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Abstract—The ability to measure the transcriptional response been and still is intensively studied [8]. This and several
of cells has drawn much attention to the underlying transcrip-  other biochemical models have been thoroughly investigated
tional networks. To untangle the network, numerous models with with a component-centric focus [1]. Various forward modeling

corresponding reverse engineering methods have been applied. In - .
this work, we propose a non-linear model with adjustable degrees approaches have been animated by this wealth of knowledge,

of complexity. The corresponding reverse engineering method including detailed stochastic [1] and kinetic [13] models.

uses a probabilistic scheme to reduce the reconstruction problem Such subnetworks give valuable examples of gene expression,
to subnetworks. Adequate models for gene regulatory networks control and dynamics. With these models general questions
must be anchored on sufficient biological knowledge. Here, the cl regarding the proper conceptual and mathematical representa-

auto-inhibition circuit (cl circuit) is used to validate our reverse fi d th fficient t of detall ired f itabl
engineering method. Simulations of the cl circuit are used for 1on an € sullicient amount ot detail required for suitable

the reconstruction, whereas a simplified ¢l circuit model assists Predictability can be addressed.

the modeling phase. Several levels of complexity are evaluated, Several methods have been developed to reverse engineer

subsequently the reconstructed models show different properties. .
As a result, we reconstruct an abstract model, capturing the global networks. These models include Boolean networks [14],

dynamic behavior of the cl circuit to a high degree. (non)-linear networks [22], [23], S-Systems [19] and differen-
tial equations [4]. Boolean networks employ discretized data,
I. INTRODUCTION describing the state of a gene as either "on” or "off”. This

Ani . tof t intional data. is bei enders them as biologically not very realistic. Linear systems
h Increasing amount ot transcriptional data IS being Cos equations are used to describe linear and non-linear models.
lected, providing valuable insight to cellular processes undﬁ[]
various conditions. The interpretation of this data can B jinear models have to be linearized. Weaver et. al [22]

focused on a particular biochemical reaction or broadened_éﬂd de Jong et al. [23] employ different linearizations, which
global-scale networks. Focused models often employ detai ﬂl be discussed later in further detail. S-Systems employ

kinetic and stochastic reactions [17] obtained by fOrW?r mplex interaction terms and can not be solved analytically.

. . %\?erall, these methods aim to reconstruct the global network
[12], [14], [21], [23] used by reverse engineering gpproachegnd implement abstract interaction terms.
Many models have been proposed on both sides of this

spectrum, whereas intermediate models are scarce becaud@day, modeling is guided by a rich flow of experimental
it is hard to incorporate the contradicting requirements f@ta. The stream is still widened by an increasing pool of
one model. Unfortunately, most reverse engineering attemft§asurement techniques including mRNA microarray technol-
impose a simple structure on the data, guided by computatioR8Y [18], chromatin immunoprecipitation (ChIP) [2], quanti-

requirements, where the true structure may only be reveal@gve RT-PCR [11] and microarray-based immunoassays [15].
with detailed models. Despite of all this information, detailed knowledge regarding

In this work, we use a adjustable network model coveridgetwork models is still glmost exclusively collected by.biolo— '
different degrees of complexity, from basic linear to varioud'Sts: They collect and integrate data, expand and refine their
non-linear models. A major aspect of the modeling will be tH@0dels and finally validate them. On a global scale integration
degree and type of complexity employed. Therefore, utilizatid}f data and validation of the results are major problems with
of complexity - including non-linear terms - is carefully© obvious solution. Since we are not able to cope with all of

considered. To provide the functional design we validate offfeS€ problems here, we restrict ourself to mRNA time-series
approach on a kinetic model. and simulation of the cl circuit to validate our model.

Thieffry et al. [20] found that most regulation circuits The restriction to mRNA data-series provides us with
in Escherichia coli are one-element auto-inhibition circuitea sampling of M time points, where M is usually small
Whereas Bundschuh et al. [3] provide a detailed kinetic modedmpared to the number of genes N. Under this condition
of the bacteriophage\ cl circuit. The cl circuit is part of the reconstruction of a genetic network is underdetermined.
the bacteriophage lytic and lysogenic pathway, which hasMathematically this describes an infinite ensemble of possible
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solutions. Occam’s razbrand the assumption that genetithe mathematical model is described by linear equations. The
networks are sparsely connected [20] suggest to search poobabilistic search scheme is introduced to find the minimal
the minimally connected network (also referred to as spamsetwork by reducing the problem to subnetworks. Finally, we
network). Different regression and norm-based approactiesorporate non-linearities into the model while maintaining
as well as linear programming have been employed to fitite analytical solvability.

minimal genetic networks [9], [23]. A problem thereby is —

among linearity — that their objective function (i.&; and A. Mathematical Model

L, norm) optimize something different than sparsity. More s gene regulatory model based on mRNA abundance data
complex models like S-Systems can not be solved analyticalf4scrines how a gene is regulated through the expression of
any more. Here, we introduce a novel analytical reconstructigh, o, genes. The basic linear model of interaction is given

method which finds the minimal network by reducing thg, Eq. (1). The regulatory interactions between the genes
problem to subnetworks. . _ are represented by a weight matfiX, where each row of

In coptragt to the r.na.\t'hematlcal reconstruction of the D% represents all regulatory inputs for a specific gene. The
work, _blolog|cal plau5|k_J|I|ty oft_en demands for non_-lmear iNtequlatory effect of gene; on gene; at time-pointt is the
tergcuon t_erm_s._ These |nterac_t|on terms should be mcorpora@%ression level af;; multiplied by its regulatory influence on
while maintaining an analytically solvable model. Weavei:i,wij_ The total regulatory input to; is derived by summing
et. al [22] use an.approa}ch.known from neural networlsi,er all genes in the system.
that employs sigmoidal activation functions by applying their
inverse to the output data. De Jong et al. [23] use piecewise- N
linear input functions, which discretize the phase space. Each x;(t + At) = Zwijxj (t) 1)
of these models employs specific properties utilizable during j=1
the modeling process. However, no specific utilization of . - L .
modeling terms has emerged as the model of choice and if* positive value forw;; mdpates thatger);ej IS st|m'ulza.t|ng
is unlikely that one will. Therefore, we introduce a genera“"3 expressmn_of gen. Similarly, a nt_aganve value indicates
interaction term for which any function can be used. repression, while a value_ O.f Z€ro |nd|cates_that gﬁp_eioes

To converge detailed biochemical models and abstract ﬂeqt mfluenpe the f[ranscnptlon of gene. This mpdelmg of
verse engineering approaches, the biochemical model Shogﬁgulatqry mteracﬂons enables us t_o use analytical approaches
be simplified. Regulation processes incorporate a diverse é)étsolvmg linear systems of equations.
of molecules_ interacting on dlﬁergnt time scales_. Transcnptl%w_ Reconstruction Method
and translation operate on the timescale of minutes to hours.
Other reactions like the dimerization of a protein occur on the As stated above, Eq. (1) describes the regulation of a
timescale of seconds [1]. On the timescale of transcriptiopgne. A system of linear equations can be set up by all
fast reactions equilibrate and lose their dynamic behavi@quations describing the behavior of a particular gene. Thus,
Removing such fast reactions or lumping them into simplér M + 1 measurements — equidistant in time — are available,
mathematical representations leads to a significant reductibris possible to create a linear system willd equations.
of the model. However, intrinsic non-linearities cannot bBecause the number of measurements is scaités much
removed and the behavior is altered to some extent. smaller than the number of gend& Therefore, the solution

We propose a model (sec. Il), which is solved by a protis mathematically underdetermined. This leads to a high-
abilistic reconstruction method (sec. 1I-B) and can contafimensional solution space, wherein one can pick any point to
non-linearity (sec. 1I-D). To evaluate the validity of thisreconstruct the network. Since there is an infinite number of
approach, we adjust our model to reconstruct and predict #utions such a reconstruction will be arbitrary and only fit
cl circuit (sec. V), where a simplified form of the cl circuitthe data, while having no resemblance to the biological system
will guide the modeling process. The results of the rever§é the minimal solution.
engineering will be evaluated for predictability and topology To find a biologically plausible system we impose sparse-
under different levels of complexity (sec. V). ness and restrict ourselves to the minimal network within the

solution space. Therefore, we assume thetthe maximal in-
1. MATHEMATICAL AND COMPUTATIONAL METHODS degree of any gene, satisfyikg< M. With this assumption,

The proposed reconstruction method is separated into th?eétraight-forward approach would be to screen for every

distinct modules throughout this section and in the implemeﬂQSSIble combinatorial regulation of one gene hyother

tation. A linear solver is at the core of the reconstructiod®nes: This createék) overdetermined systems of linear

method, a probabilistic reduction scheme is used to seafguations with: variables and\/ equations. These systems

for the minimal network and a mapping function introduce&a" e solved by least-square analysis, ranking the results

non-linearities. To allow the application of analytical solver%CCOrdIng to their fit. Thus, the overall problem is reduced

() smaller problems which can be solved and ranked.

10ccam’s Razor states that one should make no more assumptions tﬁg}is_approaCh iS_ called MWSLE (Minimum Weight Solutions
needed. This renders the simplest explanation the best. to Linear Equations) and is NP-complete. Chen et al. [5]
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proposed to bouné reducing the complexity t&)(M - N*), evaluated. By applying statistics we can calculate the number
still rendering it inapplicable for largév. of picks r needed for a desired confidence of reconstruction
To further relieve the computational complexity we prop. For instance, a confidence 60.9% is reached, if 650
pose a new reduction method. Again, we try to solve ameductions are evaluated, whereas an exhaustive search would
underdetermined linear system of equations wNhgenes require 161,700 evaluations. This provides a significant relief
and M equations. To make the system solvable, we redutecomputation time.
the problem by restricting ourselves fd genes. Thus, we The probabilistic reduction scheme generates an ensemble
consider a subnetwork containiny/ genes instead ofV. of linear systems that need to be solved. Several methods are
The fully connected subnetwork describing the regulaticavailable for this task, differing in runtime and robustness to
of a particular gene contains at mokt+ 1 genes and is ill-conditioned linear systems. We use singular value decom-
contained in some network of siz&/. Such a network can position (SVD) [16] because of its robustness and its previous
be solved because it is described by equations and\/ use in reverse engineering of genetic networks [23].
variables. Since we do not know which subnetwork to pick, we ] .
consider the probability of randomly picking one that contairfs: Evaluation of the Reconstruction Method
all regulatory interactions for one gene. Overall, we have The reconstruction method is evaluated with a simple artifi-
Sy = (JZ) possible interactions. In a network of the si¥& cial model and the cl circuit. The artificial model is designed
the number of possible interactionsSg; := (J}f) Therefore, to give a proof of the concept and explore the properties
it covers a fraction of all possible solutions. The probability tof the reconstruction method. The cl circuit is reconstructed
capture one particular solution%}f. Repeating this procedurevalidating non-linear modeling and predictability.
by independent choices @ff increases the overall probability The artificial network used for evaluation consists of 40
to find the minimal network. This probability can be calculatedenes and a maximal in-degree of 3. The network is randomly

with Eq. (2), wherer is the number of runs. generated with weights ranging from -1 to 1 and an in-
, degree ranging from 1 to 3. Measurement series are created

p= <1 — SM) (2) Wwith different initial values. Gaussian noise with a standard

SN deviation of 5% is applied to every measurement. For the

For every repetition, we have to solve a linear system efaluations one property is modified while the others are kept
equations, providing a possible network structure. This creatamstant. All runs are repeated ten times to obtain an average
an ensemble of network structures. Within this ensembleperformance. The confidence of the reconstruciids set to
we search for the minimally connected network. To decid#¥.9% throughout this work, with Eq. (2).
whether one gene has a regulating influence, we check ifThe evaluation of the reconstruction is tested under varying
its weight exceeds a certain threshold. If this is the casecanditions including the number of measurements, maximum
regulatory edge is drawn in our subnetwork. The solution degree, measurement noise and the network size. We also
ensemble may contain many network structures with motest the minimal number of equations needed under noise-
thank connections, violating our assumption. These network®e conditions, where mathematicaltly+ 1 is expected. To
are neglected. Network structures having less tham 1 benchmark the reconstruction, we evaluate the specificity and
connections are ranked according to their connectivity andsansitivity. A connection between two genes is considered
least-square analysis of the weights smaller than the threshelgl.correctly reconstructed if the topology is captured while
Finally, we select the structures with the smallest connectividistinguishing induction from repression. Since some weights
and within them the structure with the smallest least-squareghe matrix will have small values a threshold of 0.1 is chosen
value. to ignore minimal deviations from zero.

Overall, we relieve the computational complexity by im- As second step the reconstruction is evaluated with the cl
plicitly covering a large numberS(,) of potential regulatory circuit. Modeling and reconstruction demands for thorough
interactions. Note that this relief is dependent on the numbesnsideration of the underlying system. Therefore the com-
of measurements taken. By increasiifg Sy, grows exponen- plete model will be introduced in section Ill, and subsequent
tially. For a desired probability we can calculate the numbermodeling will be discussed in section IV.
of necessary runs by solving Eq. (2) farThe runtime of the
reconstruction can be calculated by multiplying the numb
of runsr with the runtime for solving a linear system of The linear model fulfils our requirement for analytical
equations. The runtime for solving the linear system depensisivability. Non-linear models are introduced to provide more
on the solver used. flexibility. This is addressed in two steps. First, we extend

To give an example, we calculate the runs necessaryth® linear model Eq. (1) at several points to achieve greater
reconstruct a network of 100 genes with 21 measuremefiexibility. Then, we resolve the extensions by mapping them

5 Introduction of Non-Linearity

and k£ = 3. If every possible solution is searcheéfly := back into a linear model. The complete extension is given in
(J;’) = 161,700 combinatorial choices have to be evaluEq. (3). It is not necessarily intended to explore the complete
ated. By reducing the problem to a subnetwork of size complexity and flexibility of the model, but to utilize any
Sy = (§) = 1,140 combinatorial choices are implicitly subset of it.
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We propose a novel modeling term by mapping the non-
linear input values to a linear model by the functibnThe
functionsh andg act similarly except thag is applied with its
inverse, wheré: is applied tox(t) with the normal function.
This simple trick linearizes a model which behaves non-linear

All extensions on the right hand side of Eq. (3) wer@n the activation, illustrated by the edge functions in Fig.
previously implemented by different research groups. Alonf The function of activationh has to be specified prior
with the explanation of this model, we will refer to previougo the reconstruction and for a parameterized function every
work in which the particular expansion was considered. ThHgrameter set has to be evaluated separately. De Jong et al. [7]
first-order degradation of RNA is described Byz;(¢), with proposed a step function far, where we propose a method
\; denoting the degradation rate. This term is frequently uséllowing for general functions.
and discussed in the review of de Jong et al. [6]. The basalTo illustrate the mapping of a non-linear to a linear model
expression is incorporated by the tefmwhich defines the by h, we employ a simple example. For those interested in the
expression level in absence of any regulatory input. Weaverdsttailed method of incorporating, we refer to [22]. In our
al. [22] incorporate this term into a linear model by usingxample, genellnfluences gends according to the repression
a constantly expressed "on-gene” which mimics the badainction o - (1 4 A( t)/g) , derived from Michaelis- Menten
expression. kinetics with the parameter values = % and g = 1. If

So far, the model is still linear, non-linearity is introducedneasurement values of are i.e.(1,2,3,4), B is efficiently
by ¢ andh. Both functions essentially act in the same way, bi@xpressed with(1/1,1/6,1/s,1/10). Thus, the relationship be-
in different directions. The functioh maps the input values tween A and B is non-linear. To linearize their relationship,
to a non-linear form by applying the desired function to eadhe repression function has to be applied to the measurement
value ofz(t). The functiong maps the output values to a nonvalues of A. The parametes has to be estimated, where the
linear form, by applying the inverse of the desired function tparameter corresponds to the value in the weight matrix
each value ofe(t + At). If this is done for all time-steps, the In this example the parametgris assumed to be known. The
non-linear model can be reconstructed with a linear solvégpression function is applied td without the o parameter
This model is sketched in Fig. 1, where the node functionselding A" (1/2,1/3,1/4,1/5). Now the relationship ofA’ and
correspond tgy and the edge functions ti. B is linear. The qualitative form of the non-linear function has

The functiong was introduced by Weaver et al. [22]. Byto be introduced as a prior to the model, wherés inferred
applying a method known from neural networks they ar@y the reconstruction method. Because it is not obvious how
able to linearize the non-linear model. The functigris a tO tailor this function, we will discuss the choice of how to
sigmoidal dose-response function with the parameteend tailor this function in the following section.

8, which can be merged into the linear model as well. In
principle any other invertible function can be applied fgr [1l. M ODEL OF THEREGULATORY NETWORK
although the parameterization may not be linearizable. Apart

from being a very elegant reconstruction method, it suffers L - L
from a strong sensitivity to noise, because the inverse of t cl circuit. The qualitative structure and the quantitative

sigmoidal function gets very steep and the maximal ED(press'garameters of the cl circuit are provided in several publications
level of every protein has to be specifiechrior. [1] [13]. Theoretical analysis was applied by Bundschuh et
. [3] to simplify the model while preserving its original

behavior. This simplification will be important and necessary
for the modeling phase.

r “/' > / The cl circuit is part of a larger regulatory process, which
— functions as a stochastic bistable switch [1]. This property

97 ( t+ At ZU)U . + bl‘ — /\7$L(t) (3)

The aim of this work is to validate the reconstruction with

9 h, 9. may hamper the reconstruction process on biological data.

T However, in this study the model is treated as a generic

“/- h h 4 model. For further analysis it may be of importance that high
M non-linear 3 /_ temporal-resolution data is available [13]. This allows us to
genetic investigate larger models or reconstructions based on in vitro

measurement data.

The complete model is shown in Fig. 2. DNA)Y is coding
for the mRNA (/) which is translated by the RNA polymerase
(R). The protein monomerK) transcribed from the mRNA
also occurs in a dimerized formP{). The dimer reversibly

Fig. 1. Sketch of a non-linear genetic network. The edges are associated b
a Michaelis-Menten activation function, and the nodes are associated wrt\w ds to the DNA creating an inactive DNA-dimer complex

sigmoidal dose-response function. The edge function correspadia the  (()). Free DNA is bound by the RNA polymerasB?), which
node functions correspond o dissociates when releasing the translated mRNA. Protein and

g, network 9.

328



o P P Q set to zero, assuming the genes are switched of at time point
( zero. A complete parameterization is given in [3].

‘1-
M- o R T D IV. RECONSTRUCTION ANDPREDICTION OF THE d

W CIRCUIT
*
D Measurements of JSim simulations provide data for the

_ - o _ reverse engineering. The measurements are taken every 1000
Fig. 2. Complete kinetic model of cl circuit. The metabolites are DNA . . . .
(D). protein (P), RNA polymerase (R), mRNA (M), protein dimep,j, Seconds starting at time point 0. Since we do not want to work

DNA with bound RNA polymerasel*) and the DNAP, complex (Q). The on a known topology, we incorporate measurement data from

two-sided arrows indicate reversible reactions, where the one-sided arrgyther models. These models are as well taken from Bundschuh
indicate production or degradation. The dashed arrows ffohdescribe the t al I3 d derived f th iqinal del
production of mRNA followed by the dissociation of the RNA polymeras@ - al [3], and are derived from the original model.

from the DNA. We begin the reverse engineering process with a basic linear
model. Then we expand it to predict the behavior of the cl
circuit.

MRNA molecules are constantly degraded, described by a

reaction tog¢. A. Linear Model

The complete kinetic model is more complex than the o the reconstruction on the basic linear model, no con-
proposed reverse engineering model. To overcome this gap fiferations are taken. Prior information is not needed and the
kinetic model can be simplified or the mathematical modg{qcess is free of parameters. A degradation term can not be
can be extended. The work of Bundschuh et al. [3] deglgjuded since linear self-regulation and degradation are not
with the simplification of the kinetic model by removing fasjistinguishable and would collapse to one variable. The initial

reactions. These reactions are assumed to equilibrate on longeiNa value was set to 0.1, since the linear model would be
timescales. Slow reactions are either kept or lumped into,gsolvable otherwise.

single non-linear term. The non-linear terms were modeled by
Michaelis-Menten and Hill kinetics, yielding indistinguishabléB. Simple Non-Linear Model
protein distributions in case of the Michaelis-Menten equa- previous analysis suggested that there are intrinsic non-
tions. Therefore we choose the Michaelis-Menten equatiofisearities in self-regulatory systems [3]. Therefore, we extend
as abstract representation of regulator-gene interactions. the model to capture interaction terms such as Eq. (4) by
The simplified model contains only three components Sho"&’bplying them forh (see Eq. (3)). In contrast to the linear
in Fig. 3. There, the mRNA produces proteins which ifyogel a first-order degradation term is incorporated. The non-
turn form dimers. Again, protein and mRNA molecules argnear interaction term is algebraically distinguishable from
constantly degraded. Dimer abundance regulates MRNA Pfst_order degradation. A non-linear activation tegms not
duction through a Michaelis-Menten transcription term. Th@corporated because there is no non-linear counterpart in the
derivation of the Michaelis-Menten equations is discussed gi}np"ﬁed model given in Fig. 3.

[3]. Here, the transcription term of the negative feedback |, this model it is assumed that the interaction can be

model is given in Eqg. (4), with the parameteis; = described by Michaelis-Menten kinetics. To keep the model
0.00616 »M/s and K ps = 356 nM. minimal, we remove thé<,; parameter by setting it to 1. The
ks first-order degradation is linear, therefore we have to supply
Eierr ([P2]) = TSRl /i (4) linear and non-linear data to the reconstruction method. Non-
2 IBM linear data is obtained by applying Again, this provides a
A. Implementation and Simulation model without any parameters.

To simulate the behavior of the complete cl circuit an
the simplified counterpart, we implemented the models |
JSim 1.6. JSim is a java-based simulation and animationSo far the models only include mRNA. With one component
environment program, distributed by the National Simulatioiie model behavior is restricted to quite simple dynamics.

Resource (NSR). For simulation the initial concentrations af@ emulate the simplified cl circuit with high agreement to
the original model, we introduceg, into the reconstruction

process as a second component. In order to maintain the linear

. Expanded Non-Linear Model

5 reconstruction method we have to precompirtefrom the

§k kyeff, M—vP— P mRNA measurement data. To accomplish this, we describe
8 * + | 2 P, by a simple differential equation, containing first-order
&P, ) i) production and degradation rates. The production is based

on the amount of mMRNA and the degradation on the amount
Fig. 3. Simplified kinetic model. Fast reactions have been removed, tRI: P,. To fit the parameters of the differential equation, we

production of MRNA (M) has been replaced by an effective transcriptiomeasure the? abundance during steady state. Now the input
rate, with P» acting as repressor. data for the mRNA¢) is no longer a non-linear form of
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MRNA(¢ — 1), but a non-linear form ofP,, resembling the B- Model and Topology Reconstruction
regulation described by Eq. (4). In this section, we try to reveal the network structure and
For this approach, protein measurement data is necessafytain a predictive model of the cl circuit. The predictive
which is not available in most cases. However, here only theodel is evaluated only considering one gene, which implies
steady-state protein abundance must be provided. This maketopology of self regulation. Revealing the topology is ac-
the modeling approach more realistic, because steady-statenplished by adding additional data from two other genes
protein abundance is more readily available than protein timeet related to the gene of interest. This provides a network of
series. three genes. The model fit and the topological reconstruction
are evaluated independently.
V. RESULTS The number of available measurements is of major concern.
Therefore, we evaluate the reconstruction under a rich amount
JSim simulations of the complete and simplified cl circuit®f measurements (10) and a minimal amount of measurements
are presented. The evaluation of the reconstruction covés.
the mathematical properties and in a subsequent section thén the extension of the non-linear modé} was introduced
reconstruction of a detailed kinetic model. as a second componeif, was modeled directly from mRNA
data leading to a moderately good fit in which the deviation
of the simulated and calculated, deviated up to50% after
the fist time step, then they converged to the same steady-
First, we performed evaluations on noise-free data witktate. This model was fitted with the paramet&fs = 0.01,
linear models. The reconstruction method revealed the cdt;, = 0.0001 and P»(0) = 0.
rect network structure with the probability given in Eq. (2), . ,
providing k + 1 equations. Less thah+ 1 equations lead to C+ Reéconstruction with Three Measurements
arbitrary reconstruction results. This also holds for a simple To evaluate the reconstruction under a minimal amount of
non-linear model with known non-linearities. data, three measurements were used for the reconstruction. The
On noisy data with a standard deviation%, the quality linear model had a weight df.6764 leading to an enormous
of the reconstruction decreases significantly, but remains @rowth of mMRNA. The concentration at timepoint 20,000 sec
a high level. With increased noise, the reconstruction perfds 44.32 mM. Fig. 5 shows the simulation.
mance decreased in specificity and sensitivity until it reachedThe non-linear model has similar dynamics, but due to
the level of random guesses. The sensitivity to network sitee reduced number of measurements, the deviation from the
turned out to be very low. 13 measurements turned out to kietic model grows.
optimal to reconstruct a network with 40 genes and a standardThe reconstruction of the expanded non-linear model fits
deviation of 5%. Less measurements, and interestingly alsgell even with a small amount of data. The dynamics are less
an increased number of measurements, lead to decreasediplex, since the trajectory can be sketched by two lines.
performance. The results are shown in Fig. 4.

A. Properties of the Reconstruction Method

D. Reconstruction with Ten Measurements

The reconstruction with the linear model completely fails
to reproduce the original behavior. The gene is positively self

[JFEEE— ) regulated with a weight 06.0748. This leads to a divergent
A \7.7 i system in all cases, which can be seen in the Fig. 6.
/ A o The non-linear model is always reconstructed with a positive
: \.\ value for the regulation termi,;, and a negative term
Measurement;‘°~~——».,_.7 Network Size for the degradation. This leads to monotonically increasing
ols 10 15 20 25 30 35 4] |20 30 40 5 |, mRNA abundance until the steady-state level is reached,
e — Sensitivity _ — * — Specificity ] where production and degradation compensate each other. The
\ .\-\ behavior of the model is shown in Fig. 6. It can be seen that
o T - the non-linear model increases monotonically, where the cl
\ N T circuit decreases after reaching a local maximum. Both models
'. \.\ \:x.;: converge to steady-state, deviating to some extent.
Noise P " | |In Degree The reconstruction of the expanded model is slightly im-
0 5 10 15 20 30 50 160| |1 2 3 5 7 10 . . .
0 0 proved, where it was already in good agreement with the

reference model with three measurements.

Fig. 4. Reconstruction of artificial networks under different conditions. . .
The networks consist of 40 genes and a maximal in-degree of 3. 10 nolsy Topological Reconstruction

measurements are provided for reconstruction with a standard deviation of : .
5%. In every plot, one property is modified while the others are kept constant. The results of the topologlcal reconstruction are presented

The sensitivity and specificity of the reconstructed regulatory connections &% Table I. The origin of the supplied data is given in the
shown in the plots. left column. Therebycl is mMRNA measurement data from
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Fig. 5.  Simulation of the mRNA concentration by different reconstrucFig. 6. Simulation of the mRNA concentration by different reconstruction
tion models and the cl circuit. The models are reconstructed on thremdels and the cl circuit. The models are reconstructed on 10 measurements.
measurements. The gray background shows the time interval in which ffige gray background shows the time interval in which the measurements were
measurements were taken. taken.

the cl circuit andh a non-linear Michaelis-Menten termgl The reconstruction of the kinetic model with a linear net-
and g2 are mRNA measurements from the two other modelgiork structure appeared to be problematic. We could not see
The qualitative structure of the target topology is given iany resemblance of dynamic or steady-state behavior.
the second column. The weights reconstructed with differentAdding a parameter-free Michaelis-Menten term to the
models are given in the remaining columns. Note that timeodel, leads to a better resemblance of the cl circuit. The
values are not comparable, since different model structummamics were captured in part and the steady-state could be
are employed. Therefore, we only consider the correct recamnticipated.
struction of the topology, distinguishing activation "+” from The extended non-linear model needs prior information,
repression or degradation "-". The bold numbers indicatei@cluding initial protein concentrations, which cannot always
correct resemblance of the target network topology. The "®e obtained. Although, the gain of adding protein abundance
values indicate, that these weights were explicitly set to zew®the model is significant. The dynamics as well as the steady-
by the reduction method. state behavior of the original system could be simulated with
In case of the linear model the topological reconstructidrigh accuracy, even with a small amount of data. Interestingly,
provided arbitrary connections between unrelated genes. The need for data strongly decreases with an improved adjust-
topological reconstruction with the non-linear and extendedent to the kinetic model.
non-linear model revealed the correct connections in all casesDuring the modeling phase, we aimed to achieve mini-

mal models. The basic linear model conjoint with sparsity
VI. DISCUSSION provides this. Non-linearity was introduced with a parameter
free Michaelis-Menten interaction term. The extended model
We proposed a reconstruction method which can be adjustgterminesP, with two parameters. To fit these, the steady-
to simple linear or different non-linear models. The mathetate concentration of, was provided. This may render the
matical properties of the method show to reproduce modelsgftended model inapplicable for global-scale reconstruction.
known structure with the minimal amount &f+ 1 equations. However, the parameter-free non-linear model may be well
This draws an absolute lower bound for the reconstruction &fiited for this task.
(non)-linear networks, associated with the in-degree. Yeung ef this study we investigated one gene circuit and suc-
al. [23] assumed this bound to be a function of the netWOE!@ssfu”y applied a Michaelis-Menten model. Although the
size O(log n). Associating the minimal amount of equationgyjichaelis-Menten model occurs frequently in biochemical
with the in-degree shifts the main complexity from the networigactions, it remains unknown if it can describe a large range of
size to the in-degree. Although, this only holds under noisgsqyiatory influences. Genes with complex regulatory patterns
free conditions. may be problematic to model as well, since summing up the
The reconstruction is robust to the network size, but sengigulatory inputs may not provide predictive models.
tive to the in-degree, confirming the previous statement. Thegqgr our reverse engineering we could not provide a val-
sensitivity to noise is high as well. Overall, our method revea,i&ation on previously unknown data. Genetic networks are
similar problems as earlier proposed methods [23]. Howeverpibo iy understood and a dataset for validation is not available.
has the favorable property of being an analytical method Wiﬁ'herefore, we had to retreat to Occam’s razor to guide our
a probabilistic step. This provides a reconstruction methogyqeling. The proposed models accomplish different degrees
that reduces the solution space to determine the minimglminimality. The linear model implies assumptions described
network, where other methods optimize objectives only similgy previous works [23]. The main extension incorporated here

to sparsity. was the parameter-free Michaelis-Menten term, which can
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TABLE |

TOPOLOGICAL RECONSTRUCTION WITH DIFFERENT MODELS AND DATA SETS

Reconstruction with three measurements

Reconstruction with ten measurements

data cl circuit  linear model non-linear model ext. model linear model non-linear model  ext. model
h(el) + N.A. +0.179 +0.686 N.A +0.196 +0.606

cl — 0 -0.133 -1.043 -0.213 -0.195 -1.093

gl o +0.111 +0.013 -0.061 +0.265 +0.004 -0.006

g2 o +0.181 0 0 +0.208 -0.003 +0.001

be regarded as a general term of interaction in biologicab] T. S. Gardner, D. di Bernardo, D. Lorenz, and J. J. Collins, “Inferring
systems. The extended model predicted dimer abundance by genetic networks and identifying compound mode of action via
incorporating two parameters and utilizing protein steady-state
measurements. Nonetheless, this model could predict thejel
circuit very well.

Overall, the reconstruction method was well suited to reveal
the underlying network structure. By elaborate consideratiops
of the network model, we could reduce the amount of data
needed significantly. Only a small nhumber of parameters were
introduced in case of the extended model, and none for &l
other models.

(23]

VIl. FUTURE WORK

In further work we plan to reverse engineer established mod-
els [10] with in vitro PT-PCR and microarray measurements.
The aim is to give a conceptual validation of the data necessafy
to reconstruct small to medium size networks.
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