
Evolution Strategies with Controlled Model
Assistance

H. Ulmer, F. Streichert, A. Zell
Centre for Bioinformatics Tübingen (ZBIT)

University of Tübingen
Sand 1, 72076 Tübingen, Germany

Email: ulmerh@informatik.uni-tuebingen.de

Abstract— Evolutionary Algorithms (EA) are excellent opti-
mization tools for complex high-dimensional multimodal prob-
lems. However, they require a very large number of problem
function evaluations. In many engineering and design optimiza-
tion problems a single fitness evaluation is very expensive or
time consuming. Therefore, standard evolutionary computation
methods are not practical for such applications. Applying models
as a surrogate of the true fitness function is a quite popular
approach to handle this restriction. It is straightforward that
the success of this approach depends highly on the quality
of the approximation model. We propose a Controlled Model
Assisted Evolution Strategy (C-MAES), which uses a Support
Vector Regression (SVR) approximation by pre-selecting the
most promising individuals. The model assistance on the evo-
lutionary optimization process is dynamically controlled by a
model quality based on the number of correctly pre-selected
individuals. Numerical results from extensive simulations on high
dimensional test functions including noisy functions and noisy
functions with changing noise level are presented. The proposed
C-MAES algorithm with controlled model assistance has a much
better convergence rate and achieves better results than the model
assisted algorithms without model control.

I. INTRODUCTION

Evolution Strategies (ES) are one class of Evolutionary
Algorithms (EAs), which are often used as optimization tools
for complex high-dimensional, multimodal problems [13] [14].
In contrast to other EAs like Genetic Algorithms or Genetic
Programming ES work directly on real valued objective vari-
ables, which represent a possible solution. Therefore ES are
very suitable for many engineering and design optimization
problems.

However, like other population based EAs ES require a very
high number of fitness function evaluations to determine an ac-
ceptable solution. In most-real world engineering optimization
applications the process of fitness evaluation is very expensive
and time consuming. Therefore standard ES methods are not
practical for such applications.

A promising approach to make evolutionary optimization
methods more practical is the application of modeling tech-
niques, where a model evaluation is orders of magnitude
cheaper than a true fitness function evaluation. A model is
trained on already evaluated fitness cases and is used to guide
the search for promising solutions. This approach decreases
the number of expensive fitness evaluations and has a better
convergence rate. The application of modeling techniques

in evolutionary computation receives increasing attention [9]
[3] [4] [16] [17]. The results achieved are very encouraging
and show that model assistance enhances the performance of
standard EAs.

The selection of an appropriate model to approximate the
fitness function is very important. Only a good approximation
model of the true fitness landscape can support the optimiza-
tion process. A second important point is the coupling of
the approximation model with the evolutionary optimization
process, which manages how the optimization process is
affected by replacing the expensive true fitness evaluation with
the prediction of the model.

Our work aims at improving the model management by
dynamically controlling the impact of the model on the evolu-
tionary process. The control is based on a quality measure of
the approximation model, which takes the ability of the model
to identify the most promising individuals into account.

The remainder of this paper is organized as follows:
Fitness approximation by Support Vector Regression (SVR)

is introduced in section II. Section III describes the basic
Model Assisted Evolution Strategy framework. We empirically
identify the problem of model impact control and introduce
a framework, which dynamically controls the impact of the
model assistance on the evolutionary optimization process
through the size of the pre-selected population in section IV.
Numerical results from extensive simulations on several high
dimensional test functions including are presented in section
V. The paper closes with a brief conclusion and outlook on
future work.

II. FITNESS APROXIMATION WITH SUPPORT VECTOR

REGRESSION (SVR)

Consider a d-dimensional real valued problem with a fitness
function, which is to be minimized, and a given data set D of
N already evaluated fitness cases (�xn, tn). We want to predict
the fitness f(�x) at a new unseen data point �x /∈ D.

Due to the limited amount of data and the high dimensional-
ity of most problems in object space (curse of dimensionality),
it is very difficult to obtain a perfect global approximation of
the true fitness function. In such cases it is better to restrict to
local models, which are only valid for a distinct area in object
space.

It is obvious, that the better the model approximates the
true fitness landscape, the better it supports the evolutionary
optimization process. Moreover a bad model can mislead the
optimization process.

Therefore, a suitable fitness approximation model must be
carefully chosen. The model should fulfill several requirements
[12]. Compared to the real fitness function it should have a
small computational complexity and it should represent the
global trends of the fitness landscape.

Various modeling techniques have been used for fitness
approximation in evolutionary computation. Neural networks
[9], [6], [7] including radial basis functions [17], [19] are
widely used for fitness approximation in evolutionary opti-
mization. Ong et al. [10] combines radial basis functions
with transductive inference to generate local surrogate models.
Gaussian Processing [3], [16] and Kriging [4], [12] are sta-
tistical modeling techniques, which are also used for fitness
function approximation. A comparison of neural networks and
kriging for fitness approximation in evolutionary optimization
can be found in [18].

In the following we give a brief description of Support
Vector Machines (SVM) [2], which are used in our study. The
SVM regression algorithm seeks to estimate a linear function,

f(�x) = 〈�ω, �x〉 + b (1)

based on the given training data. This is done by minimization
of a regularized risk functional:

R [f] =
1
2
‖�ω‖2 + C · Rε

emp [f] (2)

Rε
emp [f] =

1
N

N∑
i=1

max {0, |ti − f(�xi)| − ε} (3)

Rε
emp [f] measures the ε-insentitive training error. C is a regu-

larization constant determing the trade-off with the complexity
penalizer ‖�ω‖2. A small ‖�ω‖2 corresponds to a flat function.

The minimization of the regularized risk functional (equa-
tion 2) is equivalent to a constraint optimization problem,
which can be formalized by a lagrangian formalism and leads
to a quadratic programming problem. A detailed description
is given in [15]. The SVR output (equation 4) for the linear
regression case is expressed in terms of the scalar product and
a set of lagrangian multipliers α

(∗)
i .

f(�x) = 〈�ω, �x〉 + b =
N∑

i=1

(αi − α�
i) · 〈�xi, �x〉 + b (4)

Nonlinear regression can be performed by introducing a ker-
nel, which substitutes the scalar product and is often given as
a gaussian kernel (equation 5).

k(�xi, �x) = exp

(
−‖�xi − �x‖2

2σ2

)
(5)

To guarantee a unique optimal solution to the quadratic op-
timization problem the kernel matrix K = k(�xi, �xj)i,j=1,..,N

must be positive definite. The parameter σ of the Gaussian

Fig. 1. Standard (µ, λ)-ES on left side and the model assisted extended
(µ, λ)-MAES on the right side.

kernel, the value for ε and the regularization constant C
has to be selected by the user or by a model selection
procedure. Major advantages of the SVM over other methods
are, that there are no local minima during training and that
the generalization error does not depend on the dimension of
the object space. In our study we used a SVR implementation
called LIBSVM [1] written in Java.

III. MODEL ASSISTED EVOLUTION STRATEGIES (MAES)

In the following we describe the Model Assisted Evolution
Strategy (MAES) proposed by Ulmer et al.. A more detailed
description of the algorithm is given in [16]. We start our
consideration with a standard (µ, λ)-ES, which will be later
extended to the model assisted ES.

A standard ES works on a population of potential solutions
�x (individuals) by manipulating these individuals with the evo-
lutionary operators reproduction, recombination and mutation.
λ offspring individuals are generated from µ parents. After
evaluating the true fitness of the λ offspring individuals, a
(µ, λ) strategy selects the best µ individuals to build the parent

Algorithm 1 Model Assisted Evolution Strategy (MAES) .
(1) Procedure MAES
(2) begin
(3) eval=0;
(4) Pop=CreateInitialPop();
(5) Pop.EvalTrueFitness();
(6) Model.update(Pop);
(7) while(eval < maxeval)
(8) PreOffspring=Pop.Reproduce(λPre);
(9) PreOffspring.Mutate();
(10) PreOffspring.PredictFitness(Model);
(11) RealOffspring=PreOffspring.SelectBest(λ);
(12) RealOffspring.EvalTrueFitness();
(13) Model.update(RealOffspring);
(14) Pop=RealOffspring.SelectBest(µ);
(15) eval=eval+λ;
(16) end while
(17) End

population for the next generation. The algorithm terminates,
when a maximum number of fitness function evaluations have
been performed.

The MAES is based on this standard (µ, λ)-ES and can
be easily developed by introducing an additional pre-selection
step based on the fitness predictions of the approximation
model.

To incorporate the approximation model into the ES a pre-
selection concept is used. Compared to the standard ES not
λ but λPre > λ new offspring individuals are created from µ
parents by applying the evolutionary operators reproduction,
recombination and mutation (see algorithm 1 line 8). A
graphical presentation of the algorithm compared to a standard
(µ, λ)-ES is given in figure 1.

These λPre individuals have to be pre-selected by the
approximation model to generate the offspring of λ individuals
(algorithm 1 line 10 and 11), which are then evaluated with
the true fitness function (line 12).

The basic idea behind this approach is that only the most
promising individuals with a good fitness prediction are evalu-
ated with the true fitness function, which results in a reduction
of the number of expensive true fitness calls.

The model is trained at the beginning with a randomly
created initial population (line 6) and is updated after each
generation step with λ new fitness cases (line 13). The algo-
rithm terminates when a maximum number of fitness function
evaluations have been performed.

For λPre = λ, the algorithm performs like a standard (µ, λ)
ES and the model has no impact on the ES. Increasing λPre

results in a larger selection pressure in the pre-selection and in
a stronger impact of the model on the convergence behavior
of the optimization process.

To analyze the influence of the pre-selection population size
λPre on the optimization process numerical simulations were
performed for different values of λPre = 100, 200, 300, 400.

All presented results are the mean of 100 repeated runs with
different seed values for random number generation.

Throughout our study we used Main Vector Adaptation
(MVA) [11] for step size control of the mutation operator
without recombination and an initial population size of 10.
MVA is a Covariance Matrix Adaptation [5] variant, which
has the advantage of linear time and space complexity [11].

The approximation model was built in all cases by SVR
with training data from the 3λ most recently performed fitness
evaluations. For this reason the model is a local model of the
individual’s neighborhood in object space. Using more training
data improves the performance only slightly, but results in
much higher computational costs for model training.

In figure 2 you can see the results for the 10-dimensional
sphere test function (fsphere(�x) =

∑10
i=1 x2

i). A very high
dependency of the results on the value of parameter λPre

can be observed. The bigger λPre, is the better the algorithm
performs, because the sphere fitness landscape can be approx-
imated very well by SVR.

The same can be observed for other test functions e.g.
the Generalized Rosenbrock’s test function (fRosen(�x) =

Fig. 2. 10-dim. sphere test function: fitness of best individual for different
λPre : 100, 200, 300, 400.

Fig. 3. 10-dim. Generalized Rosenbrock test function: fitness of best
individual for different λPre : 100, 200, 300, 400.

∑10
i=1(100 · (xi+1 − xi)2 + (xi − 1)2)), see figure (3).
The parameter λPre has to be set by the user before the

optimization run and keeps constant during the optimization.
This fact turns out as an obvious disadvantage of the pre-
selection based model assisted algorithm. What is the best
value for λPre?

It would be very useful if the algorithm itself would
select an appropriate value for λPre dynamically during the
optimization process.

This requirement of model impact control is not new in
model assisted evolutionary computation, but there are only a
few publications, which discuss this problem.

One approach is to use a confidence criterion given by
statistical models like Kriging or Gaussian Processes to control
when the approximation model is used instead of the real fit-
ness function [3]. The prediction of the fitness of an individual
only substitutes a true fitness evaluation, if the prediction error

given by the Gaussian Process is below a given threshold.
Another approach is given by the adaptive evolution control

concept [9]. This approach controls the impact of the model
on the evolutionary optimization, through determination of the
frequency, when the approximate model is used, based on the
model quality. The higher the model quality is, the more often
the approximate models are used instead of the true fitness
function.

Utilizing the model quality seems to be the most reasonable
way to control λPre. Therefore we introduce in the following
an appropriate model quality criterion, which is later used to
control λPre.

IV. MODEL IMPACT CONTROL BASED ON MODEL QUALITY:
THE CONTROLLED MODEL ASSISTED EVOLUTION

STRATEGY (C-MAES)

Different quality measures for the approximation model in
evolutionary computation are discussed in [8] and [7].

In general the quality of an approximation model is deter-
mined by the mean squared error (MSE) of a number N of
predictions:

MSE =
1
N

N∑
i=1

(ti − f(�xi))2 (6)

However, we are not interested in the quality of the model
itself, but in the quality of the selection process based on the
predictions of the model. In the model assistance framework
here used the only purpose of the approximation model is to
select the most promising λ out of λPre individuals. Therefore
the model should only select the best individuals in terms of
ranking the fitness predictions.

Although an approximation model with low MSE sorts the
individuals regarding their fitness in the correct order, from
the evolutionary computation point of view, only the correct
selection is of importance [8], [7].

Next we define a quality measure based on the correct
model based ranking. The advantage of this quality measure,
compared to the MSE is, that it can be easily evaluated for
a selection process, which is based on pure random selection.
Our considerations are based on the assumption, that a model,
which has a better selection quality than a random selection
process, supports the optimization process and vice versa.

To measure the quality of the pre-selection process directly,
we have to know the true fitness value of all λPre individuals.
But only the true fitness for the λ most promising pre-selected
individuals is known.

But instead of that the quality for a hypothetical selection
process can be determined for a selection of µ out of the
λ individuals, for which we know the predicted and the true
fitness. We assume that this quality measurement is equivalent
to the one of the pre-selection process.

A. Selection based model quality

The here described quality measure is a variant of the
measures proposed by Jin et al. [8]. The model based selection
process selects µ out of the λ individuals with the best

predicted fitness. An individual is correctly selected, if it would
also be selected by a selection process based on the true fitness
of the individuals.

The number of correctly selected individuals gives a quality
measure of the model based selection process. Given a rank of
(λ− i) for each correctly selected individual, if the individual
has the i−th best fitness based on the true fitness. We define
the summed rank of all correctly selected individuals as
the quality Q of the model based selection process. For no
correctly selected individuals Q is minimal (Q = 0). If all
individuals are selected correctly, the maximum quality is
given as:

Qmax =
µ∑

i=1

(λ − i)

= µλ − µ(µ + 1)
2

(7)

The expectation value of Q for a purely random selection
process is given as the product of the expectation value of the
number of correctly selected individuals and the expectation
value of the rank of a correctly selected individual:

〈
Qrand

〉
=

µ∑
i=1

i

(
µ
i

)(
λ−µ
µ−i

)
(
λ
µ

) · 1
µ

µ∑
i=1

(λ − i)

=
µ2

λ
· 2λ − µ − 1

2
(8)

B. Controlling the model impact λPre

The evolutionary optimization process can only benefit from
the model assistance if the selection process performs better
and has therefore a better selection quality than a purely
random selection process.

After each generation in the ES the actual measured selec-
tion quality Qt has to be compared with the expected quality
of the random selection process

〈
Qrand

〉
.

For Qt >
〈
Qrand

〉
the model based selection is better than

a random selection and λPre should be increased. On the other
side, for Qt <

〈
Qrand

〉
the value λPre should be decreased.

Therefore we suggest the following updating rule for λPre

depending on the actual model selection based quality Q t. For
Qt >

〈
Qrand

〉
:

λt+1
Pre = λt

Pre +
(Qmax − Qt)

Qmax − 〈Qrand〉 · δλP re (9)

and for Qt <
〈
Qrand

〉
:

λt+1
Pre = λt

Pre −
(
〈
Qrand

〉− Qt)
〈Qrand〉 · δλPre (10)

δλP re denotes an adaptation rate. The idea is to compare
the actual selection quality of the model with the one of
a random process to decide, if there exits a benefit for the
evolutionary process by performing model assistance. The
bigger the difference, the bigger is the change in λPre.

Compared to absolute quality measurements like MSE, the
described selection based quality Q has the advantage that one
can compare it with

〈
Qrand

〉
. This is used as a relative quality

to control the model influence on the evolutionary process.

V. EXPERIMENTAL RESULTS AND DISCUSSION

To analyze the performance of the algorithms, extensive
simulations were performed for real valued test functions. For
each test function the following algorithms were compared:

• Standard (µ, λ)-ES
• (µ, λ) MAES with fixed λPre = λPreStatic = 2λ
• (µ, λ) C-MAES with controlled λPre

The figures show results, which are always evaluated as the
mean of 100 repeated runs with different seed values for
random number generation. The population size parameter are
µ = 5 and λ = 35.

The size of the pre-selected population for MAES was
fixed to λPreStatic = 2λ and the C-MAES algorithm with
dynamically controlled λPre was initialized with λPre(t =
0) = 2λ.

A. Standard test functions

The sphere function is a nonlinear, continuous, convex,
smooth function, which is an easy test for the self-adaptation
mechanism of ES. Both model assisted approaches MAES
and C-MAES improve the convergence speed of the standard
ES (see figure 4). But C-MAES performs clearly better than
MAES.

This result can be explained by the increasing λPre during
the complete optimization run, due to the good approximation
of the fitness landscape of the Sphere function. The selection
based quality of the model is always better than the one of the
random selection process

〈
Qrand

〉
. Therefore the evolutionary

process profits from the model assistance, which leads to a
great enhancement of the convergence velocity.

The same observations are obtained with Schwefel’s test
function (fSchwefel(�x) =

∑10
i=1(

∑i
j=1 xj)2) (see figure 5).

The results for the ”Cigar” test function (fCigar(�x) =
x2

1 +
∑10

i=2 (10000xi)
2) are more interesting. In the first 2000

fitness evaluations of the optimization run the coordinates
2, .., N are optimized. In the same way as for the Sphere
function λPre increases and C-MEAS outperforms ES and
MAES. But then the feasible direction along the first coor-
dinate is difficult to find, which is indicated by a plateau in
the fitness plot. This is a classical case of a problem, which
has only one preferred mutation direction to reach the global
minimum. At this point the influence of the model on the
optimization process is for C-MAES bigger than for MAES,
which results in a faster discovery of the right search direction
in objective space.

The Generalized Rosenbrock test function is nonlinear,
continuous and not symmetric. The application of model
impact control results here only in a slight improvement of the
performance of the algorithms (see figure 7), even though λ Pre

is increasing, which indicates again a good approximation
model.

B. Noisy test functions

In many real world engineering and design optimization
applications the fitness function is uncertain or noisy. Noise
may result from many different sources, such as measurement
errors or numerical instabilities in simulations. To test our
approach on such requirements we modify the test functions
as follows:

F (�x) = f(�x) + δ; δ ∝ N(0, σ2) (11)

The objective of optimization on noisy problems is to mini-
mize the expectation value of the fitness function 〈F (�x)〉, but
the optimization algorithm has only the noisy fitness values
F (�x) available.

At the beginning of the optimization runs (see figures 8,
9, 10 and 11) the fitness values are large and the noise is
negligible. The fitness landscapes can be approximated by the
model with nearly the same quality as in the case without
noise. Therefore λPre increases and the optimization profits
from the model assistance like in section V-A for the test
functions without noise.

But with decreasing fitness values the contribution of the
noise becomes bigger and it is getting harder to generate an
adequate approximation model. Therefore the quality of the
model decreases and λPre is regulated down. This proves that
our adaptation scheme for λPre can also react to situations for
which no model assistance is desirable.

C. Test functions with dynamically changing noise level

To analyse the ability of C-MAES to react to different model
qualities we constructed test cases with iterating noise level.
Here the additive noise in the fitness is only switched on
between 1000 and 2000 and between 3000 and 4000 fitness
calls.

Here the application of the controlled model assistance
on the evolutionary optimization process shows the most

Fig. 4. 10-dim. sphere test function: fitness of best individual and λPre of
the C-MAES algorithm.

Fig. 5. 10-dim. Schwefels’s test function: fitness of best individual and λPre

of the C-MAES algorithm.

Fig. 6. 10-dim. cigar test function: fitness of best individual and λPre of
the C-MAES algorithm.

impressive results on the adaptation of λPre (see figures 12,
13, 14, 15).

If no noise on the fitness function is present the evolutionary
process can benefit from the model assistance and λPre

increases, which is the same observation as made in section
V-A.

After 1000 true fitness calls the additive noise on the fitness
function is switched on. C-MAES recognizes that the quality
of the model has worsened and decreases the model impact on
the optimization process by decreasing λPre. Then after 2000
true fitness calls the noise is switched off and again λPre

increases.
This ability of C-MAES to react to changing qualities of

the approximation model, results in a higher convergence rate
compared to MAES with fixed λPre and the standard ES.
Furthermore C-MAES finds better solutions with fewer true
fitness calls.

The results show, that the application of model impact

Fig. 7. 10-dim. Generalized Rosenbrock test function: fitness of best
individual and λPre of the C-MAES algorithm.

Fig. 8. 10-dim. noisy sphere test function (σ2 = 0.01): fitness of best
individual and λPre of the C-MAES algorithm.

control by using an adaptation mechanism for λPre enhances
the performance of model assisted ES.

VI. CONCLUSIONS

We applied a SVR to assist a standard ES by using the
model to pre-select the λ most promising individuals from a
number of λPre individuals. Only these λ are evaluated by
the true fitness function.

The application of model assistance enhances the evolu-
tionary optimization process very much. However, the perfor-
mance of this approach is very sensitive to the value of λPre.
We proposed a new mechanism, which dynamically controls
λPre by a model quality measurement based on the number
of correctly pre-selected individuals.

Extensive simulations showed that controlling the impact
of the approximation model on the evolutionary optimization
process enhances the performance of model assisted Evolution

Fig. 9. 10-dim. noisy Schwefel test function (σ2 = 0.01): fitness of best
individual and λPre of the C-MAES algorithm.

Fig. 10. 10-dim. noisy cigar test function (σ2 = 0.01): fitness of best
individual and λPre of the C-MAES algorithm.

Strategies with fixed model influence. The concept of model
impact control could empirically proved for noisy fitness
functions with or without time dependent noise level.

If the model has a good quality, which means that it pre-
selects the most promising individuals in the same manner as
the actual true fitness function, then the model impact given
by λPre increases.

On the other side, in areas of the fitness landscape, where
a good approximation is not possible e. g. in the presence of
a not negligible noise level, λPre decreases.

These encouraging results justify the application of model
impact control in the field of model assisted ES, which
have applications for problems with very expensive and time
consuming fitness evaluations like in design optimizations.

For further work it is planned to develop a mechanism,
which also takes the costs of model training and evaluation
compared to the costs of true fitness evaluations into account.

Fig. 11. 10-dim. noisy Generalized Rosenbrock test function (σ2 = 0.01):
fitness of best individual and λPre of the C-MAES algorithm.

Fig. 12. 10-dim. sphere test function with changing noise level (σ2 = 0.01):
fitness of best individual and λPre of the C-MAES algorithm.

Acknowledgments: This research has been funded by the
German federal ministry of research and education (BMBF)
in the project ”Entwicklung eines Systems zur automa-
tisierten Herstellung und Charakterisierung von kristalli-
nen Festkörpern in hohem Durchsatz” under contract No.
03C0309E.

REFERENCES

[1] C.-C. Chang and C.-J. Lin. LIBSVM: a library for
support vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

[2] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995.

[3] M. A. El-Beltagy and A. J. Keane. Evolutionary optimization for
computationally expensive problems using gaussian processes. In
CSREA Press Hamid Arabnia, editor, Proc. Int. Conf. on Artificial
Intelligence IC-AI’2001, pages 708–714, 2001.

[4] M. Emmerich, A. Giotis, M. Özdemir, T. Bäck, and K. Giannakoglou.
Metamodel-assisted evolution strategies. In Parallel Problem Solving
from Nature VII, pages 362–370, 2002.

Fig. 13. 10-dim. Schwefel test function with changing noise level (σ2 =
0.01): fitness of best individual and λPre of the C-MAES algorithm.

Fig. 14. 10-dim. cigar test function with changing noise level (σ2 = 0.01):
fitness of best individual and λPre of the C-MAES algorithm.

[5] N. Hansen and A. Ostermeier. Convergence properties of evolution
strategies with the derandomized covariance matrix adaptation: The
(µ/µi, λ)-cma-es. In 5th European Congress on Intelligent Techniques
and Soft Computing, pages 650–654, 1997.

[6] Y.-S. Hong, H.Lee, and M.-J. Tahk. Acceleration of the convergence
speed of evolutionary algorithms using multi-layer neural networks.
Engineering Optimization, 35(1):91–102, 2003.

[7] M. Hüscken, Y. Jin, and B. Sendhoff. Structure optimization of neural
networks for aerodynamic optimization. Soft Computing Journal, 2003.
In press.

[8] Y. Jin, M. Hüsken, and B. Sendhoff. Quality measures for approximate
models in evolutionary computation. In Alwyn M. Barry, editor, GECCO
2003: Proceedings of the Bird of a Feather Workshops, Genetic and
Evolutionary Computation Conference, pages 170–173, Chigaco, 11 July
2003. AAAI.

[9] Y. Jin, M. Olhofer, and B. Sendhoff. A framework for evolutionary
optimization with approximate fitness functions. IEEE Transactions on
Evolutionary Computation. March 2002, pages 481–494, 2002.

[10] Y. S. Ong, P. B. Nair, and A. J. Keane. Evolutionary optimization
of computationally expensive problems via surrogate modeling. AIAA
Journal, 40(4):687–696, 2003.

[11] J. Poland and A. Zell. Main vector adaptation: A cma variant with

Fig. 15. 10-dim. Generalized Rosenbrock test function with changing noise
level (σ2 = 0.01): fitness of best individual and λPre of the C-MAES
algorithm.

linear time and space complexity. In Proceedings of the Genetic
and Evolutionary Computation Conference, pages 1050–1055. Morgan
Kaufman, 2001.

[12] A. Ratle. Accelearating the convergence of evolutionary algorithms
by fitness landscape approximation. In A. Eiben et al, editor, Parallel
Problem Solving from Nature V, pages 87–96, 1998.

[13] I. Rechenberg. Evolutionsstrategie ’94. frommann-holzboog, Stuttgart,
1994.

[14] H.-P. Schwefel. Numerische Optimierung von Computer-Modellen
mittels der Evolutionsstrategie. Birkhäuser, Basel, 1977.

[15] A. Smola and B. Schölkopf. A tutorial on support vector regression.
Technical report, 1998.

[16] H. Ulmer, F. Streichert, and A. Zell. Evolution strategies assisted by
gaussian processes with improved pre-selection criterion. In Proceedings
of the 2003 Congress on Evolutionary Computation CEC2003, Can-
berra, Australia, pages 692–699. IEEE Press, 2003.

[17] H. Ulmer, F. Streichert, and A. Zell. Model-assisted steady-state
evolution strategies. In E. Cantú-Paz, J. A. Foster, K. Deb, D. Davis,
R. Roy, U.-M. O’Reilly, H.-G. Beyer, R. Standish, G. Kendall, S. Wilson,
M. Harman, J. Wegener, D. Dasgupta, M. A. Potter, A. C. Schultz,
K. Dowsland, N. Jonoska, and J. Miller, editors, Genetic and Evolu-
tionary Computation – GECCO-2003, volume 2723 of LNCS, pages
610–621, Chicago, 12-16 July 2003. Springer-Verlag.

[18] L. Willmes, T. Bäck, Y. Jin, and B. Sendhoff. Comparing neural
networks and kriging for fitness approximation in evolutionary optimiza-
tion. In Proceedings of the 2003 Congress on Evolutionary Computation
CEC2003, Canberra, Australia, pages 663–670. IEEE Press, 2003.

[19] K. S. Won, R. Tapabrata, and K. Tai. A framework for optimization
using approximate functions. In Proceedings of the 2003 Congress on
Evolutionary Computation CEC2003, Canberra, Australia, pages 1520–
1527. IEEE Press, 2003.

