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Abstract— In this paper we investigate the impact of different
crossover operators for a real-valued Evolutionary Algorithm
on the constrained portfolio selection problem based on the
Markowitz mean-variance model. We also introduce an extension
of a real-valued genotype, which increases the performance of
the Evolutionary Algorithm significantly, independent of the
crossover operator used. This extension is based on the effect
that most efficient portfolios only consist of a selection of few
assets. Therefore, the portfolio selection problem is actually a
combination of a knapsack and continuous parameter problem.
We also introduce a repair mechanism and examine the impact of
Lamarckism on the performance of the Evolutionary Algorithm.

I. INTRODUCTION

There are numerous optimization problems in the area
of financial engineering like index tracking, credit scoring,
identifying default rules, time series prediction, trading rules,
etc. But one of the most prominent is the portfolio selection
problem, which is given by the task of how to distribute a
limited amount of money between multiple assets available
for a profitable investment strategy.
Markowitz made an early approach to give the portfolio
selection problem a mathematical background, the Markowitz
mean-variance model [12], [13]. This model assumes that
an investor would always try to maximize the return of his
investments while at the same time securing his investments
from a possible loss. Therefore, the portfolio problem gives
a multi-objective optimization problem (MOOP), maximizing
the expected return on the one hand and on the other hand
minimizing the risk (variance) of the portfolio.
While the unconstrained portfolio selection problem based on
the Markowitz mean-variance model can be solved through
quadratic programming, this is not the case for the constrained
portfolio selection problem. Therefore, there have been several
alternative approaches to the portfolio selection problem.
One of the first groups to apply Evolutionary Algorithms (EA)
on the portfolio selection problem were Tettamanzi et al. [1],
[11], [10]. Here, the MOOP was transformed into a single-
objective problem by using a trade-off function. They used
multiple EA populations with individual trade-off coefficients
and found that a parallel implementation performed much
better than a sequential one. More recently Crama et al. applied
Simulated Annealing (SA) to the portfolio selection problem

[5]. They especially pointed out that SA and similar heuristics
have the major advantage that they can be easily applied to
any kind of model with arbitrary constraints without much
modification. For the same reason Beasley et al. compared
Tabu Search, SA and EA on the portfolio selection to evaluate
their performance [4]. They solved the MOOP by using one
objective as constraint, which was increased iteratively to
obtain the complete Pareto front. But they found that no
heuristic performed significantly better and concluded that
only a combination of all three heuristics was satisfying.
Unfortunately, all these papers did not utilize the advantages
of multi-objective EAs (MOEA) to the portfolio selection
problem, although MOEA have shown to be very useful on
MOOPs [9], [6], [20]. In this paper we apply such a MOEA
and further suggest a new hybrid encoding of the portfolio
selection that proves to be more efficient than a standard
encoding. We also examine the impact of several real-valued
crossover operators and the effect of an additional repair
mechanism to search for feasible solutions with and without
Lamarckism.
In the next section we give a short introduction to the
Markowitz mean-variance model and the constraints we ap-
plied to the portfolio selection problem. In sec. III we give
details of the EA, the multi-objective optimization strategy
we applied, the crossover operators and the hybrid encoding
we suggest. Experimental results are presented in sec. IV and
conclusions and an outlook on future work are given in sec.
V and sec. VI.

II. THE PORTFOLIO OPTIMIZATION PROBLEM

In this paper we use the standard Markowitz mean-variance
model for one time step. The optimization problem is to find a
portfolio p consisting of N assets with specific volumes given
as weights wi by

• minimizing the variance σp of the portfolio

σp =
N∑

i=1

N∑

j=1

wi · wj · σij (1)

• while maximizing the return µp of the portfolio

µp =
N∑

i=1

wi · µi (2)



subject to
∑N

i=1 wi = 1 , (3)

0 ≤ wi ≤ 1 ; i = 1, .., N (4)

where N is the number of assets available, µi the expected
return of asset i, σij the covariance between asset i and j.
Usually µi and σij are to be estimated from historic data.
Eq. 1 and 2 give the two competing objectives, which are to
be optimized. Eq. 3 and 4 give the constraints of a feasible
portfolio: all the money available is to be invested, and all
investments should be positive, i.e. no short sales are allowed.
As said before, this basic form of the mean-variance model is
a quadratic optimization problem, for which computationally
effective algorithms exist, unfortunately this is not the case
when we add real-world constraints:
Cardinality Constraints restrict the maximum number of
assets used in the portfolio:

N∑

i=1

sign(wi) = K (5)

Buy-in Thresholds give the minimum amount to be pur-
chased, in case the asset should be in the portfolio:

wi ≥ li ∀ wi > 0; i = 1, .., N (6)

Roundlots give the smallest volumes ci that can be purchased
for each asset:

wi = yi · ci; i = 1, .., N and yi ∈ Z (7)

These constraints are often hard constraints, i.e. they cannot
be violated. Other real-world constraints like sector/industry
constraints, immunization/duration matching and taxation con-
straints can be considered soft constraints. Soft constraints
may be violated, because a violation in such constraints may
lead to significantly higher performance in the other objectives
or because valid solutions do not even exist. Therefore, it is
more reasonable to implement violations of soft constraints
as additional objectives, which are to be minimized. For this
reason we currently do not consider such soft constraints since
they would just increase the output dimension of the MOOP.

III. THE EVOLUTIONARY ALGORITHM

In our experiments we apply a generational EA population
strategy with a population size of 500 individuals. We use
tournament selection with a tournament group size of 8
together with objective space based fitness sharing with a
sharing distance of σshare = 0.01. The selection mechanism
prefers individuals that are better than other individuals in at
least one objective value, i.e. which are not dominated by
another individual. To maintain the currently known Pareto
front we use an archive of 250 individuals and use the archive
as elite to achieve a faster speed of convergence. Details of
this MOEA strategy can be found in [16].
In this paper an EA with a real-valued genotype is applied.
We use local mutation with one strategy parameter σi for each
decision variable on the EA genotype, which mutates each
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Fig. 1. Effects of the crossover operators. A big cross (X) indicates a parent,
while a small cross (x) gives a possible offspring.

decision variable wi by adding a random gaussian number
with the deviation σi [15].
We compare three crossover operators: a discrete 3-point-
crossover [19], the BLX-α crossover [7] and the intermediate
crossover [14]. An example for the general effects of each
crossover operator is given in Fig. 1.
The discrete N-point-crossover equals the mechanism used in
bit-string crossover, N points (∈ {1, 2, ..., n−1}) are selected
where the chromosomes of the parents are swapped to produce
the offsprings.
An example for 1-point crossover:

W′1 = (w1
1 , w

1
2 , ..., w

1
i , w2

i+1, ..., w
2
n) (8)

W′2 = (w2
1 , w

2
2 , ..., w

2
i , w1

i+1, ..., w
1
n)

The intermediate crossover operator uses a linear combina-
tion of wi of all k parents to set the decision variables of
the offsprings: w’j

i =
∑k

j=0 αj ·wj
i . The linear factor αi is a

random variable with
∑k

j=0 αj = 1 and 0 ≤ αj ≤ 1 ∀ j.
The BLX-α crossover operator reinitializes the values of
W ′ with values from a extended range given by the parents,
w’ji = UniformRandomDouble (wi,min − I ·α, wi,max + I ·α)
with wi,min = Min(w1

i , w
2
i ), wi,max = Max(w1

i , w2
i ) and

I = wi,max − wi,min. We use α = 0.5 as suggested in [8].
Our EA uses a mutation probability of pm = 1.0, a crossover
probability of pc = 0.5 and uses k = 2 parents for crossover.
The general EA parameters were selected from preliminary
experiments.
In the following subsections details are given on the repair
mechanism, which creates feasible solutions from arbitrary
decision variables wi, and the hybrid encoding.

A. The Repair Mechanism

Without additional real-world constraints the repair algo-
rithm is rather simple. Since our implementation of the EA
encodes each decision variable in the desired range, w i ∈
{0, 1}, only Eq. 3 must be met. This can be easily done by
normalization, w′

i = wi/
∑

wi.
If cardinality constraints are added, the repair mechanism sets
all surplus decision variables wi to zero and keeps only the
K largest values of wi before applying the normalization.
With buy-in constraints the algorithm sets all wi below their
given buy-in threshold to zero after applying the cardinality
repair mechanism and the following normalization step is only
allowed to redistribute the amount of the portfolio less the
already assigned amount needed to meet the buy-in threshold.



To meet roundlot constraints the algorithm rounds w i to the
next roundlot level, w ′

i = wi − (wi mod ci), after cardinality
repair, buy-in repair and normalization was applied. The
remainder of the rounding process,

∑
i(wi mod ci), is spent

in quantities of ci on those w′
i, which had the biggest values

for wi mod ci until all of the remainder is spent.
Fortunately, the repair algorithm is deterministic. Therefore, an
individual is always assigned to the same solution after repair
if the genotype did not change. Depending on the original
wi and the constraints, the repair algorithm may fail to find
feasible solutions, in that case the fitness of the individual
will be set to the worst possible value instead of assigning
a random feasible solution. The repair algorithm only affects
the phenotype of an individual, while the genotype remains
unaltered.

B. The Hybrid Encoding

Preliminary experiments indicated that pareto-optimal solu-
tions for the portfolio selection problem are rarely composed
of all available assets, but only a limited selection of the
available assets, especially in case of cardinality constraints,
see Fig. 2. For K = 2 there are several distinct regimes of
two assets combinations that form the Pareto front. The same
holds true for larger values of K . But the less restrictive the
cardinality constraints are, the less distinct the regimes.
The problem to find the best combinations of assets in the
portfolio resembles a one-dimensional binary knapsack prob-
lem. This kind of problem has already been addressed by
means of EA using a binary genotype. We suggest to use
the very same genotype in addition to the vector of decision
variables W, see Fig. 3. Each bit of the bit-string B determines
whether the associated asset will be an element of the portfolio
or not, so that the actual value of the decision variable is
w′

i = bi · wi. This is the value that will be processed by the
repair mechanism. With this hybrid encoding it is much easier
for the EA to add or remove the associated asset simply by

Fig. 2. Solutions generated by EA with the hybrid encoding on the DAX
data set with 81 assets as given in [2].
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Fig. 3. Comparing the standard encoding to the hybrid encoding.

mutating the bit-string B.
The hybrid encoding is altered by mutating/crossing each
genotype B and W separately from each other. Binary one-
point mutation (pm = 0.1) and 3-point-crossover (pc = 1.0)
is used on the bit-string B and the real-valued operators
mentioned before are used on the decision variables W.
The extended EA is abbreviated KEA (Knapsack-EA). An
general comparison between GA and ES against a KGA and
KES has been performed in [17].

IV. EXPERIMENTAL RESULTS

The comparison of the different EA implementations was
performed on benchmark data sets given by Beasley [2] avail-
able at http://mscmga.ms.ic.ac.uk/info.html. The numerical re-
sults presented here were performed on the Hang Seng data set
with 31 assets. On this data set we use several combinations
of real-world constraints to compare the performance of the
different EA encodings and crossover operators. First, we
compare the portfolio selection problem without cardinality
constraints and with cardinality constraints K = 6, K = 4
and K = 2. In a second set of experiments we also add buy-
in thresholds (li = 0.1) and roundlots constraints (ci = 0.02)
to the portfolio selection problem.
We measure the performance of the algorithms by calculating
the S-metric [21], i.e. the area under the currently achieved
Pareto front bounded by µmax of the maximum return asset
and σ = 0. We compare this area to the area under the
Pareto front of the unconstrained portfolio selection problem
calculated through quadratic programming also given in the
benchmark data set. The percentage difference (∆area) of the
EA calculated solution and the reference solution is to be
minimized and gives the measure of quality. But only without
any real-world constraints can this measure drop to zero,
otherwise the ∆area is limited by the constraints, compare
Fig. 2. Additionally the ∆area is limited due to the limited
size of the archive population, which gives the Pareto front
identified by the EA.
To obtain reliable results we repeat each EA experiment for

50 times for each parameter setting and problem instance. A
single EA run is terminated after 100,000 fitness evaluations.
We calculate the mean value, the standard deviation, the
maximum and minimum values and the 90 % confidence
intervals of the ∆area value to compare the performance of
each EA setting.
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Fig. 4. ∆area for the experiments on the Hang Seng data set without additional constraints li and ci (1: EA with discrete crossover; 2: EA with intermediate
crossover; 3: EA with BLX-α crossover 4: KEA with discrete crossover; 5: KEA with intermediate crossover; 6: KEA with BLX-α crossover)

A. Results without Lamarckism

In the experiments without Lamarckism only the phenotype
of an individual is altered by the repair mechanism while
the genotype remains unaltered, see Fig. 3. If the repair
mechanism is interpreted as local search mechanism, then the
optimization process is guided by the Baldwin effect. In this
case the search space becomes neutral to some extent, i.e.
a mutation of the genotype does not necessarily change the
phenotype. Neutrality caused by the Baldwin effect is said to
support the optimization, since it enables the EA to escape
from local optima by chance due to genetic drift on a plateau
of equal fitness [18].

1) Without Additional Constraints: On all four problem
instances without additional constraints li and ci the hybrid
encoding performs significantly better than the standard en-
coding regardless of the crossover operator used, see Fig. 4.
The confidence intervals indicate that the hybrid encoding is
also very reliable compared to the standard encoding.
Further, the KEA not only outperforms the standard EA
regarding the quality of the solution found, but also the speed
of convergence, see Fig. 5 and Fig. 6. Without cardinality
constraints the KEA even has a better start since the additional
bit-string removes about half of the possibly unnecessary
assets from the portfolio, which have to be removed in case

Fig. 5. Convergence behavior of ∆area on the Hang Seng data set without
cardinality constraints and without li and ci constraints

of the standard encoding by other means. With K = 4 the
initial quality of the EA solutions for the standard encoding
equals that of the hybrid encoding, see Fig. 6. This is because
of the repair mechanism, which comes into action as a result
of the cardinality constraints. The repair mechanism removes
the surplus assets from the portfolio for both the KEA and the
standard EA. This way the standard EA starts with the same
sparse portfolios as the KEA. But the speed of convergence
for the EA is significantly slower than that of the KEA,
see Fig. 6. This is because the KEA is more efficient to
create portfolios with smaller cardinalities than given by the
constraints. The standard EA even starts to stagnate far from
the global optimum.
When comparing the different crossover operators for the stan-
dard EA implementation the intermediate crossover performs
worst, while the BLX-α crossover performs significantly better
than the other two crossover operators. Especially without
cardinality constraints the result of the BLX-α crossover on
the standard EA even comes close to the result of the KEA.
But with increasing cardinality the difference becomes less
significant. When compared on the KEA the crossover opera-
tors do not really differ from each other. Only the variance for
the intermediate crossover is slightly higher and it converges
slower than discrete and BLX-α crossover, see Fig. 6.

Fig. 6. Convergence behavior of ∆area on the Hang Seng data set with
K = 4 and without li and ci constraints
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Fig. 7. ∆area for the experiments on the Hang Seng data set with li = 0.1 and ci = 0.02 (1: EA with discrete crossover; 2: EA with intermediate
crossover; 3: EA with BLX-α crossover 4: KEA with discrete crossover; 5: KEA with intermediate crossover; 6: KEA with BLX-α crossover)

2) With Additional Constraints: With additional buy-in
thresholds and roundlot constraints the portfolio selection
problem becomes much more complicated and the perfor-
mance of both EA approaches drops considerably. But the
additional constraints cause the EA to have the same initial
quality as the KEA, because li = 0.1 behaves like a cardinality
constraint of K = 10, see Fig. 8 and Fig. 9.
Again the KEA performs much better than the standard EA,
see Fig. 7. But the KEA converges slower to the Pareto front
and is not as reliable as it was the case without additional
constraints, but the KEA is basically able to find the Pareto
front. This is demonstrated by the best results of the KEA
runs, which are very close to the true Pareto front, see Fig. 7.
The standard EA on the other hand starts to stagnate very fast
and converges to a local optimum, see Fig. 8 and Fig. 9. In
absence of cardinality constraints this can be easily explained.
The buy-in threshold li = 0.1 acts like a cardinality constraint
of K = 10. A randomly initialized decision vector will have
mean values of 1/2 for each asset. The repair mechanism will
remove any surplus assets from the portfolio and keep only
the K = 10 assets with the biggest values wi. Unfortunately,
the standard EA will not be able to create portfolios of lower
cardinality, since every time an asset is removed from the
portfolio through mutation or crossover it will be replaced

Fig. 8. Convergence behavior of ∆area on the Hang Seng data set without
cardinality constraints, li = 0.1 and ci = 0.02 constraints

by the next biggest wi of the N − K assets previously not
element of the portfolio. Since the other N −K asset weights
wi will have random values due to genetic drift in the neutral
search space caused by the repair mechanism. Therefore, the
standard EA will only search the subspace where portfolios are
of cardinality K and the assets in the portfolio are assigned
weights of wi ≈ 1/K . This is the reason why the standard
EA converges to suboptimal Pareto fronts. The same effect
can also be observed on problem instances with cardinality
constraints, see Fig. 9. This problem will be discussed more
detailed in sec. IV-B.2.
Comparing the crossover operators for the EA and the KEA on
the portfolio problem with additional constraints the situation
of sec. IV-A.1 is reversed. For the EA no significant difference
can be observed neither regarding the resulting quality nor
the convergence behavior. For the KEA this is only the
case, if no cardinality constraints are present. Except for
one extreme outlier occurring during the discrete crossover
runs, the intermediate crossover is only insignificantly worse
than discrete and BLX-α crossover. This difference grows, if
cardinality constraints are added. The intermediate crossover
performs worst and has also a slower speed of convergence,
see Fig. 9. But in this case the discrete crossover performs a
little better than the BLX-α crossover.

Fig. 9. Convergence behavior of ∆area on the Hang Seng data set with
K = 4, li = 0.1 and ci = 0.02 constraints
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Fig. 10. ∆area for the experiments on the Hang Seng data set with Lamarckism, without li and ci (1: EA with discrete crossover; 2: EA with intermediate
crossover; 3: EA with BLX-α crossover 4: KEA with discrete crossover; 5: KEA with intermediate crossover; 6: KEA with BLX-α crossover))

B. Results with Lamarckism

With Lamarckism the repair algorithm alters the genotype
of an individual according to the phenotype. This way Lamar-
ckism removes the neutrality of the search space, since any
neutral mutation will be reversed by Lamarckism.
One major effect of Lamarckism in case of cardinality con-
straints is that the vector of decision variables will become
sparse, since surplus assets are removed from the genotype.
With such sparse decision vectors the search of the standard
EA will become as efficient as the KEA, since it can add and
remove assets from the portfolio as easily.

1) Without Additional Constraints: As expected the advan-
tage of the hybrid encoding becomes counterbalanced through
the application of Lamarckism on all problems with cardinality
constraints, see Fig. 10. Especially with increasing cardinality
constraints the difference between the standard and the hybrid
encoding becomes more and more negligible and vanishes
completely for K = 2, see Fig. 10. Even the convergence
behavior of the standard EA equals the KEA and both are
accelerated significantly, compare Fig. 12 to Fig. 6. Although
the KEA still has the edge on the standard EA.
But even without cardinality constraints Lamarckism has an
advantageous effect on the standard EA, see Fig. 10 and Fig.

Fig. 11. Convergence behavior of ∆area on the Hang Seng data set with
Lamarckism, without cardinality constraints and without li and ci constraints

11. This can be explained by the reduction of the search space
through Lamarckism, since mutation and crossover only act on
valid solutions. This also favors easy removal of assets from
the portfolio. While a randomly initialized individual has a
mean value for wi of 0.5, an individual after application of
Lamarckism and without cardinality constraints has a mean
value of 1/N . With such a low average value for w i it is
much easier for mutation to remove surplus assets from the
portfolio, which leads to sparse vectors of good assets, and
allows crossover to search for combinations of effective assets
instead of permuting between all assets available.
The KEA also benefits from the use of Lamarckism. Due
to Lamarckism the speed of convergence is increased sig-
nificantly on the cardinality constrained problem instances,
compare Fig. 12 to Fig. 6, and even in absence of cardinality
constraints, compare Fig. 11 to Fig. 5.
With Lamarckism the difference between the crossover op-
erators become less distinct, but corresponds again to the
results presented in sec. IV-A.1. The intermediate crossover
performs worse than discrete and BLX-α crossover for the
standard encoding, but it catches up with increasing cardinality
constraints, see Fig. 10. And there is still a very slight
advantage for the BLX-α crossover compared to the discrete
crossover. For the KEA on the other hand again no significant

Fig. 12. Convergence behavior of ∆area on the Hang Seng data set with
Lamarckism, K = 4 and without li and ci constraints
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Fig. 13. ∆area for the experiments on the Hang Seng data set with Lamarckism, li = 0.1 and ci = 0.02 (1: EA with discrete crossover; 2: EA with
intermediate crossover; 3: EA with BLX-α crossover 4: KEA with discrete crossover; 5: KEA with intermediate crossover; 6: KEA with BLX-α crossover)

distinctions can be made. Even the slightly higher variance of
the intermediate crossover disappeared.

2) With Additional Constraints: The effect of Lamarckism
leads to such a uniform convergence behavior of all three
crossover operators that a reasonable comparison is no longer
possible, see Fig. 13. But still there are some differences
between the standard EA and the KEA, which are to be
explained.
First, we want to discuss the behavior of the standard EA.
Again as in sec. IV-A.2 the standard EA converges very
reliably to suboptimal solutions depending on the cardinality.
Without cardinality constraints and with or without Lamarck-
ism the standard EA converges to the very same suboptimal
Pareto front, compare Fig. 14 to Fig. 8. Again this is due to
the implicit cardinality of K = 10 imposed by the buy-in
threshold constraint li = 0.1.
With more restrictive cardinality constraints (K < 10) it
becomes more complicated. Here the standard EA with Lamar-
ckism also suffers from premature convergence, but finds much
better results than without Lamarckism, compare Fig. 15 to
Fig. 9. This is because the standard EA without Lamarckism
searches not only the subspace of portfolio of cardinality
K but also the weights of the assets in the portfolio are
limited to values of wi ≈ 1/K , because the repair mechanism

Fig. 14. Convergence behavior of ∆area on the Hang Seng data set with
Lamarckism, without cardinality constraints, li = 0.1 and ci = 0.02

always chooses the K biggest values from W to be in the
resulting portfolio, and normalizes them to w i ≈ 1/K . With
Lamarckism on the other hand the cardinality of the portfolio
is still limited to K but the weights for those assets selected
can be effectively explored through mutation and crossover,
since surplus the weights of surplus assets are set to zero.
Finally, the KEA is again not limited to such subspaces and
explores the whole search space very effectively and also
reliably, see Fig. 13. But with Lamarckism the KEA performs
much better than the KEA without Lamarckism. While without
cardinality constraint the difference is not as big, compare Fig.
14 to Fig. 8, the convergence speed is significantly increased
in case of additional cardinality constraints, compare Fig. 15
to Fig. 9.

V. CONCLUSION

In this paper we were able to show that the new proposed
hybrid encoding is able to solve the portfolio optimization
problem more efficiently than the standard encoding based
on a single real-valued vector of decision variables. This was
shown on multiple problem instances and for several crossover
operators. We were able to verify the positive effect of the
hybrid encoding, by creating a similar effect for the standard
EA through the application of Lamarckism on problems with

Fig. 15. Convergence behavior of ∆area on the Hang Seng data set with
Lamarckism, K = 4, li = 0.1 and ci = 0.02 constraints



cardinality constraints and without additional real-world con-
straints.
We also examined the impact of the repair mechanism on
the performance of the EA implementations. We showed that
without Lamarckism and with additional real-world constraints
like buy-in thresholds and roundlot constraints the standard EA
fails due to the neutrality of the search space. The neutrality
introduced through the repair mechanism misled the standard
EA to search only a subspace of the true search space where
the portfolios are of cardinality K and the assets used have
weights of wi ≈ 1/K . While the standard EA was not able
to explore the search space beyond this subspace, the more
efficient hybrid encoding enabled the KEA to explore the full
search space.
With Lamarckism on the other hand both EA implementations
performed much better. But finally, on the problem instances
with additional real-world constraints the KEA with Lamar-
ckism outperformed the standard EA significantly, since the
standard EA is still limited to a subspace of the true search
space where the portfolios are of cardinality K .
Regarding the different crossover operators we showed that
the intermediate crossover, which could be considered as an
intermediate step between the discrete crossover and the BLX-
α crossover, performed worst. And although the difference be-
tween discrete crossover and BLX-α crossover is less distinct,
the BLX-α crossover performed better on some problem in-
stances. The common element between the discrete crossover
and the BLX-α crossover seems to be the diversity created
through the crossover operators, by placing the offsprings on
the edges of a hyper cube given by the parents. Unfortunately,
the differences between the crossover operators became lev-
eled out either due to the reduced subspace searched by the
standard EA in case with additional real-world constraints or
due to the high speed of convergence in case of the KEA with
Lamarckism.

VI. FUTURE WORK

Our future work will concentrate on evaluating the perfor-
mance of alternative MOEA implementations on the portfolio
selection problem. We believe that the choice of the MOEA
strategy will become crucial, if more real-world constraints are
added like sector/industry constraints, immunization/duration
matching and taxation constraints, which may increase the
output dimension of the portfolio selection problem.
Another area of improvement could be the application of
more sophisticated local search heuristics. There are numerous
alternatives to the simple search for feasible solutions, but
they have to be carefully evaluated regarding their ability to
handle real-world constraints. Further we plan to extend our
experiments to other portfolio models like for example the
Black-Litterman model [3].
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