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Abstract

The possible application of evolving artificial embryos to
build functional machinery is a promising area of research.
Unfortunately, there are still many fundamental problems
to be solved before Artificial Embryology can be applied to
such tasks, not to mention the necessary hardware. In this
paper we address the problem of how to evolve the head-tail
pattern for an artificial embryo endogenously, without pre-
defined asymmetric cell division or external guide through
polar cells or exogenous sources of morphogenes. We exam-
ine the performance of an Evolutionary Algorithm on two
different fitness functions. Further, we examine the evolv-
ability of several mathematical models for regulatory net-
works, controlling the behavior of the digital embryo.

1. Introduction

Currently, there is a trend in technology to growing com-
plexity. For example, machines are assembled from sev-
eral tens of thousands of parts, and modern microchips are
built from millions of transistors. If this trend continues, it
becomes more and more difficult to sequentially assemble
such complex hardware, and structures could also become
too small and complex for common production processes.
Self-assembly and self-organization are visionary proper-
ties of future hardware, which could solve these problems.
Although the actual technology will not be available for
many years to come, the necessary properties of such a
technology can be studied using simulation in the field of
Artificial Embryology, since the required mechanisms for
self-assembly and -organization resemble the developmen-
tal processes occurring in natural embryology. Another ar-
gument for this approach was given by Hornby and Pollack
[10], they showed the advantage of generative encodings for
Design Optimization over non-generative encodings.

In Artificial Embryology, digital organisms are meant to
grow from a single cell, which is able to divide itself, dif-
ferentiate and develop into an adult form. Like in natural
morphogenesis regulatory networks are often used in Arti-
ficial Embryology to control the behavior of the individual
cells and finally the shape of the complete organism. But
to grow complex shapes, a symmetry break has to occur in
the initially undifferentiated embryo. In most papers on Ar-
tificial Embryology exogenous morphogens or asymmetric
cell divisions are used to induce an initial symmetry break.
In this paper we investigate, how a symmetry break can
arise endogenously from homogenous cells through evolved
regulatory networks. We compare two possible definitions
of fitness functions and the performance of several mathe-
matical models for regulatory networks like the activator-
inhibitor model, weight matrices, S-systems and general
differential equations to generate the head-tail pattern.
In the next section we give a short introduction to the re-
lated work in the field of Artificial Embryology. In Sec. 3
we give detailed description of the experimental settings, in-
cluding the simulation environment, the mathematical mod-
els for the regulatory networks and the Evolutionary Algo-
rithm. Experimental results are presented in Sec. 4 together
with some graphical examples of the evolved head-tail pat-
terns. Finally, conclusions and an outlook, how to evolve
even more complex shapes, are given in Sec. 5.

2. Related Work

Regarding developmental processes two opposing ap-
proaches have been suggested on how a complex organism
can develop from a single cell. The first approach postulates
that the structure is already there from the very beginning.
While the second approach assumes that structuring occurs
during formation, i.e. epigenesis or self-organization.
Today it is commonly agreed on that self-organization is
the true source of morphogenesis. Curiously, in the field



of Artificial Embryology often the path of endogenous self-
organization is left in favor for exogenous structuring fac-
tors, which, although biologically motivated, actually pre-
vent true understanding for the real mechanisms at work.
For example, one of the earliest works in this area by de
Garis, based on a cellular automata, failed to grow non-
convex shapes [3] until additional exogenous sources of
morphogenes were added [2]. Eggenberger used similar
exogenous sources of morphogenes to induce a symmetry
break in his digital organisms, which were controlled by a
regulatory network [7]. Although such exogenous sources
of morphogenes can be supported from examples in nature,
like exogenous morphogenetic factors, due to polar bodies,
gravity, maternal influences, etc., they actually do not offer
a solution to the problem of morphogenesis.
Other approaches utilize asymmetric cell division. For ex-
ample, Dellaert claimed to give a biologically defensible
model of development by evolving a regulatory network
based on a random boolean network [4]. In his model an
initial asymmetric cell division was implemented as bit-flip
in the boolean state vector and cells adjacent to the hor-
izontal midline of the organism were given a special input
signal. This way Dellard was able to evolve bilaterally sym-
metric organisms. Another example that utilizes asymmet-
ric cell division was introduced by Hogeweg [9]. Hogeweg
used a sophisticated mechanical model based on the Potts
model and was able to evolve very complex cell behavior
like budding and engulfing. Again, examples for this kind
of asymmetric cell division can be found in nature, like in
C. elegans, whose first developmental steps have been sim-
ulated in detail by Kajita et al. [11]. But as long as the
underlying mechanisms of such asymmetric cells divisions
are not really understood, the problem of morphogenesis
cannot be considered as solved.
There are also examples for self-organizing patterns in
reaction-diffusion systems [20]. One example, especially
suited for the head-tail pattern, is the activator-inhibitor
model by Gierer and Meinhardt [8], which has been utilized
by Duvdevani-Bar and Segel to simulate the differentiation
of the animal/vegetal region of a digital embryo [6]. An-
other example by Chaturvedi et al. uses the Schnakenberg
equation together with a Potts model to simulate the mor-
phogenesis of a chicken limb [1].
But the problem of how to evolve a mechanism of a pri-
ori unknown structure able to induce an initial symmetry
break into a formerly undifferentiated embryo has not been
addressed. Techniques using exogenous factors will most
likely not be able to extend to more complex structures,
since this would require more and more additional exoge-
nous factors, which will eventually define the whole body
plan. Asymmetric cell division or nuclear determinants on
the other hand also do not offer a solution, as long as the
responsible mechanism itself is not understood.

Reaction-diffusion systems proved to be reliable mecha-
nisms for pattern formation, but most often only exemplary
equation types with known structure and behavior are uti-
lized in Artificial Embryology. It is not clear how this can
be extended to more complex structures. Therefore, we ex-
amine how reaction-diffusion systems represented by reg-
ulatory networks can be evolved, which show the desired
behavior of inducing a symmetric break to an undifferenti-
ated digital embryo simply due to noise.

3. Experimental Settings

Although the Activator-Inhibitor model is known to gen-
erate the head-tail pattern and parameter optimization on
this model could be easily performed, we want to analyze
whether we are able to evolve more general regulatory net-
works with the desired behavior. Therefore, we examine
several mathematical models of regulatory networks in re-
spect to their evolvability ranging from parameterized mod-
els up to arbitrary differential equations.
In this section we give implementation details on the sim-
ulation environment, the regulatory network models, the
Evolutionary Algorithms and finally the fitness functions.

3.1. Simulation Environment

Each artificial cell in our simulation environment stores
an individual position, a neighborhood topology, the current
level of metabolites xi ∈ [0, 10], the diffusion behavior of
metabolites and the regulatory network controlling the level
of the metabolites. In this application the position is not
used, since no mechanical simulations are performed and
the positional information is not used for any other purpose.
The neighborhood topology is used for intracellular diffu-
sion. Regarding diffusion, each metabolite xi has an indi-
vidual diffusion rate Di ∈ [0, 0.5], which is also evolved by
the optimization process. Both diffusion and the dynamics
of the regulatory network are subject to random noise.

3.2. Mathematical Models

Several models for regulatory networks have been pro-
posed in the field of Systems Biology, ranging from discrete
networks, like boolean and random boolean networks [12],
qualitative networks [18], and finally several instances of
quantitative networks. Preliminary experiments proved that
quantitative networks perform much better and more reli-
ably than discrete networks [17]. Therefore, we limit this
study to quantitative networks. The differential equations
used were integrated with an Euler-Cauchy algorithm.
In case of parameterized models we give the ranges used for
the optimization process, which were set to values similar
to those suggested in [19].



3.2.1 Activator-Inhibitor

The following equations give the two dimensional activator-
inhibitor model introduced by Gierer and Meinhardt [8]:

dx1(t)
dt

= s(x2
1

x2
+ k1) − r1x1 (1)

dx2(t)
dt

= sx2
1 − r2x2 (2)

x1 is the activator, x2 is the long range inhibitor, r1 ∈ [0, 1]
and r2 ∈ [0, 1] give the degradation rates of x1 and x2,
k1 ∈ [0, 1] gives an independent production rate and the
factor s gives a source density.

3.2.2 Weight Matrices

Weight matrices are linear differential equations [5]:

dxi(t)
dt

=
n∑

j=1

wij · xj + Ci (3)

wij ∈ [−3, 3] gives the influence of metabolite xj on
metabolite xi and Ci ∈ [−2, 2] a constant produc-
tion/degradation rate.

3.2.3 S-systems

Another parameterized model based on differential equa-
tions is given by S-systems (synergistic and saturable sys-
tems) [15]. An S-system for n artificial genes is given by a
parameterized set of nonlinear differential equations:

dxi(t)
dt

= αi

n∏

j=1

xj(t)Gi,j − βi

n∏

j=1

xj(t)Hi,j (4)

where xi is the level of metabolite i. With αi ∈ [0, 2] and
βi ∈ [0, 2] the first product describes all synthesizing influ-
ences and the second product all degrading influences. De-
pending on the values of Gi,j ∈ [−3, 3] and Hi,j ∈ [−3, 3]
the influence may be inhibitory, if the value of Gi,j or Hi,j

is smaller than zero, or excitatory, if greater than zero.

3.2.4 Arbitrary Differential Equations

An example for non-parameterized quantitative networks
are arbitrary systems of differential equations, which are
more powerful and flexible to describe the interactions be-
tween metabolites, since a suitable structure for the regu-
latory network is a priori unknown. The most prominent
method, which is able to optimize the structure and the
parameters of general mathematical equations at the same
time, is Genetic Programming [13]. Genetic Programming
has also been used to model regulatory networks [14].

3.3. Evolutionary Algorithm

To search for regulatory networks that produce the de-
sired head-tail pattern, we applied Evolutionary Algorithms
(EAs) a stochastic population-based search algorithm. EAs
mimic the natural evolutionary process of repeated selec-
tion, reproduction and mutation. Depending on the underly-
ing mathematical model we either applied Evolution Strate-
gies (ES) [16] for parameter optimization of parameterized
models, like the activator-inhibitor model, weight matrices
and S-systems, or Genetic Programming (GP) [13] for the
arbitrary differential equations.

3.3.1 Evolution Strategies

Specialized on real-valued parameter optimization, ES omit
a redundant genotype/phenotype mapping and apply so-
phisticated mutation operators on the real-valued pheno-
type. The crossover operator is often a secondary evolution-
ary operator and the population sizes are small. ES use a de-
terministic selection scheme to select µ parents for the next
generation, either selecting only from the λ offsprings, i.e.
(µ, λ)-strategy, or by selecting from the pooled offsprings
and their µ parents, i.e. an elitist (µ + λ)-strategy.

3.3.2 Genetic Programming

Genetic Programming is an extension of Genetic Algo-
rithms and acts on a genotype able to represent computer
programs. A common genotype is based on a tree rep-
resentation using functional elements as nodes and inputs
and numerical constants as leafs of the tree. Mutation and
crossover operators act on the genotype by altering a sub-
tree or exchanging subtrees between two individuals. For
GP typically a generational population strategy is used to-
gether with elitism and bigger population sizes [13]. We
use a genotype of n program trees to represent the right
hand side of an n-dimensional system of arbitrary differ-
ential equations.

3.4 Fitness Functions

The fitness function needs to be orientation invariant,
since the pattern relies on noise during simulation. The
most straightforward implementation of a fitness function
for the head tail-pattern is to set a threshold value for an ar-
bitrary metabolite, use this indicator to differentiate a cell
to head or tail cells, and count the correctly assigned cells,
see the left picture of Fig. 1. For fitness case A1 the inverse
of this sum is to be minimized. This function could be eas-
ily extended to include the French flag problem [22, chap.
1.13]. The French flag problem aims at segmenting an array
of cells into three equally sized partitions of three different
cell types colored blue, white and red.



A1: max. correct

assignment of cells

A2: max. imbalance for

a metabolite

Figure 1. The different fitness cases, us-
ing the pattern generated by the activator-
inhibitor model as reference solution.

A second variant checks for asymmetry by calculating the
weighted center of gravity of a metabolite and taking the
difference to the true center of gravity, see right picture of
Fig. 1. The inverse of this value is to be minimized in fit-
ness case A2.
Preliminary experiments with a target gradient produced
unsatisfying results, because the EAs often got stuck in lo-
cal optima. But we will continue to search for more suit-
able fitness functions especially on behavior based fitness
functions. Instead of abstract fitness functions we want to
simulate the organisms in more complex environments and
examine if they are able to perform a given task, like col-
lecting light from a directed light source.
Finally, experiments indicated that random initialization
and noise in the simulation made fitness assignment rather
difficult. If only one simulation is performed, a risky strat-
egy, which relies on a favorable initial distribution, might
beat a more conservative but reliable solution. Further, if the
risky strategy multiplies in the population, the chance that a
single instance gets suitable starting conditions is increased
and thus strengthening the risky strategy. Therefore, a lim-
ited amount of repetitions would favor risky strategies. This
effect can be counterbalanced by multiple repetitions per fit-
ness evaluation, which causes the EA to favor more reliable
strategies, see Fig. 2 for a comparison.

4. Experimental Results

We compared the performance of four different models
for regulatory networks on two different fitness cases on two
problem instances. The first problem instance simulated a
static organism of twelve neighboring cells. The second
problem instance represented a dynamic environment simu-
lating a growing organism. Starting with a single cell, every
fifth simulation step a random cell duplicated, until the max-
imum number of twelve cells was reached. In all cases the
mechanical simulation was disabled and the cells remained
linear aligned for easier fitness assignment.

For parameterized network models we used a (µ, λ)-ES
with µ = 50, λ = 150 to enable self-adaption with discrete
crossover (pc = 0.5) and k-dimensional normal distributive
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Figure 2. Effect of repetitions on fitness val-
ues, normalized by the number of repetitions.

mutation (pm = 1.0), where k is the number of decision
variables. In case of the GP, we used an elitist generational
population strategy with a population size of 250, tourna-
ment selection (tgroup = 10), one-point crossover (pc =
1.0) and mutation (pm = 0.5) on each subtree. We used 10
ephemeral constants and xi as inputs and {+,−, ·, %} as
function set. In case of GP, diffusion rates where encoded
as program trees only with constants as leafs.
Beside the impact of the different mathematical models for
regulatory networks and their evolvability, we further exam-
ined the effect of the number of metabolites involved. Our
previous experiments showed that the number of metabo-
lites can have a crucial impact on the evolvability of a regu-
latory network [17].
For each problem instance we performed 25 multi-runs,
except for GP, where only 10 multi-runs were performed.
Every optimizer was terminated after 10,000 fitness eval-
uations had been performed. Each fitness evaluation was
repeated five times and simulated the digital organism for
250 time steps each trial, and the fitness was normalized by
the number of simulation steps, the number of cells and the
number of repetitions.
It is necessary to mention that the original version of the
activator-inhibitor model requires at least 10,000 simulation
steps to establish the head-tail pattern. In our evolutionary
framework we were bound to fall short of that amount of
simulation effort. But we believe that the reduced amount
of simulation effort complies with the requirements neces-
sary to evolve much more complex structures with a much
higher number of cells involved.

4.1. Static Environment

In the first test series we tried to establish the head-tail
pattern in an adult ‘fully’ grown organism of twelve inter-
connected cells.
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Figure 3. Results on A1 and A2 in a static environment.

4.1.1 Pattern Test

On the most straight-forward implementation of the fitness
function, the A1 function, we see that both the weight matri-
ces and the S-systems fail to produce satisfying results, see
Fig. 3. For these two models the resulting regulatory net-
works simply produced random alternating patterns. These
results are not affected by the number of metabolites in-
volved.
With the activator-inhibitor model on the other hand we
were able to find solutions, which resulted in compact ar-
eas of activation at the borders of the organism, see Fig. 4.
In the figure one can see four different trials with different
random seed simulating the same regulatory network, pa-
rameters are also given in Fig. 4. In almost all repetitions a
clear segmentation occurred within 250 simulation steps.
Arbitrary differential equations were best performing, re-
garding the fitness values are. They even outperform the
activator-inhibitor model. This could be due to the different
selection scheme used for the GP, which imposes a much
higher selection pressure. But also due to the bigger flexi-
bility compared to the parameterized models.

4.1.2 Deviation from the Center of Gravity

In case of maximizing the deviation of the center of gravity
weighted by a metabolite from the true center of gravity
the activator-inhibitor model is clearly outperformed by the

alternative models, see Fig. 3.
When comparing the models for regulatory networks,
the GP optimizing arbitrary differential equations is the
slowest to converge, despite the higher selection pressure
applied, and S-systems slightly outperform weight matrices
in respect to the speed of convergence.
In case of S-system one can also see an effect regarding the
number of metabolites involved. With n = 3 and n = 4 the
EA is able to find slightly better solutions than in case of
only n = 2 metabolites.
But regarding the quality of the solutions found the results
are rather disappointing. The EA seems to favor risky
strategies over more reliable ones despite the high number
of repetitions used. In Fig. 5 one can see an exemplary re-
sult for S-systems. Most strategies are based on amplifying
the initial noisy distribution of metabolites to the maximum
concentration level. This way, the fitness values are bigger
since the weights for calculating the weighted center are
maximal. This particular strategy utilizes an extremely low
diffusion factor of the metabolites that is actually used for
fitness calculation to locally confine the peaks and achieves
much higher fitness values this way. Although this solution
achieves high fitness values, it is so specialized that it
actually does not solve the head-tail pattern, because this
strategy is too unreliable.

To summarize, on the static environment only the



dx1(t)
dt = s(x2

1
x2

+ 0.540)− 0.437x1
dx2(t)

dt = sx2
1 − 0.929x2

with D1 = 0.099, D2 = 0.087

Figure 4. Four exemplary simulations for an
activator-inhibitor based regulatory network.

αi Gij

1.635 1.304 0.765
1.134 2.605 0.042

βi Hij

1.771 -2.271 1.548
1.474 -0.136 -1.994

with D1 = 5.975E − 4, D2 = 0.164

Figure 5. Four exemplary simulations of an
S-system based regulatory network.

activator-inhibitor model is able to identify satisfying
results, although the alternative models achieve better
fitness values. This indicates that the fitness functions
or the environment may be not suitable to support the
evolution of the desired head-tail pattern.

4.2. Dynamic Environment

To increase the performance and to make the simula-
tion environment more realistic we implemented a dynamic
problem instance where the digital organism grows from a
single cell to a final size of twelve cells. This is done by
splitting a random cell every five simulation steps until the
maximum number of cells is reached. For the sake of sim-
plicity we coded this behavior of limited growth by hand
instead of evolving this behavior as we did in previous ex-
periments [17]. When a cell splits, we half the metabolites
for the two resulting cells, assuming that the two cells im-

dx1(t)
dt = s(x2

1
x2

+ 0.634)− 0.351x1
dx2(t)

dt = sx2
1 − 0.108x2

with D1 = 0.064, D2 = 0.366

Figure 6. Exemplary simulation for an
activator-inhibitor based regulatory network,
on a growing organism.

Ci wij

1.522 -2.738 -0.746 -1.863
-0.739 1.653 -0.896 0.213
1.135 -2.205 -2.657 1.184

with D1 = 0.063, D2 = 0.337, D3 = 0.344

Figure 7. Exemplary simulation for a weight
matrix based regulatory network, on a grow-
ing organism.

mediately grow to the original cell size.
We consider this dynamic environment to be more interest-

ing for two reasons. First, this environment resembles the
actual task given in Artificial Embryology, where the simu-
lation of a growing digital organism is dynamic, not static.
Second, we tried to examine a feasible variant of asymmet-
ric cell division. Instead of performing a perfect cell divi-
sion by giving both cells an equal share of the metabolite
concentration, we implemented a noisy cell division. If we
were able to evolve regulatory networks that utilized this
asymmetric cell division based on noise, we would have a
biologically defensible model for asymmetric cell division
since such noise could be caused by discrete distribution of
metabolites within a cell.
The choice of a reasonable noise level is critical for the
model to be really biologically defensible. On the one hand,
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Figure 8. Results on A1 and A2 in a dynamic environment.

beautiful results can be achieved, if the noise acts like an
XOR operator as used together with discrete regulatory net-
works in [4, 9]. But on the other hand such an operator can
not be accounted for by simple noise anymore. To keep rea-
sonable we applied gaussian noise with σ = 0.01 to the two
resulting cells in the following experiments.

4.2.1 Pattern Test

On the A1 fitness function all parameterized regulatory net-
work models fail, see Fig. 8. Only the activator-inhibitor
model and the GP were able to evolve behaviors, which lead
to the head-tail pattern. But the patterns are very unreliable,
similar to those in Fig. 5. A positive example with parame-
ters for an activator-inhibitor model is given in Fig. 6.
It is possible that a higher noise level for cell division would
cause the EA to find more reliable regulatory networks and
that the noise level applied is too small.

4.2.2 Deviation from the Center of Gravity

On the A2 fitness function the activator-inhibitor model per-
forms best regarding the fitness values, and GP and weight
matrix based regulatory networks perform better than the
S-system based networks, see Fig. 8. But with increas-
ing number of metabolites the weight matrix based net-
works are able to equal the performance of the activator-

inhibitor models. Interestingly enough the increased num-
ber of metabolites has an opposite effect on S-system based
regulatory networks. Here the performance decreases with
in increasing number of metabolites, most likely due to the
increased dimension of the search space.
An positive example for weight matrix based regulatory net-
works is given in Fig. 7, which is not as sensitive to the
initial conditions as the activator-inhibitor example given in
sec. 4.2.1, and which leads to a stable head-tail pattern with
an additional stripe pattern in the tail. This network uses the
second cell division to identify the head. Those two cells are
marked as head, same as all offsprings of these cells. The
ratio between the number of cells belonging to the head and
to the tail depends on the occurrence of the cell division.

5. Discussion

In this paper we have shown that the head-tail pattern can
be evolved utilizing general mathematical models for regu-
latory networks in contrast to specialized models with an a
priori fixed network structure. This gives the prerequisite
for successful applications of Artificial Embryology in the
area of Evolvable Hardware as discussed in Sec. 2.
Further, we proved that regarding the evolvability the GP is
superior to two parameterized models. Unfortunately, GP
is the most CPU-intensive model and the resulting regu-
latory networks are the least comprehensible. Comparing



the parameterized models, the weight matrices only per-
formed better than S-systems on the A2 function within the
dynamic environment. Regarding the number of metabo-
lites involved, two metabolites seemed to be sufficient on
all problem instances except for the weight matrix on A2 in
the dynamic environment, where at least three metabolites
were necessary.
And finally, we could point out that the choice of the fit-
ness function and the environment is crucial for the success
of the evolutionary process. The most straightforward A1
implementation of the fitness function showed the worst re-
sults. While the A2 performed much better especially in
case of the dynamic environment, see the result in Fig. 7.
The difference between A1 and A2 can be accounted to the
fact that A2 offers a much smoother path to an optimum,
where small deviations from symmetry can be gradually ex-
ploited. In case of the A1 function solutions resulting from
pure noise prevent the EA to find a possible path to the real
head-tail pattern. Comparing the static to the dynamic en-
vironment, the solutions of the general regulatory networks
found in the dynamic environment were much more reliable
than those found in the static environment. This proves that
the evolutionary process was able to exploit the small asym-
metric cell division used in the dynamic environment.
Our future research will concentrate on evolving more com-
plex patterns on dynamically growing cell clusters. One
way to build more complex structures could be gene du-
plication [21]. We hope that by gene duplication already
discovered functional subnetworks could be multiplied in
the genome and through mutation be activated in different
regions within the organism and therefore resulting in more
complex patterns.
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Genetic, and Chaotic Programming, pages 373–393. John
Wiley, New York, 1992.

[4] F. Dellaert and R. Beer. Toward an evolvable model of de-
velopment for autonomous agent synthesis. In R. Maes and
P. Maes, editors, Artificial Life IV. MIT Press Cambridge,
1994.

[5] P. D’haeseleer, X. Wen, S. Fuhrman, and R. Somogyi. Lin-
ear modeling of mRNA expression levels during CNS de-
velopment and injury. Pacific Symposium on Biocomputing,
4:41–52, 1999.

[6] S. Duvdevani-Bar and L. Segel. On topological simulations
in developmental biology. Journal of Theoretical Biology,
131:33–42, 1994.

[7] P. Eggenberger. Evolving morphologies of simulated 3d or-
ganisms based on differential gene expression. In P. Hus-
bands and I. Harvey, editors, Proceedings of the 4th Euro-
pean Conference on Artificial Life, Cambridge, MA., 1997.
The MIT Press.

[8] A. Gierer and H. Meinhardt. A theory of biological pattern
formation. Kybernetik 12, 30-39, 1972.

[9] P. Hogeweg. Evolving mechanisms of morphogenesis: on
the interplay between differential adhesion and cell differen-
tiation. Journal of Theoretical Biology, 203:317–333, 2000.

[10] G. S. Hornby and J. B. Pollack. The advantages of gener-
ative grammatical encodings for physical design. In Pro-
ceedings of the 2001 Congress on Evolutionary Computa-
tion (CEC2001), pages 600–607, COEX, World Trade Cen-
ter, 159 Samseong-dong, Gangnam-gu, Seoul, Korea, 27-30
2001. IEEE Press.

[11] A. Kajita, M. Yamamura, and Y. Kohara. Computer sim-
ulation of the cellular arrangement using physical model
in early cleavage of the nematode caenorhabditis elegans.
Journal of Bioinformatics, 19(9):704–716, 2003.

[12] S. Kauffman. The Origins of Order. Oxford University
Press, New York, 1993.

[13] J. R. Koza, David Andre, F. H. Bennett III, and M. Keane.
Genetic Programming 3: Darwinian Invention and Problem
Solving. Morgan Kaufman, Apr. 1999.

[14] E. Sakamoto and H. Iba. Inferring a system of differential
equations for a gene regulatory network by using genetic
programming. In Proceedings of Congress on Evolutionary
Computation, pages 720–726. IEEE Press, 27-30 2001.

[15] M. Savageau. 20 years of S-systems. In E. Voit, editor,
Canonical Nonlinear Modeling. S-systems Approach to Un-
derstand Complexity, pages 1–44, New York, 1991. Van
Nostrand Reinhold.

[16] H.-P. Schwefel. Evolution and Optimum Seeking. John Wi-
ley & Sons, New York, 1995.

[17] F. Streichert, C. Spieth, H. Ulmer, and A. Zell. Evolving
the ability of limited growth and self-repair for artificial em-
bryos. In Advances in Artificial Life - Proceedings of the
7th European Conference on Artificial Life, pages 289–298,
2003.

[18] D. Thieffry and R. Thomas. Qualitative analysis of gene
networks. Pacific Symposium on Biocomputing, 3:77–88,
1998.

[19] D. Tominaga, M. Okamoto, Y. Maki, S. Watanabe, and
Y. Eguchi. Nonlinear numerical optimzation technique
based on genetic algorithm for inverse problem: Towards
the inference of genetic networks. In Proceedings of Genetic
and Evolutionary Computation Conference, pages 251–258.
Morgan Kaufmann, 2000.

[20] A. M. Turing. The chemical basis of morphogenesis: A
reaction-diffusion model for development. Philosophical
Transactions, Series B: Biological Sciences, 237:37–72,
1952.

[21] D. Whitehead. Personal communication. Goettingen, Ger-
many, 2003.

[22] L. Wolpert. Principles of Development. Oxford University
Press, New York, 2002.


