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Abstract. In this paper we address the problem of finding gene regu-
latory networks from experimental DNA microarray data. We introduce
enhancements to an Evolutionary Algorithm optimization process to in-
fer the parameters of the non-linear system given by the observed data
more reliably and precisely. Due to the limited number of available data
the inferring problem is under-determined and ambiguous. Further on,
the problem often is multi-modal and therefore appropriate optimiza-
tion strategies become necessary. Therefore, we propose a new method,
which will suggest necessary additional biological experiments to remove
the ambiguities.

1 INTRODUCTION

In the past few years, DNA microarrays have become one of the key techniques
in the area of gene expression analysis. This technology enables the monitoring
of thousands of genes in parallel and can therefore be used as a powerful tool to
understand the regulatory mechanisms of gene expression in a cell.

However, due to the huge number of components within the regulatory sys-
tem, a large amount of experimental data is needed to infer genome-wide net-
works. This requirement is almost impracticable to meet today, because of the
high costs of these experiments and due to the fact that the investigated pro-
cesses are too short and do not allow for more sampling points in time. To bypass
this problem, additional data has to be acquired like knock-out, over-expression
experiment data or data sets with different starting conditions that decrease the
uncertainties in the system.

In this paper we propose a methodology for reverse engineering large sets
of time series data obtained by expression analysis. This is successively done
by optimizing the parameters of systems of differential equations modelling the
interactions in the network for the given data followed by a second phase, aimed
to reduce the ambiguities by suggesting subsequent knock-out experiments. In-
formation gained by these follow-up experiments are incorporated into the first
phase to increase the probability of finding the correct network model. And al-
though traditional knock-out experiments are expensive and time consuming,



techniques like chemical knock-outs are subject of recent research and will be-
come more flexible in future. Further on, time series in which single gene products
are over-expressed can be accomplished comparably easily and result in informa-
tion that can be used in our approach as well. Our approach is also able to use
data sets with different starting concentrations of the relevant gene products,
i.e. examining the genes of interest under different environment conditions.

Section 2 of this paper presents an overview over related work and lists
associated publications. Detailed description of our proposed method will be
given in section 3 and example applications will be shown in section 4. Finally,
conclusions and an outlook on future research will be covered by section 5.

2 RELATED WORK

Researchers are interested in understanding the mechanisms of gene regulatory
processes and therefore in inferring the underlying networks. This has recently
become one of the major topics in bioinformatics due to the increased amount
of data available. The following section briefly describes the work that has been
done in this area.

One kind of model to simulate regulatory systems found in the literature
are Boolean or Random Boolean Networks (RBN) [10, 19]. In Boolean Networks
gene expression levels can be in one of two states: either 1 (on) or 0 (off). The
quantitative level of expression is not considered. Two examples for inferring
Boolean Networks are given by Akutsu [1] and the REVEAL algorithm [12].

In contrast to discrete methods like RBNs, qualitative network models allow
for multiple levels of gene regulation. Two examples for this kind of approach
are given by Thieffry and Thomas in [16]. Akutsu et al. suggest a heuristic for
inferring such models in [2].

Quantitative models like the weighted matrix model by Weaver et al. [18] con-
sider the continuous level of gene expression. The topology and the parameters of
this model have been successfully inferred by the use of Genetic Algorithms in [3]
and [4]. Inference methods based on linear models for gene regulatory networks
are given for example in [5] and [6]. An example for mathematical models using
S-Systems to infer regulatory mechanisms has been examined by Tominaga et
al. [17].

3 MODELLING

On an abstract level, the behavior of a cell is represented by a gene regulatory
network of N genes. Each gene gi produces a certain amount of RNA xi when
expressed and therefore changes the concentration of this RNA level over time:
x(t + 1) = h(x(t)) , x(t) = (x1, · · · , xn).

To model and to simulate regulatory networks we decided to use S-Systems
since they are well-documented and examined. But there are alternatives as
listed in section 2, which will be the subject of research in future applications.



S-Systems are a type of power-law formalism which has been suggested by
Irvine and Savageau [9, 14] and can be described by a set of nonlinear differential
equations:

dxi(t)
dt

= αi

N∏

j=1

xj(t)Gi,j − βi

N∏

j=1

xj(t)Hi,j (1)

where Gi,j and Hi,j are kinetic exponents, αi and βi are positive rate constants
and N is the number of equations in the system. The equations in (1) can be seen
as divided into two components: an excitatory and an inhibitory component.
The equation system is integrated using a fourth-order Runge-Kutta algorithm
(with adaptive step size controlling). The parameters of the S-System α, β, G,
and H are optimized with an enhanced Evolutionary Algorithm described in the
following.

Evolutionary Algorithms have proved to be a powerful tool for solving com-
plex optimization problems. Three main types of evolutionary algorithms have
evolved during the last 30 years: Genetic Algorithms (GA), mainly developed
by J.H. Holland [8], Evolutionary Strategies (ES), developed by I. Rechenberg
[13] and H.-P. Schwefel [15] and Genetic Programming (GP) by J.R. Koza [11].
Each of these uses different representations of the data and different operators
working on them. They are, however, inspired by the same principles of natural
evolution. Evolutionary Algorithms are a member of a family of stochastic search
techniques that mimic the natural evolution as proposed by Charles Darwin of
mutation and selection.

Because ES are suited for optimizing problems based on real values, they
meet our requirement best. The following listing describes the general principle
of Evolutionary Strategies:

1. Create an initial set (population) Pt=0 of λ solutions (individuals).
2. Evaluate all individuals of this population Pt according to a given fitness

function.
3. Select the µ best individuals of the population with respect to the calculated

fitness value as the population of parents P ′t .
4. Mutate/recombine individuals of the parent generation to create a new pop-

ulation of λ offsprings P ′′t .
5. Replace the initial population by the new population of offsprings Pt+1 = P ′′t

(eventually merged with Pt).

Repeat steps 2 to 5 until a termination criterion is met.

In our application an ES individual encodes the parameters α, β, G and H
and represents a possible solution of the model identification problem.

For evaluating the fitness of the individuals we used the following equation
for calculation of the fitness values:

f =
N∑

i=1

T∑

k=1

{(
x̂i(tk)− xi(tk)

xi(tk)

)2
}

(2)



where N is the total number of genes in the system, T is the number of
sampling points taken from the time series and x̂ and x distinguish between
estimated data and sampled data. The overall problem is to minimize the fit-
ness value f . In theory, the solution, i.e. the inferred GRN, should be the best
individual found by the ES after termination.

Due to the small number of data the system is highly under-determined and
therefore finding the biologically correct model is very difficult. A large number
of different sets of model parameters fit the given data with comparably good
fitness values (in respect to the fitness function mentioned above) but with only
small resemblance to the true system.

To cope with this issue, our proposed method consists of a framework holding
m ES populations, which will be optimized separately to gain different models
satisfying the constrains given by the fitness function. This framework combines
the best individuals from each population to form a population of best-suited
models, which will have comparably good fitness values due to the ambiguity of
the data but different parameters. To choose the very best model, i.e. the model
representing the real biological dependencies, each of the combined models is
further examined by simulating virtual knock-out, over-expression or changed
start condition experiments. These virtual experiments are performed in silico
for every gene in each model, i.e. every gene in a model is knocked out to gather
information about the impact of that gene on the network represented by the
current model. After the genes are ranked for each model, a committee decision is
made to determine which gene has to be knocked out in real world experiments
to gain the strongest information benefit for the inference process. The rank-
ings is presented to biological researchers to actually perform the corresponding
experiments.

The whole process is repeated with incorporation of the new data until a
minimum quality level of the resulting models is reached. These models can
then be verified by biologists to find the overall best network model. The details
of this iterative process are described in the following work flow.

3.1 Inference work flow

The following work flow illustrates the interactive process of computer scientists
and biologists to infer a GRN from expression data:

Phase i = 1a The first optimization phase is started with m different initial
populations to reach a diverse set of individuals. After the first optimization, the
algorithm collects the best l individuals of the m ES populations and evaluates
each of the l ∗m models by finding the gene having the strongest impact on the
dynamics if knocked out in silico. This is done by simulating the network without
the corresponding gene and evaluating the differences of the calculated time
course to the dynamics of the complete network. In this first implementation,
we use a simple relative squared error (Eq. 2) summed up at each sampling point
over time. After this, the resulting list of genes is ranked and the top candidate
gene is suggested for further investigation.



Phase i = 1b Additional microarray experiments based on the knock-out
proposals have to be accomplished yielding another set of expression data. These
experiments can either be carried out using techniques like knock outs or by
inhibiting single gene products chemically.

Phase i = 2a The set of new data is incorporated in the next optimization
step. The whole process is then repeated iteratively until a termination criterion
is met.

4 APPLICATIONS

To illustrate our method, we established two regulatory network systems, which
were simulated to gain sets of expression data. After creating the data sets,
we used our proposed algorithm to reverse engineer the correct model parame-
ters. The following sections show this for a 5-dimensional and a 10-dimensional
example, respectively.

4.1 Gene Regulatory Network with N = 5 genes

Due to the fact that GRNs in nature are sparse systems, we created regulatory
networks randomly with a maximum cardinality of k <= 3, i.e. each of the N = 5
genes depends on three or less other genes within the network. The dynamics of
the example can be seen in Fig. 1.
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Fig. 1. Artificial 5-dimensional gene regu-
latory network

parameter value parameter value

α1 0.233 G11 -2.000
α2 2.330 G25 -0.788
α3 1.217 G31 -0.496
α4 1.602 G35 2.072
α5 3.153 G42 -0.473

G53 -0.958

β1 0.703 H12 -0.591
β2 2.012 H13 1.462
β3 2.737 H21 -1.025
β4 1.597 H22 0.112
β5 2.573 H53 -0.023

Fig. 2. Model parameter of the target S-
System

In Fig. 1, each xi represents the RNA level of a certain gene. At this point, we
do not differentiate between closely related molecules like mRNA and distantly
related like proteins.



Inference This time course data was then subject to our inference method as
described in Section 3. In the following subsections each phase of the algorithm
is explained using the 5-dimensional example. The results are then compared
to a standard ES with identical optimization settings but without incorporating
additional information.

Phase 1a The optimization process was performed using a (µ,λ)-ES with µ = 5
and λ = 30 together with a Covariance Matrix Adaptation (CMA) mutation op-
erator [7] and no recombination to evolve individuals. This optimization was
repeated m = 20 times with different starting populations to calculate 20 differ-
ent populations, i.e. 20 different models. After evolving the models for 10, 000
generations (total number of 300, 000 fitness evaluations), the best individual of
each population was taken to form a population of best individuals. For each
of these individuals, virtual knock-out experiments were simulated and the top
candidate genes were ranked. Tables 1 - 3 list the ranking of each gene for the
corresponding algorithm phase, i.e. the number of votes in each network.

Table 1. Ranking of
the genes (phase 1)

Gene Votes

1 9
2 3
3 4
4 1
5 3

20

Table 2. Ranking of
the genes (phase 2)

Gene Votes

1 -
2 1
3 4
4 4
5 11

20

Table 3. Ranking of
the genes (phase 3)

Gene Votes

1 -
2 1
3 16
4 3
5 -

20

Phase 1b After ranking the importance of the gene within the network the bio-
logical knock-out experiments were performed in silico resulting in an additional
set of expression data.

Phase 2-4 These phases were repeated until the correct model was found. Fig.
3 shows the averaged fitness values for each repetition phase, i.e. for the degree
of additional knock-out information in comparison with the fitness values for a
standard ES optimizer.

As can be seen in the figure, the fitness converges quickly to 0.0 for both
algorithms, which corresponds to a very good model quality with respect to the
fitness function. Unfortunately, the models found by the standard ES resemble
the original parameters only little. This is illustrated by Fig. 4, where the euclid-
ian distance between the inferred parameters and the parameters of the original
system is shown. The standard ES converges to a local optimum, which has a
comparably good fitness value but represents completely different dependencies.
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Fig. 3. Best fitness values for each phase
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Fig. 4. Distance values for each phase

The proposed method on the other hand leads directly to the global optimum,
i.e. the correct network by successively removing ambiguities.

4.2 Gene Regulatory Network with N = 10 genes

As a second and due to the increased number of participating genes more difficult
test case, we created another regulatory network randomly with a maximum
cardinality of k <= 3. The dynamics of the example can be seen in Fig. 5, where
each gene expression level is again represented by the corresponding xi.
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Fig. 5. Artificial 10-dimensional gene regulatory network

Inference The given time course data was then again inferred by our algorithm.
The optimization process was performed using the same settings for the ES as
in example 1 (see Section 4.1). The optimization was repeated m = 20 times
with different starting populations to calculate 20 different populations, i.e. 20
different models. The resulting ranking tables are not shown here due to the
limited space available.



The different phases of our algorithm were repeated until the termination
criterium was reached, i.e. a total number of 500, 000 fitness evaluations per
algorithm phase. Fig. 6 shows the averaged fitness values for each phase.
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Fig. 6. Best fitness values for each phase
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In this example, a standard ES was not able to find a solution for the op-
timization problem. Only the enhanced algorithm, which included additional
information, found the correct system, as illustrated in Fig. 7.

5 DISCUSSION

The problem of inferring GRNs is a very difficult process due to the limited
data available and the large number of unknown variables in the system. Most
examples found in literature are artificial and very small, i.e. with a total number
of ten genes or lower. And although the dimensionality of these examples is by
far not relevant to biological processes, they show the first attempts of modelling
regulatory networks from high-throughput experimental techniques.

In this paper we have shown a method to infer gene regulatory systems even
in cases where standard approaches were not able to cope with the problem of
under-determination. Our method yields promising results by incorporating ad-
ditional knowledge into the inference procedure. The necessary information can
be gathered by additional biological experiments like (chemical) knock-out and
over-expression experiments or by altering environmental conditions to change
the initial concentrations of the relevant gene products.

In future work we plan to include a-priori information into the inference
process like partially known pathways or information about co-regulated genes,
which can be found in literature. For better coverage of the solution space of the
optimizer we will use a cluster-based niching algorithm which was developed in
our group. Additional models for gene regulatory networks will be examined for
simulation of the non-linear interaction system as listed in Section 3 to overcome



the problems with those gene regulatory networks which cannot be modelled by
S-Systems.

Further on, we will continue to test our method with real microarray data in
close collaboration with biological researchers at our facility.
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