
Assignment Kernels For Chemical Compounds
Holger Fröhlich, Jörg K. Wegner, Andreas Zell

Center For Bioinformatics Tübingen (ZBIT)
Sand 1, 72076 Tübingen, Germany

E-mail: {froehlic,wegnerj,zell}@informatik.uni-tuebingen.de

Abstract— During the last years Kernel Methods like the
Support Vector Machine (SVM) have gained a growing interest
in Machine Learning. One of the strengths of this approach is the
ability to deal easily with arbitrarily structured data by means
of the kernel function. In this paper we propose a kernel for
chemical compounds which is based on the idea of computing
optimal assignments between atoms of two different molecules
including information about their neighborhood. As a byproduct
this leads to a new class of kernel functions. We demonstrate
how the necessary computations can be carried out efficiently.
We compare our method against the marginalized graph kernels
by Kashima et al. and show its good performance on classifying
toxicological and human intestinal absorption data.

I. INTRODUCTION

In Chemoinformatics there has been a long history of work
on the problem to infer chemical or biological properties of
a molecule from the structure of the molecule, the so called
QSAR approach [9]. The basic assumption is, that in nature
often there exists a relationship between structure and certain
molecular properties. Classically, molecules are represented by
a large amount of descriptors (= features in Machine Learning
language) and then any data mining method, which works on
vectorial data, can be applied. However, the problem here is to
first find good descriptors and second to select the descriptors,
which are best suited for the problem at hand. This can be
quite difficult and computationally costly. More naturally, the
topology of chemical compounds can be represented as labeled
graphs, where edge labels correspond to bond properties like
bond order, length of a bond, etc, and node labels to atom
properties, like atom type, partial charge, membership to a
ring, and so on. This representation opens the opportunity
to use graph mining methods [15] to deal with molecular
structures. Thereby a principal question is how different graph
structures can be compared.

One way of doing so is the usage of a symmetric, positive
definite kernel – e.g. [12], [13]. In [8] the authors propose
a kernel function between labeled graphs, which they call
marginalized graph kernel: Its idea is to compute the expected
match of all pairs of random walk label sequences up to
infinite length. An efficient computation can be carried out
in a time complexity proportional to the product of the
size both graphs by solving a system of linear simultaneous
equations. Kashima et al. show that also the geometric and
the exponential graph kernel by [5] can be seen as special

variants of the marginalized graph kernel. In contrast, the
pattern-discovery (PD) kernel by De Raedt and Kramer [11]
counts the set of all label sequences, which appear in more
than p graphs with p being a so called minimum support
parameter. Furthermore, it is possible to add extra conditions,
for example selecting only the paths frequent in a certain class
and scarce in another class. The PD method was especially
designed for predicting toxicity of molecules, which from a
chemical viewpoint mainly depends on the presence of certain
functional groups in a molecule, and achieves about the same
excellent performance there as the marginalized graph kernel
[8], [7].

The goal of our work is to define a kernel for chemical
compounds, which, like the marginalized graph kernel, is of
general use for QSAR problems, but better reflects a chemists’
point of view on the similarity of molecules. Rather than
comparing label sequences, the main intuition of our approach
is that the similarity of two molecules mainly depends on the
matching of certain structural elements like rings, functional
groups and so on (fig. 1). If we assume the membership of
an atom to a structural element to be encoded in its labels,
this leads to the idea of computing an optimal assignment
from atoms in one structure to those in another one, including
for each atom information on the neighborhood and other
characteristic information, like e.g. charge, mass and so on.
As a byproduct this leads to a new class of kernel functions,
which to our knowledge has not been introduced so far. The
optimal assignment allows an easy interpretation of the kernel
from the chemistry side.

This paper is organized as follows: We begin by defining so
called assignment kernels as a general class of kernel functions
and prove their positive definiteness. Given this result we
can define our kernels for chemical compounds in section 3
and show how they can be computed efficiently. In section
4 we give experimental results on classifying toxicological
and human intestinal absorption data. Finally, we conclude in
section 5.

II. ASSIGNMENT KERNELS

Let X be some domain of structured objects (e.g. graphs).
Let us denote the parts of some object x (e.g. the nodes of a
graph) by x1, ..., x|x|, i.e. x consists of |x| parts, while another
object y consists of |y| parts. Let X ′ denote the domain of all



Fig. 1. Matching regions of two molecular structures.

Fig. 2. Possible assignments between parts of two structured objects x, y

with |x| > |y|. The goal is to find the maximum weighted bipartite matching
(optimal assignment) from the parts of y to the parts of x.

parts, i.e. xi ∈ X
′ for 1 ≤ i ≤ |x|. Further let π be some

permutation of an |x|−subset of natural numbers {1, ..., |y|}
or |y|−subset of {1, ..., |x|}, respectively (this will be clear
from context).

Definition 2.1: (Assignment kernels) Let k1 : X ′ × X ′ →
R be some non-negative, symmetric, positive definite kernel.
Then kA : X × X → R with

kA(x, y) :=

{

maxπ

∑|x|
i=1 k1(xi, yπ(i)) if |y| ≥ |x|

maxπ

∑|y|
j=1 k1(xπ(j), yj) otherwise

is called an assignment kernel.

This definition captures the idea of a maximal weighted
bipartite matching (optimal assignment) of the parts of two
objects (fig. 2). Each part of the smaller of both structures is
assigned to exactly one part of the other structure such that the
overall similarity score between both structures is maximized.

Lemma 2.2: For all x: kA(x, x) =
∑

i k1(xi, xi).

Proof: For any π it is

k1(x1, xπ(1)) + . . . + k1(x|x|, xπ(|x|)) (1)

≤
1

2

(

k1(x1, x1) + k1(xπ(1), xπ(1)) + . . . (2)

+k1(x|x|, x|x|) + k1(xπ(|x|), xπ(|x|))
)

=
∑

i

k1(xi, xi) (3)

because 2k1(xi, xπ(i)) ≤ k1(xi, xi) + k1(xπ(i), xπ(i)) for all
i. This is a direct consequence of the positive definiteness
of k1. If we now take the maximum over all π, then (1) =
kA(x, x) = (2) = (3)

Theorem 2.3: kA is a symmetric and positive definite ker-
nel.

Proof: Clearly, kA is symmetric, because of the defini-
tion.

W.l.o.g. let |y| ≥ |x|. Because of the lemma, we have
kA(x, x) =

∑

i k1(xi, xi), kA(y, y) =
∑

j k1(yj , yj). Further
it holds for all α, β ∈ R and i, j

2αβk1(xi, yj) ≤ α2k1(xi, xi) + β2k1(yj , yj) (4)

because k1 is a positive definite kernel. It is

α2kA(x, x)− 2αβkA(x, y) + β2kA(y, y) = (5)

α2
∑

i

k1(xi, xi)− 2αβ max
π

∑

i

k1(xi, yπ(i))

+β2
∑

j

k1(yj , yj)

By definition of kA the second sum of (5) has min(|x|, |y|) =
|x| addends. Let y′

i be the part of y to which xi is assigned. Us-
ing (4) we have (5) ≥

∑|x|
i=1(α

2k1(xi, xi)− 2αβk1(xi, y
′
i) +

β2k1(y
′
i, y

′
i)) ≥ 0. This proofs the positive definiteness of each

2× 2 kernel matrix. From this we can generalize the result to
n × n matrices by induction using the assumption that k1 is
non-negative: Suppose we already know that each n×n kernel
matrix K = (kA(xi, xj))ij for a set of objects x1, ..., xn is
positive definite. Now assume we extend the matrix to size
n + 1× n + 1 by adding an object xn+1. It is

n+1
∑

i,j=1

vivjKij =

n
∑

i,j=1

vivjKij + 2

n
∑

j=1

vn+1vjKn+1,j(6)

+ v
2
n+1Kn+1,n+1

By induction assumption we know the first part of (6) to
be non-negative. Furthermore, by definition k1 and thus also
kA is non-negative. Hence, we have v

2
n+1Kn+1,n+1 ≥ 0.

Therefore, in order to make (6) < 0 we have to sup-
pose 2

∑n

j=1 vn+1vjKn+1,j < 0. Using (4) this leads to
2
∑n

j=1 vn+1vjKn+1,j ≤
∑n

j=1 v
2
n+1Kn+1,n+1 + v

2
jKjj <

0, which is a contradiction to the non-negativity of kA. Hence,
it is (6) ≥ 0, which proofs the theorem.



III. ASSIGNMENT KERNELS FOR CHEMICAL COMPOUNDS

A. Construction of the kernel

We are now ready to construct an assignment kernel for
chemical compounds. For each atom a in a molecule we have
a set of certain real valued attributes φreal(a) (like e.g. atom
mass) and nominal attributes φnom(a) (like e.g. atom type).
We define an atom kernel as

katom(a, a′) = (7)

kreal(φreal(a), φreal(a
′)) · knom(φnom(a), φnom(a′))

Likewise, for each pair of bonds b, b′ we have a bond kernel

kbond(b, b
′) = (8)

kreal(φreal(b), φreal(b
′)) · knom(φnom(b), φnom(b′))

A natural choice for kreal is the RBF kernel of width σ
while for the nominal kernel we take the normalized δ-
kernel knom(u, u′) = 1

|u|

∑

i δ(ui = u′
i). To have an accurate

estimate of the similarity of a and a′ we should also include
information about their neighbors. Introducing the notation
< a > as the number of bonds of atom a, we thus define
what we call the base kernel between two atoms (a, a′)
including their neighborhoods N(a) = {n1(a), ..., n<a>(a)},
N(a′) = {n1(a

′), ..., n<a′>(a′)}, and all bonds nh(a) →
a, h = 1, ..., |N(a)| and nh′(a′)→ a′, h′ = 1, ..., |N(a′)|:

kbase(a, a′) = katom(a, a′) (9)

+
1

|N(a)||N(a′)|

∑

h,h′

(

katom(nh(a), nh′(a′))

kbond(nh(a)→ a, nh′(a′)→ a′)

)

That means the similarity between two atoms consists of
two parts: first the similarity between the attributes of the
atoms and second the similarity of the neighborhood struc-
ture. Thereby the similarity of each pair of neighbor atoms
(nh(a), nh′(a′)) is weighted by the similarity of the bonds
leading to them. The normalization factor before the sum is in
order to ensure that atoms with a higher number of neighbors
do not automatically achieve a higher similarity. Hence we
divide by the number of addends in the sum. The definition
of (9) is just a classical convolution kernel as introduced by
D. Haussler [6].

As an example consider the C-atom 3 in the left and the
C-atom 5 in the right structure of figure 1: Direct neighbors
of atom 3 in the left structure are atoms 2, 4 and 7 (see fig.
3). Direct neighbors of atom 5 in the right structure are atoms
2 and 3. If we only concentrate on element and bond type and
simply count a match by 1 and a mismatch by 0, clearly atoms
2 in the left and 2 in the right molecule match perfectly as
well as atoms 4 and 3. They have the same element type and
the same bond type leading to atoms 3 and 5, respectively.
Atom 3 in the left molecule also has another neighbor, 7,

Fig. 3. Direct and indirect neighbors of atom 3 in the left and atom 5 in the
right molecule

which does not match any neighbor of atom 5 in the right
structure. Note that e.g. atom 2 in the left does not match
atom 3 in the right molecule, because they have different bonds
leading to atoms 3 and 5, respectively. The final kernel value
for the C-atoms 3 and 5 would be computed as kbase(a3, a

′
5) =

1 + 1
3·2 (1 + 1 + 0 + 0 + 0 + 0) = 1 1

3 .
We may also want to consider not just direct neighbors, but

also neighbors which are more far away up to some maximal
topological distance L + 1. For this purpose let us denote
nhl

(a) = nhl
(. . . nh1

(a) . . .). Let us further denote by

R0(a, a′) = (10)

1

|N(a)||N(a′)|

∑

h,h′

(

katom(nh(a), nh′(a′))

kbond(nh(a)→ a, nh′(a′)→ a′)

)

the second term in 9. Then we define the extended base kernel
as

k′
base(a, a′) = kbase(a, a′) (11)

+γ(1)
1

|N(a)||N(a′)|

∑

h1,h′

1

R0(nh1
(a), nh′

1
(a′))

+γ(2)
1

|N(a)||N(a′)|

(

∑

h1,h′

1

1

|N(nh1
(a))||N(nh′

1
(a′))|

R0(nh2
(a), nh′

2
(a′))

)

+ . . .

+γ(L)
1

|N(a)||N(a′)|

(

∑

h1,h′

1

1

|N(nh1
(a))||N(nh′

1
(a′))|

(

. . .
1

|N(nhL−1
(a))||N(nh′

L−1
(a′))|

∑

hL,h′

L

R0(nhL
(a), nh′

L
(a′))

)

...

)



The first addend in (11) takes into account the direct
neighbors of (a, a′), the next addend computes the average
of the match of all neighbors which have topological distance
2 by evaluating R0 for all direct neighbors of (a, a′). The
third addend does the same for all neighbors with topological
distance 3. Finally, the last addend considers all neighbors
which have topological distance L+1 by evaluating R0 for all
neighbors at topological distance L. The factor γ(l) is a decay
parameter in order to reduce the influence of neighbors which
are further away and depends on the topological distance
l + 1 to (a, a′). Like for the original base kernel we use
the normalization factors to ensure that atoms with a higher
number of neighbors do not automatically achieve a higher
similarity.

As an example let us assume L = 1 in the previous example.
We evaluate R0 at all direct neighbors 2, 4 and 7 in the left, and
2 and 3 in the right structure, i.e. we compute R0(a2, a

′
2) =

0.5, R0(a2, a
′
3) = 1

3 , R0(a4, a
′
2) = 0.5, R0(a4, a

′
3) = 1

3 ,
R0(a7, a

′
2) = 1

6 and R0(a7, a
′
3) = 1

3 . The average over the val-
ues of R0(a2, a

′
2), R0(a2, a

′
3), ..., weighted by the decay factor

γ(1) is added to kbase(a3, a
′
5) in (11), i.e. k′

base(a3, a
′
5) =

kbase(a3, a
′
5) + γ(1) 1

6

∑2
i=1

∑3
j=1 R0(ai, a

′
j) ≈ 1 1

3 + γ(1) ·
0.36. In this little example we just concentrated on element
and bond type. As one can imagine the inclusion of more
features can improve the results as well as higher values for
L (see experimental section).

An interesting case is when L → ∞. In this case we can
prove the following theorem:

Theorem 3.1: Let be γ(l) = (p1p
′
2)

l and p1p
′
2 ∈ (0, 1). If

there exists a C ∈ R
+, such that katom(a, a′) ≤ C for all

a, a′ and kbond(n(a) → a, n(a′) → a′) ≤ C for all n(a) →
a, n(a′)→ a′, then (11) converges.

Proof: (11) ≤ kbase(a, a′) + C2(p1p2)
1 + ... +

C2(p1p2)
L = kbase(a, a′)+C2

∑L
l=1(p1p2)

l which converges
for L→∞.
The constants p1, p2 can be interpreted as continuation prob-
abilities for random walks on molecules m and m′. Hence,
the normalizing factors before the sums in (11) can be viewed
as the probability to reach the corresponding pair of atoms.
The boundedness of katom and kbond can be ensured easily
by taking the RBF kernel for kreal in both cases.

Now we want to construct the whole kernel between two
molecules m, m′ with atoms a1, ..., a|m| and a′

1, ..., a
′
|m′|. For

the sake of simplicity of notation in the following let us assume
|m′| ≥ |m|. We define the optimal assignment kernel between
two molecules as

kasn(m, m′) = max
π

∑

h

k′
base(ah, a′

π(h)) (12)

I.e. we compute the optimal assignment of the atoms of
both molecules while taking into account the similarity of
their neighborhood structure. Since we proved that assignment
kernels are positive definite in the previous section, we can
conclude that kasn is a valid positive definite kernel.

By looking at the computed optimal assignment π̂ this
kernel has the advantage of being transparent, because one
can manually comprehend why a certain pair of molecules
is given a higher similarity than another pair. This gives us
the opportunity to actually interpret the kernel in a chemical
context.

Instead of computing the optimal matching between both
molecules one could also simply compute the expected match,
i.e.

kem(m, m′) =
∑

h,h′

k′
base(ah, a′

h′) (13)

The expected match kernel can be seen as a speed-up version
of the optimal assignment kernel. However, it looses the nice
feature of transparency.

Finally, in order to prevent that larger molecules automati-
cally achieve a higher kernel value, we should normalize the
kernel [12], i.e.

k(m, m′)←
k(m, m′)

√

k(m, m)k(m′, m′)
(14)

where k is either kasn or kem.

B. Efficient Computation

We now turn to the question, how computations can be
carried out efficiently. The first thing to realize is, that the
number of neighbors of each atom in a molecule can be upper
bounded by a small constant (usually 4). Hence, (9) can be
computed in O(1) for each pair of atoms. The extended base
kernel (11) can be rewritten as:

k′
base(a, a′) = kbase(a, a′) +

L
∑

l=1

γ(l)Rl(a, a′) (15)

Rl(a, a′) =
1

|N(a)||N(a)|

∑

h,h′

Rl−1(nh(a), nh′(a′))

(16)

That means we can compute k′
base by means of kbase and

the recursive update formula (16). Let n = max(|m|, |m′|)
then the complexity for the computation of (15) for all
pairs of atoms is O(n2). The optimal assignment between
atoms in (12) can be computed efficiently by means of
the classical Kuhn-Munkres algorithm (also known as the
Hungarian Method [10]) in O(n3). Although this seems to
be a drawback compared to marginalized graph kernels, we
have to point out, that marginalized graph kernels have to be
iteratively computed until convergence, and thus in practice,
depending on the size of n, there might be no real difference
in computation time. For the expected match kernel (13) the
overall complexity is just O(n2) and hence the same as for
the marginalized graph kernels.



TABLE I

ATOM AND BOND FEATURES CHOSEN IN OUR EXPERIMENTS

features nominal real valued

atom type, valence, in donor, in
acceptor, in donor or accep-
tor [1], in terminal carbon,
in aromatic system [2], neg-
ative/positive, in ring [3]

electro-topological state,
conjugated topological
distance [14], partial charge
[4], mass

bond order, in ring [3], is aroma-
tic [2], is rotor, is up/down,
is in carbonyl/amide/primary
amide group

—

IV. EXPERIMENTS

A. Datasets

We used the PTC dataset [7], which is the result of the
following pharmaceutical experiments: Each of 417 chemical
compounds is given to four types of test animals – Male Mouse
(MM), Female Mouse (FM), Male Rat (MR) and Female Rat
(FR). According to their carcinogenicity, each compound is
assigned to one of the categories EE, IS, E, CE, SE, P, NE, N,
where CE, SE and P indicate “relatively active” and NE and
N “relatively inactive”, and EE, IS, E “can not be decided”.
Following the approach in [8], we simplified the problem
by putting CE, SE and P into class “positive” and NE and
N in class “negative”. The rest of the compounds was not
considered. Hence, all in all we had four two-class problems.
After removing the hydrogens (the hydrogen information can
be encoded in the feature “atom type” for each remaining
atom - see table I), the maximum size of a molecule in all
four problems was 64 atoms, and the average size was 14
(FM/MM/MR) and 15 (FR) atoms, respectively.

The HIA (Human Intestinal Absorption) dataset consists of
164 structures from different sources in literature, which has
been used in an earlier publication [16]. The molecules are
divided into 2 classes “high oral bio-availability” and “low
oral bio-availability”. The maximal molecule size was 57 and
the average size 25 atoms after removing hydrogens.

B. Experimental Setting and Results

We compare the optimal assignment kernel (OA) against
the expected match kernel (EM) and the marginalized graph
kernel (MG) using the same atom and bond features. Thereby
for each atom we computed 9 nominal and 5 real valued
features, and for each bond we selected 8 nominal features
(table I). All features were computed by means of the open
source software JOELIB1 developed in our group. The kernels
katom and kbond, which compare atom and bond features, were
the same for the OA, the EM and the MG kernel.

All real valued features were normalized to mean 0 and
standard deviation 1 over the whole dataset. We explicitly set
the value knom to 0, if for two atoms the atom type or for
two bonds the bond type was not identical (this corresponds

1http://sourceforge.net/projects/joelib/

TABLE II

5-FOLD STRATIFIED CROSS-VALIDATION ACCURACY ON DIFFERENT DATA

(%) ± STD. ERROR (%)

data set MG-Kernel OA-Kernel EM-Kernel

FM
64.76 ± 1.15

pt = 0.3

σ = 2
−2

65.33 ± 0.94

L = 1

σ = 2
−4

64.47 ± 1.2

L = 9

σ = 2
−2

MM
69.05 ± 1.45

pt = 0.6

σ = 2
−4

67.87 ± 1.7

L = 6

σ = 2
−4

66.97 ± 1.07

L = 3

σ = 2
−4

FR
70.09 ± 0.59

pt = 0.6

σ = 2
0

70.37 ± 1.07

L = 1

σ = 2
−4

68.95 ± 0.7

L = 3

σ = 2
0

MR
62.5 ± 1.23

pt = 0.3

σ = 2
0

63.39 ± 2.06

L = 3

σ = 2
−4

60.84 ± 1.67

L = 9

σ = 2
−4

HIA
84.75 ± 2.54

pt = 0.1

σ = 2
−2

85.99 ± 1.19

L = 3

σ = 2
−4

84.17 ± 1.07

L = 9

σ = 2
0

to a multiplication with a δ-kernel). This reflects the fact that
computing a similarity for atoms of different type or bonds of
different type is quite senseless. For the real valued attributes
we chose a RBF-kernel of width σ = 2−8, 2−6, ..., 24. The
decay parameter γ was set to γ(l) = p1(l)p2(l) with pi(l) =
1− 1

L
l, i = 1, 2, and l = 1, ..., L, and for L we chose values

1, 3, 6, 9 (for L = 1 only direct neighbors are considered).
For the marginalized graph kernel we tested the termination

probabilities pt = 0.1, 0.3, 0.6, 0.9. We used a SVM as
the classification algorithm. The classification accuracy was
evaluated by 5-fold stratified cross-validation, and on the
training folds the parameter C was chosen via an extra 5-fold
stratified cross-validation from the interval 2−2, 20, ..., 212. We
trained the SVM with an asymmetric soft margin penalty
C+ = w+ · C and C− = w− · C, where w+ = 1 and
w− = #negatives/#positives in the dataset. Table II shows
the best classification results we obtained over choices of
kernel parameters σ, and pt or L, respectively.

Our optimal assignment kernel gives almost identical results
to the marginalized graph kernel. Our expected match kernel
in 2 cases performs slightly worse than the optimal assignment
kernels, but the difference is not significant. Hence, for large
molecules the expected match kernel could be seen as an
alternative to the optimal assignment kernel. Comparing com-
putation times, we could not find any significant differences
between the methods. Using our JAVA implementation one
kernel function evaluation on our Pentium IV 3GHz desktop
PC on average took around 20ms on the HIA and 5ms on
the PTC dataset. However, we see the biggest advantage of
our method that it better reflects a chemists’ intuition on the
similarity of molecules.

V. CONCLUSION

We introduced a new kernel for chemical compounds,
which is based on the idea of computing optimal assignments
between atoms of two different molecules including their



neighborhood structure. This lead to a new class of kernel
functions, so called assignment kernels. We showed how the
optimal assignment kernel between two molecules can be
computed efficiently by means of an recursive update equation,
even if not only the direct neighbors are considered. The
Hungarian method was used to compute the final assign-
ment. Alternatively, one can just compute the expected match,
which is asymptotically faster and gives results close the
solution obtained by the Hungarian method. Comparisons to
the marginalized graph kernels by Kashima et al. showed an
almost identical performance. However, we see an advantage
of our approach that it better reflects a chemists’ intuition on
the similarity of molecules, because of its transparency and
easy interpretability. The optimal assignment could also give
the opportunity to look for pharmacophores in future research.
To further increase the classification accuracy it may help to
incorporate certain molecular properties known to be relevant
for the problem at hand. For large molecules it would be
beneficial not to use a molecule representation based on single
atoms as it was used here, but to use a reduced representation
based on certain motifs like rings, donors, acceptors, etc. This
is subject to future research.
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