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Abstract— In this paper we address the problem of finding
gene regulatory networks from artificial data sets of DNA mi-
croarray experiments. Some researchers suggested Evolutionary
Algorithms for this purpose. We suggest to use an enhancement
for Evolutionary Algorithms to infer the parameters of the non-
linear system given by the observed data more reliably and
precisely. At present, we use S-Systems because they are a general
mathematical model for simulating the complex interactions
of gene regulatory networks. Due to the limited number of
available data, the inferring problem is highly under-determined
and ambiguous. Further on, the problem often is highly multi-
modal and therefore appropriate optimization strategies become
necessary. We propose to use an island model to maintain
diversity in the EA population to prevent premature convergence
and to raise the probability of finding the global optimum.

I. INTRODUCTION

Fifty years ago, Watson and Crick identified the physical
structure of the DNA, thus starting a new age for biological
research. Their discovery made it possible to describe diseases
on a commonly agreed theoretical base. Since then, Systems
Biology has become an important field in biology, which aims
at deep insights into biological systems. While new techniques
in molecular genetics for measuring gene expression levels of
a single cell or tissue like DNA microarrays led to remarkable
advances in the understanding of processes at the system level
of an organism, the main focus of current research is mainly
on the identification of genes that show significant changes
between different experimental conditions, or which can be
clustered due to the same course of expression over time.
The next step is to understand the principles of biological
systems grounded on the molecular level. To provide a deep
understanding of life, we have to understand not only the
components of the systems but also their dependencies, in-
teractions, and structures.

Within the last few years, researchers obtained large
amounts of data sets of gene expression experiments, which
were mostly analyzed with standard low-level analysis meth-
ods like differential comparison, clustering or classification.
But these methods are using only a very small part of the
information hidden in the data sets. A system-level approach
is necessary, if we want to incorporate large amounts of data

into a comprehensive model of the structure and functions of
the complex mechanisms within an organism.

Recently developed DNA microarray technology allows
measurement of gene expression levels for a whole genome at
the same time. Experiments using this technique provide new
insights into activities of genes under different biochemical
and physiological environment conditions and can therefore
be used to extract time-dependent relationship information of
interacting genes, i.e. to identify gene regulatory networks.
A gene regulatory network (GRN) defines the complicated
structure of dependencies of RNA produced by one expressed
gene influencing regulatory mechanisms of other genes. The
amount of expression data grows rapidly because this tech-
nique allows for high-throughput experiments. And although
increasing numbers of microarray data sets become available,
mathematical methods are infeasible to determine regulatory
networks from a small number of chips. Several approaches
have been suggested in the past few years addressing this
problem. The following section will give an overview over
techniques to infer gene regulatory networks.

A. Related Work

Inferring the underlying relationships between genes is
subject to current research and has recently become one of the
major topics in bioinformatics due to the increased computing
power available. There have been some approaches in the
field of Systems Biology to solve the combinatorial problem
of the inference process.

The earliest models to simulate regulatory systems found
in the literature are Boolean or Random Boolean Networks
(RBN) [15]. In Boolean Networks gene expression levels can
be in one of two states: either 1 (on) or 0 (off). The quantitative
level of expression is not considered. Two examples for
inferring Boolean Networks are given by Akutsu [1] and
the REVEAL algorithm by Lianget al. [19]. These models
have the advantage that they can be solved with only small
computational effort. But they suffer from the disadvantage of
being tied to discrete system states.



In contrast to discrete methods like RBNs, qualitative net-
work models allow for multiple levels of gene regulation as
presented for example by Thieffry and Thomas [26]. Akutsu
et al. [2] suggest a heuristic for inferring such models from
time series data.

There are a number of variants for quantitative networks.
First, the weighted matrix model by Weaveret al. [29], for
example, considers the continuous level of gene expression.
This approach parameterizes the mathematical model with
discrete time and linear relationships between the components
of the system. The topology and the parameters of this
model have been successfully inferred by the use of Genetic
Algorithms in [3] and [4].

An alternative model for GRNs, used to infer regulatory
mechanisms, are S-Systems [23]. S-Systems have recently
become popular. They have been examined in several publica-
tions. Tominagaet al. [27], for example, inferred S-Systems
by using a real-coded GA. They examine two examples with
N = 2 and N = 5 genes, respectively, but only selected
genes were inferred in the 5-dimensional regulatory network.
Kikuchi et al. [16] used the same approach as Tominaga, but
introduced a modification to gain sparse matrices.

Further on, differential equations can be used to describe
the interactions between genes in a regulatory system. Chen
et al. [9] and de Hoonet al. [10] introduced methods to find the
parameters of linear differential equations by using specialized
heuristics.

Examples for non-parameterized quantitative networks are
arbitrary differential equations, which are the most flexible
and powerful approach to model the dependencies of genes.
The most prominent method to work on arbitrary differential
equation systems is Genetic Programming (GP) as shown
for reverse engineering of pathways by Koza [18] and for
regulatory networks by Andoet al. [5] and Sakamoto and
Iba [22].

B. Motivation

The methods using EAs suggested in the literature face
several problems. One of them is that the EA often converges
prematurely to local optima. Due to the deceptiveness and
multi-modality of the search space, it is very likely that even
with repeated runs of the optimization process only more
local optima are found. Thus, even a multi-run optimizing
process results in only suboptimal network models. To bypass
this issue, we use an island strategy to preserve the diversity
in the EA population and thus increase the probability of
finding better solution than the standard algorithms.

The following publication is structured as follows. Detailed
description of our proposed method will be given in section
II and III. Applications and results will be shown in sections
IV. Finally, conclusions and an outlook on future research
will be covered by sections V and VI.

II. MATHEMATICAL MODEL

On an abstract level, the behavior of a cell under given
environmental conditions is represented by gene regulatory
dependencies ofN genes, whereN is either the number of
genes in the genome or the number of genes in a specific
sub-network, e.g. the immune pathway. Each of these genes
gi produces a certain amount of RNAxi when expressed. It is
known that RNA or RNA products may induce the activation
of other genes. Therefore, the overall concentration of the
RNA changes over time depending on the concentrations of
other RNA levels:~x(t + 1) = hi(~x(t)) , ~x(t) = (x1, · · · , xn),
wherehi describes the change of each RNA level depending
on all or only on some RNA concentrations in the previous
time step.

To model and to simulate regulatory networks we decided
to use S-Systems since they are well-documented and
examined and are flexible.

1) S-Systems: S-Systems are a type of power-law
formalism, which has been suggested by Irvine and Savageau
[23], [14]. S-Systems are systems of differential equations,
which have been derived from a Taylor approximation of a
system of arbitrary differential equations.

They are given by a set of nonlinear differential equations
as follows:

dxi(t)
dt

= αi

N∏

j=1

xj(t)Gi,j

︸ ︷︷ ︸
synthesis

−βi

N∏

j=1

xj(t)Hi,j

︸ ︷︷ ︸
degradation

(1)

whereGi,j andHi,j are kinetic exponents,αi and βi are
positive rate constants andN is the number of equations in
the system. The equations in (1) can be seen as divided into
two components: a synthesizing and a degradation component.

The kinetic exponentsGi,j andHi,j determine the structure
of the regulatory network. In the caseGi,j > 0 gene gj

induces the synthesis of genegi. If Gi,j < 0 genegj inhibits
the synthesis of genegi. Analogously, a positive (negative)
value ofHi,j indicates that genegj induces (suppresses) the
degradation of the mRNA level of genegi.

The S-System formalism has a major disadvantage in that
it includes a large number of parameters that have to be
estimated. The total number of parameters in S-Systems is
2N(N + 1), with N the number of state variablesxi (genes).
This causes problems with increasing number of participating
genes due to the quadratically increasing number of parameters
to infer. The parameters of the S-System~α, ~β, G, and H
are optimized with Evolutionary Algorithms described in the
following paragraph.



III. OPTIMIZATION TECHNIQUES

The following sections describe the optimization algorithms
used in this publication. The following paragraphs will also
give a brief introduction to the general principles of Evolu-
tionary Algorithms.

A. Evolutionary Algorithms

Evolutionary Algorithms are stochastic optimization
techniques that mimic the natural evolution process of
repeated mutation and selection as proposed by Charles
Darwin. They have proved to be a powerful tool for
solving complex optimization problems and in particular
combinatorial problems. Three main types of evolutionary
algorithms have been proposed in the last decades: Genetic
Algorithms (GA), mainly developed by J.H. Holland [13],
Evolution Strategies (ES), developed by I. Rechenberg [21]
and H.-P. Schwefel [24], and Genetic Programming (GP)
by J.R. Koza [17]. Each of these uses different solution
representations and different operators working on them.

1) Genetic Algorithm (GA):Genetic Algorithms imitate
the evolutionary processes with emphasis on genotype based
operators (genotype/phenotype dualism). The GA works on
a population of artificial chromosomes, referred to as indi-
viduals. Each individual is represented by a string ofL bits.
Each segment of this string corresponds to a variable of the
optimizing problem in a binary encoded form.

The population is evolved in the optimization process
mainly by crossover operations. This operation recombines
the bit strings of individuals in the population with a certain
probability pc. Mutation is secondarily in most applications
of a GA. It is responsible to ensure that some bits are
changed, thus allowing the GA to explore the complete
search space even if necessary alleles are temporarily lost
due to convergence.

2) Evolution Strategies (ES):The second type of an Evo-
lutionary Algorithm is the Evolution Strategy. ES differ from
GAs mainly in respect to the representation of solutions and
the selection operators. They mainly rely on sophisticated
mutation operators, smaller population sizes and an increased
selection pressure.

The selection of the individuals forming a population
is deterministic, as in contrast to GAs, where a stochastic
method is used. In case of the (µ, λ)-ES selection strategy,
the µ best individuals from a population ofλ offsprings
are selected to create the next population. An alternative
implementation is the (µ + λ)-strategy, which selects the
µ best individuals from the population of theλ offsprings
joined with the old population ofµ parents.

B. Island Strategy

Island strategies have been suggested as an improvement for
EAs for many problem types and they are well documented.
An overview on distributed EA and different distribution

schemes can be found in [8]. Other applications of island
strategies can be found, for example, in [6], [7], and [28].
We suggest to utilize the abilities of island models in the
inference process of gene regulatory systems to maintain
the diversity within the EA population and to reduce the
chance of premature convergence. The general principle of
an island strategy is a set ofl EA populations, which evolves
independently form generations. Then migration occurs.

Island Strategy

begin

initialize island populations

while (termination criteria not met)

evolve populations for m generations

migrate best individuals

endwhile

end

Fig. 1. General principle of the island strategy

Migration is implemented in our algorithm as selecting the
best individuals from each EA population, which are then
mutated and recombined to form new island populations. After
migration, each EA population evolves independently again.
The general principle of an island strategy is outlined in fig.
1. Fig. 2 shows schematically the two phases of the island
strategy, i.e. the independent evolution of subpopulations and
the migration phase.
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Fig. 2. Two phases of the island model. (A: independent evolution of
subpopulations, B: migration)

Having multiple populations initialized independently en-
sures to have a diverse set of individuals covering a large
part of the optimization search space. With migration, good
solution elements are able to spread over thel subpopulations.
This can enable a subpopulation to escape a local optimum and
thus increase the performance of the overall algorithm.

C. Fitness

For assessing the quality of the locally obtained results we
use the following equation for calculation of the fitness values
for the optimization process:

f =
N∑

i=1

T∑

k=1

(
x̂i(tk)− xi(tk)

xi(tk)

)2

(2)



where N is the total number of genes in the regulatory
system,T is the number of sampling points taken from the
time series and̂x and x distinguish between estimated data
and experimental data. The overall problem is to minimize
the fitness valuef . This function has been used in several
publications [16], [20], [27].

IV. APPLICATIONS

Our approach was tested on small artificial gene regulatory
networks (N ≤ 20 genes). To test the method we created
artificial microarray data sets, which were to be reverse
engineered by the compared algorithms. The data sets were
randomly created and simulated. Because GRNs are sparse
systems in nature, we created regulatory networks randomly
with a maximum cardinality ofk ≤ 3, i.e. each of theN
genes depends on three or less other genes within the network.

EA parameters. We compared the island strategy with
two standard algorithms, a standard GA and a standard ES.
The GA used a population of possible solutions with500
individuals, tournament selection strategy with a tournament
group size of 8 and a 3-point crossover-operator with a
crossover probability ofpc = 1.0 and a mutation probability
of pm = 0.1. The decision variables are binary encoded using
32 bits and one-point mutation was applied onto the genotype.

The inference by the standard ES (real-value encoding) was
performed using a (µ,λ)-ES withµ = 10 parents andλ = 100
offsprings together with a Covariance Matrix Adaptation
(CMA) mutation operator [12] without recombination. In
case of the ES, the probabilities of crossover and mutation
were chosen aspc = 0.0 andpm = 1.0.

In case of the proposed island-strategy, two different
implementations were tested. The first usedl = 10 (µ,λ)-ES
island populations withµ = 10, λ = 50, CMA and no
recombination. Migration took place after each ES-island
terminated due to a fixed number of fitness evaluations.
The second was implemented with a GA with a population
size of 100 individuals encoding real values with 32-bits.
For recombination a 3-point crossover (crossover probability
of pc = 1.0) was used with tournament selection with a
tournament group size of8 and one-point mutation (mutation
probability of pm = 0.1).

All optimizations were repeatedm = 20 times to gain
an averaged course of fitness values and the EA settings
were determined in preliminary experiments. To compare
the results of the three methods, a total number of fitness
evaluationsNmax = 1, 000, 000 was specified.

A. N = 5 Genes

The dynamics of this artificial gene regulatory network is
shown in fig. 3. The fitness courses for the three methods are
given in the following graph (see fig. 4).
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Fig. 3. Artificial gene regulatory system (N = 5)
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Fig. 4. Fitness of the inference process (N = 5)

As can be seen in the graph, the standard GA started
with better fitness values due to the larger population size.
Further on, the GA optimized until the termination criterion
was reached suggesting better results with increased number
of total evaluations. The ES converged faster than the GA
in the beginning, but started to stagnate after approximately
250, 000 evaluations on average. This is most likely because
it cannot escape a local optimum. In contrast to this, both
island strategies improved the fitness value continuously and
seemed to be not converged at the end of the optimization,
which suggests even better results with a larger number of
fitness evaluations are possible. The GA based island strategy
started with a larger population size and therefore with better
fitness values as the ES based island strategy. But during
the optimization process, the ES based strategy resulted in
better solutions regarding the fitness function than the other
algorithms. This implementation used the advantage of the ES
to converge faster to optima than a GA. The island strategy
ensured that the ES populations do not converge to the very



same subspace of the optimization space, i.e. converge to the
same optima.

B. N = 10 Genes

As a second test case we created another10-dimensional
regulatory network randomly. The dynamics of the example
are given in fig. 5.
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Fig. 5. Artificial gene regulatory system (N = 10)

The optimization processes were performed as in the ex-
ample before, but with a higher number of fitness evalua-
tions. Each algorithm was terminated after a total number of
Nmax = 2, 000, 000 evaluations to pay respect to the increased
number of parameters of the model.
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Fig. 6. Fitness of the inference process (N = 10)

Fig. 6 shows the fitness course averaged over the20
repeated optimization runs. As in the example before, both
island strategies outperformed the two conventional methods
by finding better models with respect to the fitness value. The
ES converged again to a local optimum without being able to
escape. The standard GA started with better fitness values but

was not able to converge to solutions with a comparable good
fitness value than the two island strategies. Again, the island
strategies performed best with an advantage for the ES based
island strategy.

C. N = 20 Genes

The third GRN inferred with the proposed methods is an
artificial 20-dimensional system. The simulated time courses
are not given here because the large number of components
of the system makes the graph unclear. The optimization was
performed with the same parameter settings as described in
the previous section (see section IV-B,N = 10 genes).
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Fig. 7. Fitness of the inference process (N = 20)

Fig. 7 shows the averaged fitness course. Again, the standard
ES and the GA did not find a solution with the given number
of fitness evaluations. The ES converged after approximately
1, 200, 000 fitness evaluations to a local optimum and the
GA optimizes until the termination criterion was reached. The
island strategies converged to optima with good fitness values,
suggesting again that they were not fully converged at the end
of the optimization process. And again the ES based island
strategy converged faster than the GA based.

V. CONCLUSION

The problem of inferring GRNs is a very difficult process
due to the limited data available and the large number of
unknown variables in the system. One of the problems found in
the literature is that conventional methods repeatedly run into
local optima, thus being not able to find the optimal solution.

In this paper we suggested to use island strategies to infer
gene regulatory networks, because they efficiently preserve the
diversity of network candidates in the optimization process of
inference problems to find genetic networks from time-series
data. We showed that island strategies were able to find better
solutions with respect to the fitness than the standard methods.
Further on, the proposed methods converged faster to good
solutions. The ES based island strategy performed better than
the GA based implementation. This is most likely because it



uses the advantage of the ES to converge faster to optima
than the GA. Additionally, the island strategy ensures diver-
sity in the subpopulations, thus resulting in better solutions.
Therefore, island strategy algorithms show improved quality
of results and can be used together with other techniques to
clearly identify optimal network models.

Further on, our algorithms proved to work even for middle-
sized examples (N = 20 genes). Most examples found in
literature are artificial and very small, i.e. with a total number
of ten genes or lower, while in biological networks even small
systems have at least50–100 components. We showed that our
method is able to handle sparse systems (k ≤ 3) with 20 genes,
restricted currently only by computational performance. Future
experiments on high performance computers will address
large-scale systems with at least100 genes.

VI. FUTURE WORK

In future work, we will exploit the ability of island models
to result in better solutions by combining island strategies
with other enhancements of the inferring process. For example,
iterative methods [25] can be used to iteratively identify the
correct regulatory network model by incorporating additional
microarray data sets.

Furthermore, we will continue to test our method with
real microarray data in close collaboration with biological
researchers at our facility. In future work we plan to use
real microarray data sets and to include a-priori information
into the inference process like partially known pathways or
information about co-regulated genes, which can be found in
literature.

Additionally, other models for gene regulatory networks
will be examined for simulation of the non-linear interaction
system as listed in Section II to overcome the problems with
a quadratic number of model parameters of the S-System.
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[6] T. Bäck. Evolutionary algorithms in theory and practice. Oxford
University Press, 1996.
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