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Abstract— The ability to measure the transcriptional response
of cells has drawn much attention to the underlying transcrip-
tional networks. To untangle the network, numerous models with
corresponding reverse engineering methods have been applied. In
this work, we propose a non-linear model with adjustable degrees
of complexity. The corresponding reverse engineering method
uses a probabilistic scheme to reduce the reconstruction problem
to subnetworks. Adequate models for gene regulatory networks
must be anchored on sufficient biological knowledge. Here, the cI
auto-inhibition circuit (cI circuit) is used to validate our reverse
engineering method. Simulations of the cI circuit are used for
the reconstruction, whereas a simplified cI circuit model assists
the modeling phase. Several levels of complexity are evaluated,
subsequently the reconstructed models show different properties.
As a result, we reconstruct an abstract model, capturing the
dynamic behavior of the cI circuit to a high degree.

I. I NTRODUCTION

An increasing amount of transcriptional data is being col-
lected, providing valuable insight to cellular processes under
various conditions. The interpretation of this data can be
focused on a particular biochemical reaction or broadened to
global-scale networks. Focused models often employ detailed
kinetic and stochastic reactions [17] obtained by forward
engineering. Global modeling employs abstract representations
[12], [14], [21], [23] used by reverse engineering approaches.
Many models have been proposed on both sides of this
spectrum, whereas intermediate models are scarce because
it is hard to incorporate the contradicting requirements in
one model. Unfortunately, most reverse engineering attempts
impose a simple structure on the data, guided by computational
requirements, where the true structure may only be revealed
with detailed models.

In this work, we use a adjustable network model covering
different degrees of complexity, from basic linear to various
non-linear models. A major aspect of the modeling will be the
degree and type of complexity employed. Therefore, utilization
of complexity - including non-linear terms - is carefully
considered. To provide the functional design we validate our
approach on a kinetic model.

Thieffry et al. [20] found that most regulation circuits
in Escherichia coli are one-element auto-inhibition circuits.
Whereas Bundschuh et al. [3] provide a detailed kinetic model
of the bacteriophageλ cI circuit. The cI circuit is part of
the bacteriophageλ lytic and lysogenic pathway, which has

been and still is intensively studied [8]. This and several
other biochemical models have been thoroughly investigated
with a component-centric focus [1]. Various forward modeling
approaches have been animated by this wealth of knowledge,
including detailed stochastic [1] and kinetic [13] models.
Such subnetworks give valuable examples of gene expression,
control and dynamics. With these models general questions
regarding the proper conceptual and mathematical representa-
tion and the sufficient amount of detail required for suitable
predictability can be addressed.

Several methods have been developed to reverse engineer
global networks. These models include Boolean networks [14],
(non)-linear networks [22], [23], S-Systems [19] and differen-
tial equations [4]. Boolean networks employ discretized data,
describing the state of a gene as either ”on” or ”off”. This
renders them as biologically not very realistic. Linear systems
of equations are used to describe linear and non-linear models.
The description of linear models is straight forward, where
non-linear models have to be linearized. Weaver et. al [22]
and de Jong et al. [23] employ different linearizations, which
will be discussed later in further detail. S-Systems employ
complex interaction terms and can not be solved analytically.
Overall, these methods aim to reconstruct the global network
and implement abstract interaction terms.

Today, modeling is guided by a rich flow of experimental
data. The stream is still widened by an increasing pool of
measurement techniques including mRNA microarray technol-
ogy [18], chromatin immunoprecipitation (ChIP) [2], quanti-
tative RT-PCR [11] and microarray-based immunoassays [15].
Despite of all this information, detailed knowledge regarding
network models is still almost exclusively collected by biolo-
gists. They collect and integrate data, expand and refine their
models and finally validate them. On a global scale integration
of data and validation of the results are major problems with
no obvious solution. Since we are not able to cope with all of
these problems here, we restrict ourself to mRNA time-series
and simulation of the cI circuit to validate our model.

The restriction to mRNA data-series provides us with
a sampling of M time points, where M is usually small
compared to the number of genes N. Under this condition
the reconstruction of a genetic network is underdetermined.
Mathematically this describes an infinite ensemble of possible
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solutions. Occam’s razor1 and the assumption that genetic
networks are sparsely connected [20] suggest to search for
the minimally connected network (also referred to as sparse
network). Different regression and norm-based approaches
as well as linear programming have been employed to find
minimal genetic networks [9], [23]. A problem thereby is –
among linearity – that their objective function (i.e.L1 and
L2 norm) optimize something different than sparsity. More
complex models like S-Systems can not be solved analytically
any more. Here, we introduce a novel analytical reconstruction
method which finds the minimal network by reducing the
problem to subnetworks.

In contrast to the mathematical reconstruction of the net-
work, biological plausibility often demands for non-linear in-
teraction terms. These interaction terms should be incorporated
while maintaining an analytically solvable model. Weaver
et. al [22] use an approach known from neural networks
that employs sigmoidal activation functions by applying their
inverse to the output data. De Jong et al. [23] use piecewise-
linear input functions, which discretize the phase space. Each
of these models employs specific properties utilizable during
the modeling process. However, no specific utilization of
modeling terms has emerged as the model of choice and it
is unlikely that one will. Therefore, we introduce a general
interaction term for which any function can be used.

To converge detailed biochemical models and abstract re-
verse engineering approaches, the biochemical model should
be simplified. Regulation processes incorporate a diverse set
of molecules interacting on different time scales. Transcription
and translation operate on the timescale of minutes to hours.
Other reactions like the dimerization of a protein occur on the
timescale of seconds [1]. On the timescale of transcription,
fast reactions equilibrate and lose their dynamic behavior.
Removing such fast reactions or lumping them into simpler
mathematical representations leads to a significant reduction
of the model. However, intrinsic non-linearities cannot be
removed and the behavior is altered to some extent.

We propose a model (sec. II), which is solved by a prob-
abilistic reconstruction method (sec. II-B) and can contain
non-linearity (sec. II-D). To evaluate the validity of this
approach, we adjust our model to reconstruct and predict the
cI circuit (sec. IV), where a simplified form of the cI circuit
will guide the modeling process. The results of the reverse
engineering will be evaluated for predictability and topology
under different levels of complexity (sec. V).

II. M ATHEMATICAL AND COMPUTATIONAL METHODS

The proposed reconstruction method is separated into three
distinct modules throughout this section and in the implemen-
tation. A linear solver is at the core of the reconstruction
method, a probabilistic reduction scheme is used to search
for the minimal network and a mapping function introduces
non-linearities. To allow the application of analytical solvers

1Occam’s Razor states that one should make no more assumptions than
needed. This renders the simplest explanation the best.

the mathematical model is described by linear equations. The
probabilistic search scheme is introduced to find the minimal
network by reducing the problem to subnetworks. Finally, we
incorporate non-linearities into the model while maintaining
the analytical solvability.

A. Mathematical Model

A gene regulatory model based on mRNA abundance data
describes how a gene is regulated through the expression of
other genes. The basic linear model of interaction is given
in Eq. (1). The regulatory interactions between the genes
are represented by a weight matrixW , where each row of
W represents all regulatory inputs for a specific gene. The
regulatory effect of genexj on genexi at time-pointt is the
expression level ofxj multiplied by its regulatory influence on
xi, wij . The total regulatory input toxi is derived by summing
over all genes in the system.

xi(t + ∆t) =
N∑

j=1

wijxj(t) (1)

A positive value forwij indicates that genexj is stimulating
the expression of genexi. Similarly, a negative value indicates
repression, while a value of zero indicates that genexj does
not influence the transcription of genexi. This modeling of
regulatory interactions enables us to use analytical approaches
for solving linear systems of equations.

B. Reconstruction Method

As stated above, Eq. (1) describes the regulation of a
gene. A system of linear equations can be set up by all
equations describing the behavior of a particular gene. Thus,
if M + 1 measurements – equidistant in time – are available,
it is possible to create a linear system withM equations.
Because the number of measurements is scarce,M is much
smaller than the number of genesN . Therefore, the solution
is mathematically underdetermined. This leads to a high-
dimensional solution space, wherein one can pick any point to
reconstruct the network. Since there is an infinite number of
solutions such a reconstruction will be arbitrary and only fit
the data, while having no resemblance to the biological system
or the minimal solution.

To find a biologically plausible system we impose sparse-
ness and restrict ourselves to the minimal network within the
solution space. Therefore, we assume thatk is the maximal in-
degree of any gene, satisfyingk < M . With this assumption,
a straight-forward approach would be to screen for every
possible combinatorial regulation of one gene byk other
genes. This creates

(
N
k

)
overdetermined systems of linear

equations withk variables andM equations. These systems
can be solved by least-square analysis, ranking the results
according to their fit. Thus, the overall problem is reduced
to

(
N
k

)
smaller problems which can be solved and ranked.

This approach is called MWSLE (Minimum Weight Solutions
to Linear Equations) and is NP-complete. Chen et al. [5]
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proposed to boundk reducing the complexity toO(M ·Nk),
still rendering it inapplicable for largeN .

To further relieve the computational complexity we pro-
pose a new reduction method. Again, we try to solve an
underdetermined linear system of equations withN genes
and M equations. To make the system solvable, we reduce
the problem by restricting ourselves toM genes. Thus, we
consider a subnetwork containingM genes instead ofN .
The fully connected subnetwork describing the regulation
of a particular gene contains at mostk + 1 genes and is
contained in some network of sizeM . Such a network can
be solved because it is described byM equations andM
variables. Since we do not know which subnetwork to pick, we
consider the probability of randomly picking one that contains
all regulatory interactions for one gene. Overall, we have
SN :=

(
N
k

)
possible interactions. In a network of the sizeM

the number of possible interactions isSM :=
(
M
k

)
. Therefore,

it covers a fraction of all possible solutions. The probability to
capture one particular solution isSM

SN
. Repeating this procedure

by independent choices ofM increases the overall probability
to find the minimal network. This probability can be calculated
with Eq. (2), wherer is the number of runs.

p =
(

1− SM

SN

)r

(2)

For every repetition, we have to solve a linear system of
equations, providing a possible network structure. This creates
an ensemble ofr network structures. Within this ensemble
we search for the minimally connected network. To decide
whether one gene has a regulating influence, we check if
its weight exceeds a certain threshold. If this is the case a
regulatory edge is drawn in our subnetwork. The solution
ensemble may contain many network structures with more
thank connections, violating our assumption. These networks
are neglected. Network structures having less thank + 1
connections are ranked according to their connectivity and a
least-square analysis of the weights smaller than the threshold.
Finally, we select the structures with the smallest connectivity
and within them the structure with the smallest least-squares
value.

Overall, we relieve the computational complexity by im-
plicitly covering a large number (SM ) of potential regulatory
interactions. Note that this relief is dependent on the number
of measurements taken. By increasingM , SM grows exponen-
tially. For a desired probabilityp we can calculate the number
of necessary runs by solving Eq. (2) forr. The runtime of the
reconstruction can be calculated by multiplying the number
of runs r with the runtime for solving a linear system ofM
equations. The runtime for solving the linear system depends
on the solver used.

To give an example, we calculate the runs necessary to
reconstruct a network of 100 genes with 21 measurements
and k = 3. If every possible solution is searchedSN :=(
N
k

)
= 161, 700 combinatorial choices have to be evalu-

ated. By reducing the problem to a subnetwork of sizeM ,
SM :=

(
M
k

)
= 1, 140 combinatorial choices are implicitly

evaluated. By applying statistics we can calculate the number
of picks r needed for a desired confidence of reconstruction
p. For instance, a confidence of99.9% is reached, if 650
reductions are evaluated, whereas an exhaustive search would
require 161,700 evaluations. This provides a significant relief
in computation time.

The probabilistic reduction scheme generates an ensemble
of linear systems that need to be solved. Several methods are
available for this task, differing in runtime and robustness to
ill-conditioned linear systems. We use singular value decom-
position (SVD) [16] because of its robustness and its previous
use in reverse engineering of genetic networks [23].

C. Evaluation of the Reconstruction Method

The reconstruction method is evaluated with a simple artifi-
cial model and the cI circuit. The artificial model is designed
to give a proof of the concept and explore the properties
of the reconstruction method. The cI circuit is reconstructed
validating non-linear modeling and predictability.

The artificial network used for evaluation consists of 40
genes and a maximal in-degree of 3. The network is randomly
generated with weights ranging from -1 to 1 and an in-
degree ranging from 1 to 3. Measurement series are created
with different initial values. Gaussian noise with a standard
deviation of 5% is applied to every measurement. For the
evaluations one property is modified while the others are kept
constant. All runs are repeated ten times to obtain an average
performance. The confidence of the reconstructionp is set to
99.9% throughout this work, with Eq. (2).

The evaluation of the reconstruction is tested under varying
conditions including the number of measurements, maximum
in degree, measurement noise and the network size. We also
test the minimal number of equations needed under noise-
free conditions, where mathematicallyk + 1 is expected. To
benchmark the reconstruction, we evaluate the specificity and
sensitivity. A connection between two genes is considered
as correctly reconstructed if the topology is captured while
distinguishing induction from repression. Since some weights
in the matrix will have small values a threshold of 0.1 is chosen
to ignore minimal deviations from zero.

As second step the reconstruction is evaluated with the cI
circuit. Modeling and reconstruction demands for thorough
consideration of the underlying system. Therefore the com-
plete model will be introduced in section III, and subsequent
modeling will be discussed in section IV.

D. Introduction of Non-Linearity

The linear model fulfils our requirement for analytical
solvability. Non-linear models are introduced to provide more
flexibility. This is addressed in two steps. First, we extend
the linear model Eq. (1) at several points to achieve greater
flexibility. Then, we resolve the extensions by mapping them
back into a linear model. The complete extension is given in
Eq. (3). It is not necessarily intended to explore the complete
complexity and flexibility of the model, but to utilize any
subset of it.
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g−1 (xi(t + ∆t)) =
N∑

j

wij · h (xj(t)) + bi − λixi(t) (3)

All extensions on the right hand side of Eq. (3) were
previously implemented by different research groups. Along
with the explanation of this model, we will refer to previous
work in which the particular expansion was considered. The
first-order degradation of RNA is described byλixi(t), with
λi denoting the degradation rate. This term is frequently used
and discussed in the review of de Jong et al. [6]. The basal
expression is incorporated by the termbi which defines the
expression level in absence of any regulatory input. Weaver et
al. [22] incorporate this term into a linear model by using
a constantly expressed ”on-gene” which mimics the basal
expression.

So far, the model is still linear, non-linearity is introduced
by g andh. Both functions essentially act in the same way, but
in different directions. The functionh maps the input values
to a non-linear form by applying the desired function to each
value ofx(t). The functiong maps the output values to a non-
linear form, by applying the inverse of the desired function to
each value ofx(t + ∆t). If this is done for all time-steps, the
non-linear model can be reconstructed with a linear solver.
This model is sketched in Fig. 1, where the node functions
correspond tog and the edge functions toh.

The functiong was introduced by Weaver et al. [22]. By
applying a method known from neural networks they are
able to linearize the non-linear model. The functiong is a
sigmoidal dose-response function with the parametersα and
β, which can be merged into the linear model as well. In
principle any other invertible function can be applied forg,
although the parameterization may not be linearizable. Apart
from being a very elegant reconstruction method, it suffers
from a strong sensitivity to noise, because the inverse of the
sigmoidal function gets very steep and the maximal expression
level of every protein has to be specifieda priori.

g4

g2g1

g3

h1

h2

h3non-linear
genetic
network

Fig. 1. Sketch of a non-linear genetic network. The edges are associated with
a Michaelis-Menten activation function, and the nodes are associated with a
sigmoidal dose-response function. The edge function correspond toh and the
node functions correspond tog.

We propose a novel modeling term by mapping the non-
linear input values to a linear model by the functionh. The
functionsh andg act similarly except thatg is applied with its
inverse, whereh is applied tox(t) with the normal function.
This simple trick linearizes a model which behaves non-linear
on the activation, illustrated by the edge functions in Fig.
1. The function of activationh has to be specified prior
to the reconstruction and for a parameterized function every
parameter set has to be evaluated separately. De Jong et al. [7]
proposed a step function forg, where we propose a method
allowing for general functions.

To illustrate the mapping of a non-linear to a linear model
by h, we employ a simple example. For those interested in the
detailed method of incorporatingg, we refer to [22]. In our
example, geneA influences geneB according to the repression
function α · (1 + A(t)/β)−1, derived from Michaelis-Menten
kinetics with the parameter valuesα = 1

2 and β = 1. If
measurement values ofA are i.e.(1, 2, 3, 4), B is efficiently
expressed with(1/4, 1/6, 1/8, 1/10). Thus, the relationship be-
tweenA and B is non-linear. To linearize their relationship,
the repression function has to be applied to the measurement
values ofA. The parameterβ has to be estimated, where the
parameterα corresponds to the value in the weight matrixW .
In this example the parameterβ is assumed to be known. The
repression function is applied toA without theα parameter
yielding A′ (1/2, 1/3, 1/4, 1/5). Now the relationship ofA′ and
B is linear. The qualitative form of the non-linear function has
to be introduced as a prior to the model, whereα is inferred
by the reconstruction method. Because it is not obvious how
to tailor this function, we will discuss the choice of how to
tailor this function in the following section.

III. M ODEL OF THEREGULATORY NETWORK

The aim of this work is to validate the reconstruction with
the cI circuit. The qualitative structure and the quantitative
parameters of the cI circuit are provided in several publications
[1], [13]. Theoretical analysis was applied by Bundschuh et
al. [3] to simplify the model while preserving its original
behavior. This simplification will be important and necessary
for the modeling phase.

The cI circuit is part of a larger regulatory process, which
functions as a stochastic bistable switch [1]. This property
may hamper the reconstruction process on biological data.
However, in this study the model is treated as a generic
model. For further analysis it may be of importance that high
temporal-resolution data is available [13]. This allows us to
investigate larger models or reconstructions based on in vitro
measurement data.

The complete model is shown in Fig. 2. DNA (D) is coding
for the mRNA (M ) which is translated by the RNA polymerase
(R). The protein monomer (P ) transcribed from the mRNA
also occurs in a dimerized form (P2). The dimer reversibly
binds to the DNA creating an inactive DNA-dimer complex
(Q). Free DNA is bound by the RNA polymerase (D∗), which
dissociates when releasing the translated mRNA. Protein and
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Fig. 2. Complete kinetic model of cI circuit. The metabolites are DNA
(D), protein (P), RNA polymerase (R), mRNA (M), protein dimer (P2),
DNA with bound RNA polymerase (D∗) and the DNA-P2 complex (Q). The
two-sided arrows indicate reversible reactions, where the one-sided arrows
indicate production or degradation. The dashed arrows fromD∗ describe the
production of mRNA followed by the dissociation of the RNA polymerase
from the DNA.

mRNA molecules are constantly degraded, described by a
reaction toφ.

The complete kinetic model is more complex than the
proposed reverse engineering model. To overcome this gap the
kinetic model can be simplified or the mathematical model
can be extended. The work of Bundschuh et al. [3] deals
with the simplification of the kinetic model by removing fast
reactions. These reactions are assumed to equilibrate on longer
timescales. Slow reactions are either kept or lumped into a
single non-linear term. The non-linear terms were modeled by
Michaelis-Menten and Hill kinetics, yielding indistinguishable
protein distributions in case of the Michaelis-Menten equa-
tions. Therefore we choose the Michaelis-Menten equations
as abstract representation of regulator-gene interactions.

The simplified model contains only three components shown
in Fig. 3. There, the mRNA produces proteins which in
turn form dimers. Again, protein and mRNA molecules are
constantly degraded. Dimer abundance regulates mRNA pro-
duction through a Michaelis-Menten transcription term. The
derivation of the Michaelis-Menten equations is discussed in
[3]. Here, the transcription term of the negative feedback
model is given in Eq. (4), with the parameterskM =
0.00616 nM/s andKM = 356 nM.

k1,eff ([P2]) =
kM

1 + [P2] /KM
(4)

A. Implementation and Simulation

To simulate the behavior of the complete cI circuit and
the simplified counterpart, we implemented the models in
JSim 1.6. JSim is a java-based simulation and animation
environment program, distributed by the National Simulation
Resource (NSR). For simulation the initial concentrations are

M P P2

P2

P
ro

d
u
c
ti
o
n

f f

k ,eff1

Fig. 3. Simplified kinetic model. Fast reactions have been removed, the
production of mRNA (M) has been replaced by an effective transcription
rate, withP2 acting as repressor.

set to zero, assuming the genes are switched of at time point
zero. A complete parameterization is given in [3].

IV. RECONSTRUCTION ANDPREDICTION OF THE CI
CIRCUIT

Measurements of JSim simulations provide data for the
reverse engineering. The measurements are taken every 1000
seconds starting at time point 0. Since we do not want to work
on a known topology, we incorporate measurement data from
other models. These models are as well taken from Bundschuh
et. al [3], and are derived from the original model.

We begin the reverse engineering process with a basic linear
model. Then we expand it to predict the behavior of the cI
circuit.

A. Linear Model

For the reconstruction on the basic linear model, no con-
siderations are taken. Prior information is not needed and the
process is free of parameters. A degradation term can not be
included since linear self-regulation and degradation are not
distinguishable and would collapse to one variable. The initial
mRNA value was set to 0.1, since the linear model would be
unsolvable otherwise.

B. Simple Non-Linear Model

Previous analysis suggested that there are intrinsic non-
linearities in self-regulatory systems [3]. Therefore, we extend
the model to capture interaction terms such as Eq. (4) by
applying them forh (see Eq. (3)). In contrast to the linear
model a first-order degradation term is incorporated. The non-
linear interaction term is algebraically distinguishable from
first-order degradation. A non-linear activation termg is not
incorporated because there is no non-linear counterpart in the
simplified model given in Fig. 3.

In this model it is assumed that the interaction can be
described by Michaelis-Menten kinetics. To keep the model
minimal, we remove theKM parameter by setting it to 1. The
first-order degradation is linear, therefore we have to supply
linear and non-linear data to the reconstruction method. Non-
linear data is obtained by applyingg. Again, this provides a
model without any parameters.

C. Expanded Non-Linear Model

So far the models only include mRNA. With one component
the model behavior is restricted to quite simple dynamics.
To emulate the simplified cI circuit with high agreement to
the original model, we introducedP2 into the reconstruction
process as a second component. In order to maintain the linear
reconstruction method we have to precomputeP2 from the
mRNA measurement data. To accomplish this, we describe
P2 by a simple differential equation, containing first-order
production and degradation rates. The production is based
on the amount of mRNA and the degradation on the amount
of P2. To fit the parameters of the differential equation, we
measure theP2 abundance during steady state. Now the input
data for the mRNA(t) is no longer a non-linear form of
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mRNA(t − 1), but a non-linear form ofP2, resembling the
regulation described by Eq. (4).

For this approach, protein measurement data is necessary,
which is not available in most cases. However, here only the
steady-state protein abundance must be provided. This makes
the modeling approach more realistic, because steady-state
protein abundance is more readily available than protein time-
series.

V. RESULTS

JSim simulations of the complete and simplified cI circuits
are presented. The evaluation of the reconstruction covers
the mathematical properties and in a subsequent section the
reconstruction of a detailed kinetic model.

A. Properties of the Reconstruction Method

First, we performed evaluations on noise-free data with
linear models. The reconstruction method revealed the cor-
rect network structure with the probability given in Eq. (2),
providing k + 1 equations. Less thank + 1 equations lead to
arbitrary reconstruction results. This also holds for a simple
non-linear model with known non-linearities.

On noisy data with a standard deviation of5%, the quality
of the reconstruction decreases significantly, but remains on
a high level. With increased noise, the reconstruction perfor-
mance decreased in specificity and sensitivity until it reached
the level of random guesses. The sensitivity to network size
turned out to be very low. 13 measurements turned out to be
optimal to reconstruct a network with 40 genes and a standard
deviation of 5%. Less measurements, and interestingly also
an increased number of measurements, lead to decreased
performance. The results are shown in Fig. 4.

Fig. 4. Reconstruction of artificial networks under different conditions.
The networks consist of 40 genes and a maximal in-degree of 3. 10 noisy
measurements are provided for reconstruction with a standard deviation of
5%. In every plot, one property is modified while the others are kept constant.
The sensitivity and specificity of the reconstructed regulatory connections are
shown in the plots.

B. Model and Topology Reconstruction

In this section, we try to reveal the network structure and
obtain a predictive model of the cI circuit. The predictive
model is evaluated only considering one gene, which implies
a topology of self regulation. Revealing the topology is ac-
complished by adding additional data from two other genes
not related to the gene of interest. This provides a network of
three genes. The model fit and the topological reconstruction
are evaluated independently.

The number of available measurements is of major concern.
Therefore, we evaluate the reconstruction under a rich amount
of measurements (10) and a minimal amount of measurements
(3).

In the extension of the non-linear model,P2 was introduced
as a second component.P2 was modeled directly from mRNA
data leading to a moderately good fit in which the deviation
of the simulated and calculatedP2 deviated up to50% after
the fist time step, then they converged to the same steady-
state. This model was fitted with the parametersKf = 0.01,
Kb = 0.0001 andP2(0) = 0.

C. Reconstruction with Three Measurements

To evaluate the reconstruction under a minimal amount of
data, three measurements were used for the reconstruction. The
linear model had a weight of0.6764 leading to an enormous
growth of mRNA. The concentration at timepoint 20,000 sec
is 44.32 mM. Fig. 5 shows the simulation.

The non-linear model has similar dynamics, but due to
the reduced number of measurements, the deviation from the
kinetic model grows.

The reconstruction of the expanded non-linear model fits
well even with a small amount of data. The dynamics are less
complex, since the trajectory can be sketched by two lines.

D. Reconstruction with Ten Measurements

The reconstruction with the linear model completely fails
to reproduce the original behavior. The gene is positively self
regulated with a weight of0.0748. This leads to a divergent
system in all cases, which can be seen in the Fig. 6.

The non-linear model is always reconstructed with a positive
value for the regulation termKM , and a negative term
for the degradation. This leads to monotonically increasing
mRNA abundance until the steady-state level is reached,
where production and degradation compensate each other. The
behavior of the model is shown in Fig. 6. It can be seen that
the non-linear model increases monotonically, where the cI
circuit decreases after reaching a local maximum. Both models
converge to steady-state, deviating to some extent.

The reconstruction of the expanded model is slightly im-
proved, where it was already in good agreement with the
reference model with three measurements.

E. Topological Reconstruction

The results of the topological reconstruction are presented
in Table I. The origin of the supplied data is given in the
left column. Thereby,cI is mRNA measurement data from
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Fig. 5. Simulation of the mRNA concentration by different reconstruc-
tion models and the cI circuit. The models are reconstructed on three
measurements. The gray background shows the time interval in which the
measurements were taken.

the cI circuit andh a non-linear Michaelis-Menten term,g1
andg2 are mRNA measurements from the two other models.
The qualitative structure of the target topology is given in
the second column. The weights reconstructed with different
models are given in the remaining columns. Note that the
values are not comparable, since different model structures
are employed. Therefore, we only consider the correct recon-
struction of the topology, distinguishing activation ”+” from
repression or degradation ”-”. The bold numbers indicate a
correct resemblance of the target network topology. The ”0”
values indicate, that these weights were explicitly set to zero
by the reduction method.

In case of the linear model the topological reconstruction
provided arbitrary connections between unrelated genes. The
topological reconstruction with the non-linear and extended
non-linear model revealed the correct connections in all cases.

VI. D ISCUSSION

We proposed a reconstruction method which can be adjusted
to simple linear or different non-linear models. The mathe-
matical properties of the method show to reproduce models of
known structure with the minimal amount ofk + 1 equations.
This draws an absolute lower bound for the reconstruction of
(non)-linear networks, associated with the in-degree. Yeung et
al. [23] assumed this bound to be a function of the network
size O(log n). Associating the minimal amount of equations
with the in-degree shifts the main complexity from the network
size to the in-degree. Although, this only holds under noise-
free conditions.

The reconstruction is robust to the network size, but sensi-
tive to the in-degree, confirming the previous statement. The
sensitivity to noise is high as well. Overall, our method reveals
similar problems as earlier proposed methods [23]. However, it
has the favorable property of being an analytical method with
a probabilistic step. This provides a reconstruction method
that reduces the solution space to determine the minimal
network, where other methods optimize objectives only similar
to sparsity.

Fig. 6. Simulation of the mRNA concentration by different reconstruction
models and the cI circuit. The models are reconstructed on 10 measurements.
The gray background shows the time interval in which the measurements were
taken.

The reconstruction of the kinetic model with a linear net-
work structure appeared to be problematic. We could not see
any resemblance of dynamic or steady-state behavior.

Adding a parameter-free Michaelis-Menten term to the
model, leads to a better resemblance of the cI circuit. The
dynamics were captured in part and the steady-state could be
anticipated.

The extended non-linear model needs prior information,
including initial protein concentrations, which cannot always
be obtained. Although, the gain of adding protein abundance
to the model is significant. The dynamics as well as the steady-
state behavior of the original system could be simulated with
high accuracy, even with a small amount of data. Interestingly,
the need for data strongly decreases with an improved adjust-
ment to the kinetic model.

During the modeling phase, we aimed to achieve mini-
mal models. The basic linear model conjoint with sparsity
provides this. Non-linearity was introduced with a parameter
free Michaelis-Menten interaction term. The extended model
determinesP2 with two parameters. To fit these, the steady-
state concentration ofP2 was provided. This may render the
extended model inapplicable for global-scale reconstruction.
However, the parameter-free non-linear model may be well
suited for this task.

In this study we investigated one gene circuit and suc-
cessfully applied a Michaelis-Menten model. Although the
Michaelis-Menten model occurs frequently in biochemical
reactions, it remains unknown if it can describe a large range of
regulatory influences. Genes with complex regulatory patterns
may be problematic to model as well, since summing up the
regulatory inputs may not provide predictive models.

For our reverse engineering we could not provide a val-
idation on previously unknown data. Genetic networks are
poorly understood and a dataset for validation is not available.
Therefore, we had to retreat to Occam’s razor to guide our
modeling. The proposed models accomplish different degrees
of minimality. The linear model implies assumptions described
in previous works [23]. The main extension incorporated here
was the parameter-free Michaelis-Menten term, which can
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TABLE I

TOPOLOGICAL RECONSTRUCTION WITH DIFFERENT MODELS AND DATA SETS

Reconstruction with three measurements Reconstruction with ten measurements

data cI circuit linear model non-linear model ext. model linear model non-linear model ext. model

h(cI) + N.A. +0.179 +0.686 N.A +0.196 +0.606
cI − 0 -0.133 -1.043 -0.213 -0.195 -1.093
g1 ◦ +0.111 +0.013 -0.061 +0.265 +0.004 -0.006
g2 ◦ +0.181 0 0 +0.208 -0.003 +0.001

be regarded as a general term of interaction in biological
systems. The extended model predicted dimer abundance by
incorporating two parameters and utilizing protein steady-state
measurements. Nonetheless, this model could predict the cI
circuit very well.

Overall, the reconstruction method was well suited to reveal
the underlying network structure. By elaborate considerations
of the network model, we could reduce the amount of data
needed significantly. Only a small number of parameters were
introduced in case of the extended model, and none for the
other models.

VII. F UTURE WORK

In further work we plan to reverse engineer established mod-
els [10] with in vitro PT-PCR and microarray measurements.
The aim is to give a conceptual validation of the data necessary
to reconstruct small to medium size networks.
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