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Abstract— With the invention of high throughput methods,
researchers are capable of producing large amounts of biological
data. During the analysis of such data, the need for a functional
grouping of genes arises. In this paper, we propose a new
functional distance measure for genes and its application to
clustering. The proposed distance is based on the concept of
empirical feature maps that are built using the Gene Ontology.
Besides, our distance function can be calculated much faster than
a previous approach. Finally, we show that using this distance
function for clustering produces clusters of genes that are of
the same quality as in our previous publication. Therefore, it
promises to speed up biological data analysis.

I. INTRODUCTION

In the past few years, DNA microarrays have become major
tools in the field of functional genomics. In contrast to tradi-
tional methods, these technologies enable researchers to collect
tremendous amounts of data, whose analysis itself constitutes
a challenge. On the other side, these high-throughput methods
provide a global view on the cellular processes as well as on
their underlying regulatory mechanisms and are therefore quite
popular among biologists.

During the analysis of such data, researchers use different
approaches in order to deal with the huge amounts of data that
they gathered. Some use statistics to find significantly regu-
lated genes that may be involved in the underlying process due
to their change in expression. Others apply pattern recognition
methods to cluster the genes according to their expression
profiles. The hypothesis is, that genes with expression patterns
similar to those of genes known to be involved in the examined
biological process, may play a role in the process, too. In both
cases, researchers often end up with long lists of interesting
candidate genes that need further examination. At this point,
a second step is almost always applied: biologists categorize
these genes by known biological functions and thus try to com-
bine a pure numerical analysis with biological information.

In this paper we address the problem of finding functional
gene clusters only based on Gene Ontology terms. The ad-
vantage of such a method is that no a priori knowledge about
relevant pathways is necessary except a mapping from genes
to their ontological information. The latter is often available in
public databases. Given the GO terms we are able to compute
a functional distance between genes [13]. This information is
fed into a clustering algorithm. To our best knowledge, so far
there exists no automatic method that produces a biologically
plausible functional clustering of genes just based on the GO

apart from our earlier publications [22], [21]. In [21], we repre-
sented each gene by its functional distance to all other genes.
This encoding allowed us to construct a valid mathematical
distance measure between genes and the incorporation of all
GO annotations into the distance function. Both was not given
in [22]. Now, we apply a similar representation as in [21], but
instead of representing each gene by its distance to all other
genes, we only utilize the distance of each gene to a subset
of the GO terms that occur in the dataset. The advantage is,
that the number of prototypes (GO terms) that are necessary to
construct such a feature vector is quite small which makes the
method much faster than the one in [21]. Besides, we provide
a method to automatically select those prototypes. Again, there
is also a deeper connection to Kernel Methods [19], which will
be discussed later on in this paper. The final grouping of the
genes can then be performed by any clustering method.

The organization of this paper is as follows: section I gives
a general introduction, discusses related work and provides a
brief introduction to the Gene Ontology. Section II explains
our method in detail. In section III, an application of our
distance function to clustering is shown on real world datasets.
Finally, in section IV, we conclude.

A. Related Work

While GO analysis is an increasingly important field, exist-
ing techniques suffer from some weaknesses: Many methods
consider the GO simply as a list of terms, ignoring any
structural relationships [2], [5], [16], [20], [25]. Others regard
the GO primarily as a tree and convert the GO graph into a tree
structure for determining distances between nodes [11]. Again
others use a pseudo-distance that does not fulfill all metric
conditions and relies on counting path lengths [9]. This is a
delicate approach in unbalanced graphs like the GO, whose
subgraphs have different degrees of detail.

Besides, the aim of some methods is primarily either to
use the GO as preprocessing [1] or as visualization tool [4].
Only few approaches utilize its structure for computation.
Many methods are scoring techniques describing a list of genes
annotated with GO terms [2], [4], [5], [11], [16], [20], [25].
But to our knowledge and apart from our earlier publications
[22], [21], [23], there exists no automatic functional GO-based
clustering method. One method is related to clustering and can
be used to indicate which clusters are present in the data [9].
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However, it suffers from the weaknesses that come along with
using pseudo-distances as mentioned earlier.

B. The Gene Ontology

The Gene Ontology (GO) is one of the most important
ontologies within the bioinformatics community and is devel-
oped by the Gene Ontology Consortium [24]. It is specifically
intended for annotating gene products with a consistent, con-
trolled and structured vocabulary. Gene products are for in-
stance sequences in databases as well as measured expression
profiles. The GO is independent from any biological species. It
represents terms in a Directed Acyclic Graph (DAG), covering
three orthogonal taxonomies or "aspects": molecular function,
biological process and cellular component. The GO-graph
consists of over 18,000 terms, represented as nodes within
the DAG, connected by relationships, represented as edges.
Terms are allowed to have multiple parents as well as multiple
children. Two different kinds of relationship exist: the "is-a"
relationship (for example photoreceptor cell differentiation is
a child of cell differentiation) and the "part-of" relationship
(regulation of cell differentiation is part of cell differentiation).

part-of

is-a

GO:0046532

regulation of photoreceptor cell differentation

GO:0045595
regulation of cell differentation

GO:0046530

photoreceptor cell differentation

cell differentiation

GO:0030154 GO:0050794

regulation of cellular process regulation of development

GO:0050793

part-of is-ais-a

is-a

Fig. 1. Relations in the Gene Ontology. Each node is annotated with a unique
accession number.

Providing a standard vocabulary across any biological re-
sources, the GO enables researchers to use this information
for automatic data analysis done by computers and not by
humans.

II. METHODOLOGY

To find functional gene clusters, one needs to compute func-
tional distances between genes which can only be computed
due to functional annotation. Here, we use Gene Ontology
terms. Since the functional distances are computed between
GO terms and since each gene can be annotated with more
than one GO term, we face the problem of combining all the
different possible functional distances to compute one distance
between a pair of genes. Taking the smallest distance is a
possible solution of this problem and was presented in [22]. It
has the disadvantage that this approach looses the properties of
a metric and that only a dissimilarity matrix is available and
thus means cannot be calculated which reduces the amount
of data mining techniques that can be applied. Besides, when
taking the minimum distance, genes can by definition only be
grouped according to one function.

Therefore, in [21], we introduced the concept of represent-
ing each gene by a feature vector describing the function of a
gene. We proposed to represent each gene by its functional dis-
tance to all other genes. This encoding allowed us to construct
a valid mathematical distance measure between genes and the
usage of mean calculation. In addition, the grouping according
to more than one function was possible. In this paper, we
apply a similar representation, but instead of using all genes
as prototypes as in our earlier publication [21], we only utilize
a subset of the GO terms that occur in the dataset. This has
all advantages of the feature vector representation, plus that
the computation of the feature vector is less expensive and
consequently much faster.

Our method consists of different steps that will be explained
separately in this section: the mapping of the genes to the Gene
Ontology (sec. II-A), the calculation of functional distances on
GO terms (sec. II-B), the concept of the feature vectors (sec.
II-C) and the selection of prototype terms to construct the
feature vector (sec. II-D).

A. Mapping the Genes to the Gene Ontology

The functional distance measure is based on distances on
pairs of GO nodes in a DAG, whereas in general, researchers
are dealing with database ids of genes or probes. Therefore, a
mapping M that relates the genes of a microarray experiment
to nodes in the GO graph is required. Many databases (e.g.
TrEMBL (GOA-project)) provide GO annotation for their en-
tries, companies like Affymetrix provide GO mappings to their
probeset ids and the GO Consortium also makes mappings
to other databases and ontologies available. For one of our
datasets, we used GeneLynx [12] to map the gene to GO ids.
For the other dataset the mapping to the GO was done by
Hvidsten et al. [6] and is publicly available.

B. Distances between GO terms

To calculate functional distances between GO nodes, we
rely on a technique that was originally developed for other
taxonomies like WordNet to measure semantic distances be-
tween words [8].

Following the notation in information theory, the infor-
mation content (IC) of a term t can be quantified by the
probability of occurrence of this term or any child term in a
dataset [15]:

IC(t) = − ln P (t) (1)

where P (t) is the probability of encountering an instance of
term t in the data.

In the case of a hierarchical structure, such as the GO, where
a term in the hierarchy subsumes those lower in the hierarchy,
this implies that P (t) is monotonic as one moves towards the
root node. As the node’s probability increases, its information
content or its informativeness decreases. The root node has
a probability of 1, hence its information content is 0. As the
three aspects of the GO are disconnected subgraphs, this is still
true if we ignore the root node "Gene Ontology" and take, for
example, "biological process" as our root node instead. P (t) is
simply computed using maximum likelihood estimation [21].
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To compute a similarity between two terms, one can use
the IC of their common ancestor. As the GO allows multiple
parents for each term, two terms can share ancestors by
multiple paths. We take the minimum P (t), if there is more
than one ancestor. This is called Pms, for probability of the
minimum subsumer [13]. Thereby, it is guaranteed, that the
most specific parent term is selected:

Pms(ti, tj) = min
t∈S(ti,tj)

P (t) (2)

where S(ti, tj) is the set of parental terms shared by both ti

and tj .
Based on Eqn. 1 and 2, Jiang and Conrath developed a

distance measure [8], which is the inverse of similarity. They
defined the distance of two nodes (in our case GO terms) ti, tj
as follows:

d(ti, tj) = 2 ln Pms(ti, tj) − (ln P (ti) + ln P (tj)) (3)

One should note, that the probability of a term as well as
the resulting distance between two terms differs from dataset
to dataset, depending on the distribution of terms. Therefore,
in the end, also the clustering differs from a general cluster-
ing/categorization of the GO and a subsequent mapping of the
genes to such a general categories. Due to our approach, we
are able to arrange the resulting cluster boundaries depending
on the distribution of the GO terms in the data either more
specific (if the terms concentrate on a specific part of the GO)
or more general (if the terms are widely spread).

C. Distances between Genes Using Feature Vectors

For each gene gi we construct a feature vector φp(gi)
relative to some prototypes p = (p1, ..., pN )T

φp(gi) = (d(gi, p1), ..., d(gi, pN ))T . (4)

This construction is known as an empirical feature map [18],
[19]. In our case prototypes are a subset of GO terms that
are present in the dataset: p = (t1, ..., tN )T . Since each gene
can be annotated with a different number of GO terms, each
feature of φp(gi) corresponds to the smallest distance between
all GO term annotations of the gene and the corresponding
prototype pi = ti. That means each gene gi is represented by
its smallest functional distance to each of the prototypes. Now,
the distance between two genes gi and gj is simply given by

d̂(gi, gj) = ‖φ(gi) − φ(gj)‖. (5)

There exists a deep connection to the construction of so
called kernel functions, which can be viewed as a general
similarity measure k : X × X → R with the property of
being symmetric and positive definite: More specifically, we
have the equality (c.f. [19])

d̂2(gi, gj) = ‖φ(gi) − φ(gj)‖
2

= 〈φ(gi), φ(gi)〉 − 2〈φ(gi), φ(gj)〉 + 〈φ(gj), φ(gj)〉

= k(gi, gi) − 2k(gi, gj) + k(gj , gj). (6)

That means by defining φ : X → H we map our data into
some Hilbert space H. The scalar product in this space defines

a kernel k : X × X → R and hence a similarity measure
between two genes gi and gj in our original input space X .
If we take the normalization φnorm(gi) = φ(gi)

‖φ(gi)‖
, we recover

the normalized kernel [19]:

knorm(gi, gj) = 〈φnorm(gi), φnorm(gj)〉

=
k(gi, gj)√

k(gi, gi)k(gj , gj)
. (7)

D. Selecting the Prototypes

As already mentioned earlier, we use a set of GO terms as
prototypes. Since each gene is annotated with one or more GO
terms, the selected prototypes should fulfill certain criteria:
At first, the prototypes should be well distributed over the
GO space, not necessarily over the whole GO with its 18,000
terms, but over those terms that are present in the dataset.
Additionally, since our GO term distance function (see Eqn.
3) uses the probability of occurrence of the smallest common
parent term, a certain tradeoff between specificity and gener-
ality of the prototypes must be guaranteed. This is important,
because if the prototypes are too specific, nearly every other
term has a large distance to them and discrimination becomes
impossible. On the other hand, too general prototypes (e.g.
GO Slim terms) may cause the same effect, especially, when
the GO annotations of the dataset are mostly very specific.

An easy and straightforward way to chose prototype terms
that fulfill the above requirements is to select a well distributed
subset of of those terms that occur in the dataset. Such an
approach has several advantages: first it reduces the number
of considered terms from about 18,000 to a couple of hundred,
and second, it automatically guarantees that the prototypes are
not completely beyond the space covered by the dataset.

To find a subset of points that are well distributed over a
dataset, one can cluster the data and use the cluster centers.
If the precondition is that the subset should only contain
points also present in the dataset or if mean calculation is
not possible (such as in the GO), one could take the cluster
medoids instead. A medoid is defined as the most centrally
located item in a cluster that is, the item in the cluster whose
average dissimilarity to all other items in the cluster is minimal
[10]. Thus, medoids can easily be computed from dissimilarity
data.

Referring to our problem, we cluster all GO terms that are
present in the dataset using a method that was published in
[23]. It is based on a Spectral Clustering algorithm by Ng et
al. [14], that we also briefly review in sec. III, since it is also
used later on in this paper. In contrast to our work in [23], in
this paper, we apply a gaussian kernel to construct the affinity
matrix

Atitj
= exp(

−d(ti, tj)
2

2σ2
), (8)

with d(ti, tj) denoting the GO distance according to Eqn. 3 be-
tween term ti and tj . The parameter σ was tuned automatically
such that the average distortion of the points in Eigenvector
space becomes minimal as proposed in [14].
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After clustering, we compute the medoids of each cluster
as described above and utilize them as prototypes to construct
the feature vector as explained in sec. II-C.

III. APPLICATION: CLUSTERING

One possible scenario where researchers would like to group
a list of genes according to their function is when they received
lists of up- or down-regulated genes from the analysis of an
DNA microarray experiment. Thus, we chose two publicly
available microarray data sets, annotated the genes with the
GO and used them for functional clustering (see III-C). We
only use the taxonomy biological process, because we are
mainly interested in gene function in a more general sense.
However, our method can be applied in the same way for the
other two taxonomies.

Given our representation of each gene as a feature vector,
we can choose any clustering algorithm to group our data.
Here, we use three different cluster algorithms: Spectral Clus-
tering, K-means and Single Linkage clustering. The last two
are standard methods, but Spectral Clustering isn’t and will
therefore be explained briefly in the next section.

A. Spectral Clustering

A set of objects (in our case genes) to be clustered will
be denoted by X , with |X| = n. Given an affinity measure
Aij = Aji ≥ 0 for two objects i, j, the affinities Aij can be
seen as weights on the undirected edges ij of a graph G over
X . Then, the matrix A = [Aij ] is the real-valued adjacency
matrix for G. Let di =

∑
j∈X Aij be called the degree of

node i, and D be the diagonal matrix with di as its diagonal.
A clustering C = {C1, C2, . . . , CK} is a partitioning of X

into the nonempty mutually disjoint subsets C1, C2, . . . , CK .
In the graph theoretical paradigm a clustering represents a
multiway cut in the graph G.

In general, all Spectral Clustering algorithms use Eigenvec-
tors of a matrix (derived from the affinity matrix A) to map the
original data to the K-dimensional vectors {γ1, γ2, . . . , γn} of
the spectral domain <K . Then, in a second step, these vectors
are clustered with standard clustering algorithms. Here, we use
K-means. We chose the newest Spectral Clustering algorithm
by Ng et al. [14] and we will now explain it briefly:

1) From the affinity matrix A and its derived diago-
nal matrix D, compute the Laplacian matrix L =
D−1/2AD−1/2.

2) Find v1, v2, . . . , vK , the Eigenvectors of L, correspond-
ing to the K largest Eigenvalues.

3) Form the matrix Vn×k =
[
v1, v2, . . . , vK

]
with these

Eigenvectors as columns.
4) Form the matrix Y from V by renormalizing each of

V ’s rows to have unit norm.
5) Cluster the rows of Y = [γ1, γ2, . . . , γn] as points in a

K-dimensional space using standard methods.
6) Finally assign the original object i to cluster j if and

only if row γi of the matrix Y was assigned to j.

Since Spectral Clustering relies on the affinity matrix A,
affinities are often computed with a kernel function, e.g. Eqn.

8, with d(i, j) denoting the distance between object i and j and
σ denoting the kernel width. Since in our case, the objects are
genes, d(i, j) is the Euclidean distance of the feature vectors
for each gene. For the final clustering in the Eigenvector space,
we choose the K-means algorithm by Zha et al. [26], which
leads to a unique and global optimal solution. This has the
advantage that no restarts are necessary. The parameter σ can
be tuned automatically such that the average distortion of the
points in Eigenvector space becomes minimal [14].

B. Cluster Validity

We selected the number of clusters K in our data according
to the maximal Average Silhouette Index [17]. The Silhouette
value for each point is a measure of how similar that point
is to points in its own cluster vs. points in other clusters, and
ranges from -1 to +1. It is defined as:

S(i) =
min(d̄B(i, j)) − d̄W (i)

max(d̄W (i), min(d̄B(i, j))
(9)

where d̄W (i) is the average distance from the j-th point to
the other points in its own cluster, and d̄B(i, j) is the average
distance from the i-th point to points in another cluster j.

C. Datasets

The authors of the first dataset examined the response of
human fibroblasts to serum on cDNA microarrays in order to
study growth control and cell cycle progression. They found
517 genes whose expression levels varied significantly, for
details see [7]. We used these 517 genes for which the authors
provide NCBI accession numbers. The GO mapping was done
using GeneLynx [12]. After mapping to the GO, 238 genes
showed one or more mappings to biological process or a child
term of biological process. These 238 genes were used for the
clustering.

In order to study gene regulation during eukaryotic mitosis,
the authors of the second dataset examined the transcriptional
profiling of human fibroblasts during cell cycle using microar-
rays [3]. Duplicate experiments were carried out at 13 different
time points ranging from 0 to 24 hours. Cho et al. found 388
genes whose expression levels varied significantly. Hvidsten
et al. [6] provide a mapping of the dataset to GO. 233 of the
388 genes showed at least one mapping to the GO biological
process taxonomy and were thus used for clustering.

D. Results

In the experiments, we first compare our new distance func-
tion to the one proposed in [21]. Then, we present some results
using this distance function by showing their application to
clustering.

The advantage of using only a small set (e.g. 20, 30 or
40) of GO terms as prototypes instead of all genes of the
dataset as proposed in [21] is quite obvious considering the
number of distance calculations that are necessary to construct
the feature vector: For each feature, one has to compute the
smallest distance between all GO annotations of the respective
gene and the respective prototype, which is either given by a
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Fig. 2. Running times in sec. averaged over 20 runs for the calculation of
the feature maps with 30 GO terms (A) and all genes (B) [21] as prototypes).
The plot shows the minimum/maximum, the standard deviation and the 90
percent confidence interval.

GO term or as in [21] again by a gene. This means that one
has to calculate n ∗ m distances per prototype with n being
the number of GO annotations of the first and m the number
of GO annotations of the second gene, in case the prototype
is a gene. With our approach, only n ∗ 1 distance calculations
are necessary, because we use GO terms as prototypes and
not genes. Besides, with our approach the total number of
prototypes is much smaller. In preliminary experiments, we
tested several numbers of prototypes and found that with 30
prototypes the GO space of the datasets seemed to be covered
quite well.

Fig. 2 shows the running times for the feature vector
calculation for dataset I and II, respectively. The absolute
running times depend on the implementation (we use the
MySQL database for the GO graph), but the ratio of distance
calculations between the two methods are independent of the
implementation and remain the same. Our results are averaged
over 20 runs. Fig. 2 indicates that with our new approach
the feature vector calculation is more than 10 times faster. In
addition, which was not shown here, the Euclidean distance
calculation with a 30-dimensional vector is also faster than
with a vector having a dimension of a couple of hundred.
This fact carries even more weight, if the datasets get larger
and if distance matrices cannot be kept in memory anymore,
but have to be recalculated.

Getting down to the application part, we compare the three
cluster methods as described above: Spectral Clustering, K-
means and Single Linkage clustering, which are all based on
the proposed feature vector representation. We choose the K-
means algorithm by Zha et al. [26], which leads to a unique
and global optimal solution. This has the advantage that no
restarts are necessary. We evaluated the three algorithms by
means of the Average Silhouette Index (Eqn. 9) and a detailed
look at the GO annotations of the genes in each cluster.
Unfortunately, due to space limitations, we cannot show all
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Fig. 3. Average Silhouette index of dataset I. The arrow indicates the solution
with the best Silhouette index.
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Fig. 4. Average Silhouette index of dataset II. The arrow indicates the
solution with the best Silhouette index that was examined in more detail.

TABLE I

SUMMARY OF THE GO ANNOTATIONS FOR THE CLUSTERS OF DATASET I

Cluster Summary of the GO annotations

1 apoptosis, cell cycle, protein dephosporylation
2 apoptosis, development, heat response
3 cell adhesion, chemotaxis, G-protein signaling
4 apoptosis, stress response
5 cell-cell signaling, development
6 cell cycle
7 cell adhesion, cell-cell signaling, cell proliferation
8 DNA replication, transcription, cellular metabolism

clusters in detail, therefore, we confine ourselves to show
selected clusters of dataset II. We simply picked dataset II,
since its clusters are smaller than those of the other dataset.

Figures 3 and 4 show the Average Silhouette Index for clus-
ter numbers K = 5, ..., 25 for all three clusterings (Spectral,
K-means and Single Linkage). Both figures indicate that the
Spectral Clustering method gives significant better results than
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TABLE II

SUMMARY OF THE GO ANNOTATIONS FOR THE CLUSTERS OF DATASET II

Cluster Summary of the GO annotations

1 cell motility, oncogenesis
2 regulation of transcription, signal transduction
3 development, oncogenesis
4 protein amino acid phosphorylation, signal transduction
5 energy pathways
6 apoptosis, development, transcription
8 cellular morphogenesis, cell motility
9 cell motility

10 cell proliferation, signal transduction
11 protein modification, stress response
12 RNA processing
13 development
14 DNA replication
15 cell cycle, oncogenesis
16 transport
17 metabolism
18 oncogenesis, stress response
19 DNA replication, protein modification
20 DNA repair, transcription
21 cell cycle
22 signal transduction

TABLE III

CLUSTER 12 FROM DATASET II: GENES RELATED TO RNA PROCESSING

Acc. number Gene Ontology terms

D84110_at RNA processing
L28010_at RNA processing
M92843_at mRNA catabolism
U02493_at mRNA splicing

mRNA processing
U59321_at RNA processing
U75679_at mRNA processing

histone mRNA 3’-end processing
X14684_at transcription from Pol III promoter

tRNA modification
histone mRNA metabolism

TABLE IV

CLUSTER 14 FROM DATASET II: GENES RELATED TO DNA REPLICATION

AND REPAIR

Acc. number Gene Ontology terms

D26018_at DNA dependent DNA replication
D38073_at DNA replication initiation
D38551_at double-strand break repair

DNA recombination meiotic recombination
J04611_at DNA ligation

double-strand break repair
double-strand break repair via nonhomologous end-
joining
DNA recombination

L07541_at DNA strand elongation
M87339_at DNA strand elongation
U27516_at double-strand break repair

mitotic recombination
meiotic recombination

U72066_at cell cycle checkpoint
DNA repair
regulation of transcription from Pol II promoter

X62153_at DNA replication initiation
X74331_at DNA replication, priming

TABLE V

CLUSTER 15 FROM DATASET II: GENES RELATED TO CELL CYCLE AND

ONCOGENESIS

Acc. number Gene Ontology terms

M31423_at oncogenesis
cell growth and/or maintenance

M86699_at regulation of cell cycle
oncogenesis
spindle assembly
mitotic spindle assembly
mitotic spindle checkpoint
positive regulation of cell proliferation

S81914_at apoptosis
anti-apoptosis
embryogenesis and morphogenesis
cell growth and/or maintenance

U01038_at regulation of cell cycle
oncogenesis
mitosis
cell proliferation

U09579_at regulation of cell cycle
regulation of CDK activity
oncogenesis
cell cycle arrest
negative regulation of cell proliferation
induction of apoptosis by intracellular signals

U33203_at oncogenesis
negative regulation of cell proliferation

U33286_at nucleocytoplasmic transport
apoptosis
cell proliferation

U33761_at regulation of cell cycle
G1/S transition of mitotic cell cycle
oncogenesis
cell proliferation

U58090_at G1/S transition of mitotic cell cycle
oncogenesis
cell cycle arrest
negative regulation of cell proliferation
induction of apoptosis by intracellular signals

U73737_at mismatch repair
oncogenesis

X51688_at regulation of CDK activity
oncogenesis
mitotic G2 checkpoint

TABLE VI

CLUSTER 17 FROM DATASET II: GENES RELATED TO METABOLSIM

Acc. number Gene Ontology terms

D14686_at glycine catabolism
D30037_at lipid metabolism
L39211_at fatty acid beta-oxidation
L42452_at glucose metabolism
M18700_at proteolysis and peptidolysis

digestion
cholesterol metabolism

M77836_at proline biosynthesis
S67325_at fatty acid catabolism
U24183_at glucose metabolism

regulation of glycolysis
U31929_at steroid biosynthesis

sex determination
U47105_at cholesterol biosynthesis
X07496_at circulation

cholesterol metabolism
X92720_at glucose metabolism
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TABLE VII

CLUSTER 21 FROM DATASET II: GENES RELATED TO CELL CYCLE

Acc. number Gene Ontology terms

L11353_at negative regulation of cell proliferation
L22005_at cell cycle checkpoint

DNA replication
checkpoint G1/S transition of mitotic cell cycle

L26336_at male meiosis
spermatid development

M60974_at regulation of cell cycle
regulation of CDK activity
DNA repair
apoptosis
response to stress
cell cycle arrest

M81933_at regulation of cell cycle
regulation of CDK activity

M90657_at N-linked glycosylation cell proliferation
pathogenesis

U05340_at regulation of cell cycle
ubiquitin-dependent protein catabolism
cell cycle

U37426_at mitotic spindle assembly
mitosis

U40343_at regulation of CDK activity
cell cycle arrest
negative regulation of cell proliferation

U47414_at cell cycle checkpoint
U53204_at cytoskeletal anchoring
U53446_at cell proliferation
U56816_at regulation of CDK activity

mitosis
regulation of mitosis

U63743_at centromere binding
mitosis
cell proliferation

X05360_at regulation of cell cycle
start control point of mitotic cell cycle

X54941_at regulation of cell cycle
regulation of CDK activity
cell proliferation

X54942_at regulation of CDK activity
cell proliferation

X58377_at cell-cell signaling
cell proliferation
positive regulation of cell proliferation

X62048_at regulation of cell cycle
X65550_at regulation of cell cycle

cell proliferation
X66364_at cell proliferation
X67155_at mitotic spindle elongation
X80230_at regulation of cell cycle

transcription initiation from Pol II promoter
RNA elongation from Pol II promoter
cell proliferation

X85137_at mitotic spindle assembly
mitosis

Z24725_at regulation of cell cycle
cell proliferation

Z29066_at regulation of cell cycle
mitosis
regulation of mitosis

Z29067_at cell cycle
Z36714_at regulation of cell cycle

the other two approaches. Only for dataset I and very small
cluster numbers, K-means and Single Linkage are superior.
According to these plots, the best solution for dataset I has 8
clusters and for dataset II the best solution with has 22 clusters.

Tables I and II summarize the GO annotations of the genes
in each cluster for dataset I and dataset II, respectively. It is
notable that the clusterings of both datasets contain clusters
with genes that share different functions, e.g. cluster 1 of
dataset I contains genes, that are involved in apoptosis, cell
cycle and protein dephosphorylation. Many cell cycle genes
are also involved in apoptosis, since usually when apoptosis
is induced, the cell cycle has to be stopped first.

Additionally, we show five selected clusters of dataset II
in detail (Tab. IV-VII): cluster 12, 14, 16, 17 and 21. In all
tables, GO terms belonging to the same biological process
are printed in bold. Each gene in cluster 12 is related to RNA
processing (Tab. III). All genes of cluster 14 have at least one,
but in most of the cases more than one GO annotation that
is related to DNA replication, either by DNA repair or DNA
strand elongation or recombination (Tab. IV). The genes of
cluster 15 are mainly involved in cell-cycle and oncogenesis
(Tab. V) and those in cluster 17 can be characterized to be
involved in all kinds of metabolic processes (Tab. VI). The
genes of cluster 21 are mainly related to all kinds of cell cycle
processes (Tab. VII).

Other clusters of dataset II (the detailed annotation of all
clusters cannot be shown due to space limitations) contain
genes that share the functions like protein modification and
stress response (cluster 11), development (cluster 13), transport
(cluster 16), oncogenesis and stress response (cluster 18),
protein modification and DNA replication (cluster 19) and
DNA repair and transcription (cluster 20), just to name a few
(see Tab. II for more clusters).

One should note that there are many clusters with genes
sharing more than one function. Genes that share one function,
but differ in another are were placed in different clusters,
e.g. cluster 1 (oncogenesis and cell motility), cluster 3 (onco-
genesis and development), cluster 15 (oncogenesis and cell
cycle) and cluster 18 (oncogenesis and stress response). This
discrimination is probably possible due to the feature vector
representation of each gene.

IV. CONCLUSION

In this paper we presented a new GO-based distance func-
tion for genes and its application to clustering. We showed that
using this distance function in the application of functional
clustering of genes yields clusters that contain genes, which
participate in the same biological processes as indicated by
their GO annotation. Additionally, we are able to distinguish
between clusters of genes that share one, but differ in a second
function, e.g. cell cycle genes also related to oncogenesis and
genes also related to oncogenesis but additionally also to stress
response. Since our functional distances are based on GO
annotations, our approach is quite general and can be applied
to any kind of data for which GO annotations are available.
This is the case for many entries in public databases.

Besides, the proposed distance function has some theo-
retical advantages: First, the representation of the genes as
feature vectors uses all available GO annotation, in contrast to
previously presented methods where only smallest distances
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(corresponding only to one single annotation) were used [22].
This means, that we are now dealing with a proper metric
space. Second, since each gene is represented by a numerical
vector and most pattern recognition methods are developed
for numerical data, we can apply nearly all established pattern
recognition algorithms. Limitations like the inability to calcu-
late means that was always a problem while calculating with
the GO as a graph are now no longer present.

Furthermore, the reduced feature set of 30 GO terms com-
pared to our previous publication [21] makes the distance
calculation computationally less expensive and thus much
faster as indicated by our results. This aspect especially carries
weight with large datasets, where the distance matrix is too
large to be stored in memory and distance calculation has to be
repeated several times. Indeed, it is true, that one could argue,
that with our method, one has additional cost, because at first
one has to cluster the GO terms to determine the prototypes.
But to our experience, the number of different GO terms in a
dataset, especially in large datasets, is usually much smaller
than the number of genes such that the additional cluster step
costs much less effort than calculating the feature vector using
all genes as prototypes as in our previous publication [21].
To summarize our results, we showed that using a smaller
prototype set than in [21], leads to comparable results in
cluster quality, but is much faster than the original method.

Additionally, our experiments revealed that the Spectral
Clustering algorithm using our feature vector representation
leads to significantly better results than K-means and Single
Linkage clustering. This result was expected since there is
a theoretical connection between Spectral Clustering and the
empirical feature map representation as described earlier in
this paper.
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