Ci) and δ(Ci, Cj) are defined as
follows:

∆(Ci) =
1

|Ci|(|Ci − 1|)
∑

x,y∈Ci,x �=y

d(x, y) (8)

δ(Ci, Cj) =
1

|Ci||Cj |
∑

x∈Ci,y∈Cj

d(x, y) (9)

whered(x, y) defines the functional distance between any of
the two genesx andy belonging to clusterCi andCj , respec-
tively. |Ci| and |Cj | denotes the number of genes included
in clustersCi and Cj , respectively. This validity index has
the advantage that it also provides a valueDB(Ci) for each
cluster. Therefore, one cannot only use it to compare whole
clusterings, but also to distinguish more compact clusters from
less compact ones in the same clustering.

VI. RESULTS

The system was implemented in Java 1.4. For the GO graph,
the MySQL database implementation, release December 2003,
was used. The performance of our functional MST-MA clus-
tering algorithm is discussed on two real world datasets.



A. Datasets

One possible scenario where researchers would like to group
a list of genes according to their function is when they
examine gene expression with DNA microarray technology,
afterwards do some filtering or statistical analysis and end up
with a list of genes that show a significant change in their
expression according to a control experiment. Because of that
it is likely that these genes play an important role during the
ongoing examined biological processes. Therefore, we chose
two publicly available microarray datasets, annotated the genes
with GO information and used them for functional clustering.

The authors of the first dataset [14] examined the response
of human fibroblasts to serum on cDNA microarrays in order
to study growth control and cell cycle progression. They found
517 genes whose expression levels varied significantly, for
details see [14]. We used these 517 genes for which the
authors provide NCBI accession numbers. The GO mapping
was done via GeneLynx [10] ids. After mapping to the GO
288 genes remained. The other 229 genes unfortunately had no
GO annotation. Since we are interested in gene function, we
only use the taxonomybiological process of the GO. Out of
the 288 genes, 238 genes showed one or more GO mappings
to biological process or a child term ofbiological process.
These 238 genes were used for the functional clustering. We
selected 14 clusters, because we received the best results with
that number according to Eq. 7.

In order to study gene regulation during eukaryotic mitosis,
the authors of the second dataset [3] examined the transcrip-
tional profiling of human fibroblasts during cell cycle using
microarrays. Duplicate experiments were carried out at 13
different time points ranging from 0 to 24 hours. Choet al. [3]
found 388 genes whose expression levels varied significantly.
Hvidstenet al. [13] provide a mapping of the dataset to GO.
233 of the 388 genes showed at least one mapping to the
GO biological process taxonomie and were thus used for
clustering. We selected 10 clusters for the same reason as
above.

B. Computational Results

In the experiments, the MST-MA was run with a population
size ofP = 40. The MA was terminated upon convergence or
before the 200th generation. The recombination and mutation
rate was set to40% and a single point-mutation per mutation
step was applied. The experiments were repeated 50 times and
the best solution according to Eq. 6 is shown. Additionally,
we did random partitions, took the best out of 400.000 runs
(50x40x200) and evaluated them in the same manner.

The Davies-Bouldin (DB) indices and the number of genes
per cluster for the functional MST-MA clusterings and the
random partitions are shown in Tab. I and Tab. II. For both
datasets, the DB indices of the MST-MA clustering are much
lower than for the random partition indicating good clusters.
Nevertheless, in both cases the MST-MA clustering produces
both good clusters with very low DB indices and a little less
compact ones with a higher validity index. Nevertheless, all
clusters are much better than those of the random partition.

TABLE I

DATASET 1: CLUSTER VALIDITY VALUES FOR THE FUNCTIONAL MST-MA

CLUSTERING AND A RANDOM PARTITION.

Cluster MST-MA random partition
DB(C) # genes DB(C) # genes

1 1.440 20 2.055 17
2 1.692 40 2.056 16
3 1.240 9 1.892 20
4 1.255 9 2.076 13
5 1.500 22 2.084 19
6 1.585 25 2.071 18
7 1.303 21 2.044 18
8 1.692 18 2.084 18
9 1.529 25 2.055 14
10 1.227 12 2.045 17
11 1.233 9 2.005 16
12 1.240 12 2.076 16
13 1.062 8 2.053 18
14 1.254 8 2.071 18

total 1.375 238 2.047 238

TABLE II

DATASET 2: CLUSTER VALIDITY VALUES FOR THE FUNCTIONAL MST-MA

CLUSTERING AND A RANDOM PARTITION.

Cluster MST-MA random partition
DB(C) # genes DB(C) # genes

1 1.713 28 2.040 23
2 1.772 48 2.053 22
3 1.772 14 2.053 21
4 1.729 24 2.029 25
5 1.730 41 2.026 21
6 1.513 9 2.040 25
7 1.307 14 2.025 27
8 1.758 30 2.048 22
9 1.530 10 2.026 20
10 1.523 15 2.025 27

total 1.635 233 2.037 233

TABLE III

DATASET 1: GOANNOTATION OF THE GENES OF CLUSTER11.

Cluster 11

Acc. number Gene Ontology terms

AA053461 asparagine biosynthesis
glutamine metabolism

R00824 L-serine biosynthesis
L-serine metabolism

AA026314 tetrahydrobiopterin biosynthesis
AA025800 L-serine biosynthesis
AA043796 lactose biosynthesis
N32784 neurotransmitter biosynthesis and storage

nitric oxide biosynthesis
phenylalanine catabolism

W44416 drug resistance
glutamine metabolism
nucleobase, nucleoside, nucleotide and nucleic acid

metabolism
’de novo’ pyrimidine base biosynthesis

N35315 amino acid metabolism
AA040861 UDP-N-acetylglucosamine biosynthesis

The number of genes per cluster indicate that the low DB
indices for the MST-MA are not only due to clusters contain-
ing one or two genes, where the DB index would be low per



TABLE IV

DATASET 1: GOANNOTATION OF THE GENES OF CLUSTER5.

Cluster 5

Acc. number Gene Ontology terms Acc. number Gene Ontology terms

R45687 cell cycle AA039640 regulation of cell cycle
mitosis regulation of CDK activity mitosis

N21470 cell adhesion R15989 cell growth and/or maintenance
muscle contraction oncogenesis
oncogenesis AA016305 cell cycle

AA019203 chromosome organization and biogenesis (sensu N55327 cell cycle arrest
Eukarya) negative regulation of DNA replication

AA001025 cell cycle arrest W90493 cell cycle
regulation of cell cycle DNA replication and chromosome cycle
cell growth and/or maintenance mitosis
response to DNA damage stimulus mitotic chromosome movement
regulation of transcription, DNA-dependent mitotic metaphase mitotic metaphase plate congression

W46792 cell cycle R20750 cell growth and/or maintenance
regulation of cell cycle DNA methylation
DNA metabolism inflammatory response
oncogenesis oncogenesis
regulation of transcription, DNA-dependent transcription from Pol II promoter
regulation of transcription from Pol II promoter regulation of transcription from Pol II promoter

T91871 anterior compartment specification R43551 cell growth and/or maintenance
oncogenesis DNA repair
posterior compartment specification mismatch repair
regulation of transcription, DNA-dependent oncogenesis

R40626 regulation of exit from mitosis N90191 cell cycle
septin assembly and septum formation mitosis

R10992 cell cycle W74500 cell cycle
mitosis regulation of cell cycle
mitotic checkpoint mitosis start control point of mitotic cell cycle

T48153 cell cycle N23941 cell cycle
chromosome organization and biogenesis (sensu cell cycle arrest

Eukarya) regulation of cell cycle
regulation of mitosis induction of apoptosis by intracellular signals
DNA replication and chromosome cycle negative regulation of cell proliferation
mitosis oncogenesis

AA001916 cell cycle regulation of CDK activity
mitosis N80129 heavy metal sensitivity/resistance
mitotic G2 checkpoint T89175 cell cycle
oncogenesis cell growth and/or maintenance
regulation of CDK activity

definition, but can be seen as real good clusters.

Beside the mathematical evaluation of the clusters, we also
evaluate them biologically by having a closer look at the actual
GO annotation of the genes. Tables III - V show the GO
annotation of selected clusters of the first dataset (due to space
limitation, we can only show selected clusters of one dataset),
including examples of compact and well separated clusters as
well as a cluster with an inferior validity value (Cluster 5,
see Tab. IV). In all tables, GO terms belonging to the same
biological process are printed in bold.

It is clearly visible that genes in clusters with good validity
indices are also annotated with the same or similar GO terms.
Tab. III shows the GO annotations of cluster 11. It is obvious
that every gene is annotated with at least one function involved
in amino and nucleic acid metabolism. Another example is
cluster 13 (see Tab. V): all genes in that cluster participate in
DNA repair and replication. The same holds true for cluster
14 (see Tab. V) where all genes are annotated with a role in
protein folding and modification. In cluster 12 (see Tab. V), 9
out of 12 genes are involved in lipid metabolism. Due to space

limitation, clusters 1-4, 6-9 and 10 are not shown, but in most
of the cases the results are similar: e.g. cluster 3 contains genes
that have to do with fatty acid metabolism, cluster 4 genes are
involved in protein biosynthesis. Genes of cluster 7 regulate
transcription and most genes in cluster 8 have something to
do with cell adhesion (all data not shown).

Nevertheless, some clusters, especially those with higher
DB indices, contain genes of two different functions (data not
shown). Cluster 1 genes are involved in RNA metabolism and
/ or response to stress. Those of cluster 2 are annotated with
at least one of the following three functions: cell proliferation,
cell growth and cell-cell signaling. However, cell growth and
cell proliferation are not too far away, since a cell first has
to grow before it proliferates. Additionally, genes of cluster 6
belong either to signal transduction or to cell adhesion. Cluster
9 contains genes that are mostly annotated with apoptosis,
but some are also involved in development. Again, these two
functions are not too far apart, since apoptosis often occurs
during development. The same holds true for cluster 10 whose
genes are involved in immune response or blood coagulation.



TABLE V

DATASET 1: GO ANNOTATION OF THE GENES OF CLUSTER12, 13AND 14.

Cluster 12

Acc. number Gene Ontology terms

W91979 cholesterol biosynthesis
N91268 lipid metabolism

steroid biosynthesis
AA053028 cholesterol biosynthesis

cholesterol metabolism
germ-cell migration
gonad development

R38619 fucose metabolism
AA053173 cholesterol biosynthesis

steroid biosynthesis
AA045181 C21-steroid hormone biosynthesis

cholesterol metabolism
lipid metabolism
mitochondrial transport
steroid metabolism

AA045372 cholesterol biosynthesis
isoprenoid biosynthesis
steroid biosynthesis

AA045283 cell growth and/or maintenance
germ-cell migration
lipid metabolism

AA053331 cholesterol biosynthesis
AA044444 glycolysis
AA057761 glycolysis
AA001722 ATP catabolism

citrate metabolism
coenzyme A metabolism
lipid metabolism

Cluster 13

H6337 DNA repair
pyrimidine-dimer repair, DNA damage excision

N22858 chromosome organization and biogenesis
(sensu Eukarya)

DNA methylation DNA recombination
DNA repair

N68268 DNA replication
DNA replication, priming

W93122 DNA dependent DNA replication
DNA replication

N93479 DNA replication
H29274 DNA repair

DNA replication double-strand break repair
UV protection

AA053076 DNA replication
AA031961 cell cycle

regulation of cell cycle
cell proliferation
DNA repair
regulation of CDK activity

Cluster 14

AA043103 protein modification
AA004517 protein modification
H94471 protein complex assembly
AA056621 protein folding
N49296 protein folding
AA045437 protein modification
N98463 protein modification
AA026120 protein modification

regulation of transcription, DNA-dependent

Furthermore, we also want to evaluate biologically clusters
with higher DB indices. An example for such a cluster is

cluster 5 (see Tab. IV). It contains 22 genes and 19 of them
play a role during the cell cycle. This indicates that despite
the higher DB index, our MST-MA still finds good functional
clusters. Similar results were optained with dataset 2.

In general, one can state that although some clusters are less
homogeneous than others, most of the clusters found clearly
contain genes that belong to defined biological processes. Ad-
ditionally, the DB indices indicate a real clustering according
to gene functions and no random partition. Thus, our results
show that the proposed functional clustering algorithm is able
to detect clusters of genes that share similar functions and
thus belong to similar biological processes defined by Gene
Ontology annotation. So far, no automatic method is known
to us that groups genes according to their function. This task
is especially important during the analysis of high throughput
data, where often huge lists of genes have to be biologically
sorted, a work that has been done by hand before. Thus, our
method is highly valuable for the analysis of large amounts of
genomic data.

VII. D ISCUSSION ANDFUTURE RESEARCH

In this paper, we presented a new functional clustering
algorithm for gene expression data and biological annotation.
The biological annotation is based on the Gene Ontology, a
tool that is available in most public databases. We showed
that our method is able to detect clusters of genes with similar
functions. To our knowledge, this is the first automated method
that produces a functional clustering of genes. Therefore,
we provide a useful tool to replace exhausting and time
consuming work that so far is done by hand. Additionally, our
algorithm is based on a memetic framework that is generally
able to overcome less promising local optima and find more
global optimal solutions. Furthermore, in previous work, it has
been shown to be superior to other classical non-mean based
clustering algorithms [32].

Nevertheless, we recognized some problems that should
also be discussed here: for each gene a mapping to the
Gene Ontology annotation is needed. In most of the cases
the GO annotation is available in public databases, especially
when dealing with genes from standard microarrays of large
companies that usually provide that kind of annotation to their
customers. Nevertheless, there are still some genes that do
not have that kind of annotation and that could therefore not
participate in such an analysis.

Furthermore, we use best distances for our clustering, which
of course produces a loss of available information, since
a gene might have more than one function, but only one
is used for the clustering. Additionally, the fact that our
algorithm sometimes produces clusters that contain genes of
two different biological processes is probably also caused by
the usage of best distances. Since we build an MST in the
beginning, two genes can be linked via a third gene that
shares one function with the first and one with the second
gene, although both functions may be quite different. One
might think that using average functional distances instead,
may solve that problem, but previous experiments with that



did not lead to good results. We think, that a fuzzy approach
might be an appropriate solution for that problem and we are
currently working on that.

Additionally, we want to examine more different biological
distance measures than the proposed one in more detail as well
as functional similarity measures. One might also think of a
similarity based clustering, which is easy to implement with
our MST-MA. Also other distance and similarity measures that
are not Gene Ontology based could be developed.

In summary, we showed that most clusters found by our
MST-MA contain genes annotated with the same or similar
functions. This fact enormously facilitates the analysis of high
throughput data during which researchers are often forced
to simply group a list of genes according to their function.
Hence, our proposed method is shown to be highly valuable
for clustering genes according to their function and therefore
constitutes a good alternative to classical non-automatized
procedures.
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