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Abstract

We propose a new kernel function for at-
tributed molecular graphs, which is based on
the idea of computing an optimal assignment
from the atoms of one molecule to those of an-
other one, including information on neighbor-
hood, membership to a certain structural ele-
ment and other characteristics for each atom.
As a byproduct this leads to a new class of
kernel functions. We demonstrate how the
necessary computations can be carried out
efficiently. Compared to marginalized graph
kernels our method in some cases leads to a
significant reduction of the prediction error.
Further improvement can be gained, if expert
knowledge is combined with our method. We
also investigate a reduced graph representa-
tion of molecules by collapsing certain struc-
tural elements, like e.g. rings, into a single
node of the molecular graph.

1. Introduction

In Chemoinformatics there has been a long history
of work on the problem to infer chemical or biolog-
ical properties of a molecule from the structure of
the molecule, the so called QSAR approach (Kubinyi,
2003). The basic assumption is, that all molecular
properties can be infered from the molecular struc-
ture. Classically, molecules are represented by a large
amount of descriptors (= features in Machine Learning
language) and then any data mining method, which
works on vectorial data, can be applied. However, the
problem here is to first find good descriptors and sec-
ond to select the descriptors, which are best suited for
the problem at hand. This can be quite difficult and
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computationally costly. More naturally, the topology
of chemical compounds can be represented as labeled
graphs, where edge labels correspond to bond proper-
ties like bond order, length of a bond, and node labels
to atom properties, like partial charge, membership to
a ring, and so on. This representation opens the oppor-
tunity to use graph mining methods (Washio & Mo-
toda, 2003) to deal with molecular structures. Thereby
a principal question is how different graph structures
can be compared.

One way of doing so is the usage of a symmetric, pos-
itive semidefinite kernel – e.g. (Schölkopf & Smola,
2002). In (Kashima et al., 2003) the authors propose
a kernel function between labeled graphs, which they
call marginalized graph kernel: Its idea is to compute
the expected match of all pairs of random walk label
sequences up to infinite length. An efficient computa-
tion can be carried out in a time complexity propor-
tional to the product of the size both graphs by solving
a system of linear simultaneous equations. Kashima et
al. show that also the geometric and the exponential
graph kernel by (Gärtner et al., 2003) can be seen
as special variants of the marginalized graph kernel.
In contrast, the pattern-discovery (PD) kernel by De
Raedt and Kramer (Raedt & Kramer, 2001) counts the
set of all label sequences, which appear in more than
p graphs with p being a so called minimum support
parameter. Furthermore, it is possible to add extra
conditions, for example selecting only the paths fre-
quent in a certain class and scarce in another class.
The PD method was especially designed for predicting
toxicity of molecules, which from a chemical viewpoint
mainly depends on the presence of certain functional
groups in a molecule, and achieves about the same ex-
cellent performance there as the marginalized graph
kernel (Kashima et al., 2003; Helma et al., 2001).

The goal of our work is to define a kernel for chem-
ical compounds, which, like the marginalized graph
kernel, is of general use for QSAR problems, but bet-
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ter reflects a chemists’ point of view on the similarity
of molecules. Rather than comparing label sequences,
the main intuition of our approach is that the simi-
larity of two molecules mainly depends on the match-
ing of certain structural elements like rings, functional
groups and so on (fig. 1). If we assume the member-
ship of an atom to a structural element to be encoded
in its labels, this leads to the idea of computing an op-
timal assignment from atoms in one structure to those
in another one, including for each atom information
on the neighborhood and other characteristic informa-
tion, like e.g. charge, mass and so on. As a byproduct
this leads to a new class of kernel functions, which to
our knowledge has not been introduced so far. The op-
timal assignment allows an easy interpretation of the
kernel from the chemistry side. We can extend the
approach by considering reduced graph representations
of molecules, i.e. we collapse certain structural ele-
ments, like a ring, a donor or an acceptor, into a single
node and remove all remaining ones. In the literature
this procedure is also called pharmacophore mapping
(Martin, 1998). Furthermore, we investigate the effect
of combining certain descriptor information provided
by expert knowledge with our method.

This paper is organized as follows: In the next sec-
tion we begin by defining so called “optimal assign-
ment kernels” as a general class of kernel functions
and prove their symmetry and positive semidefinite-
ness. Given this result we can introduce our optimal
assignment kernel for chemical compounds in section
3 and show how it can be computed efficiently. In
section 4 we investigate possible extensions of the op-
timal assignment kernel, namely by means of the re-
duced graph representation and by incorporating ex-
pert provided descriptor information. In section 5 we
give experimental results of our method in compari-
son to marginalized graph kernels on several QSAR
datasets and show that in some cases we can signifi-
cantly outperform marginalized graph kernels. Finally,
we conclude in section 6 and point out directions of fu-
ture research.

2. Optimal Assignment Kernels

Let X be some domain of structured objects (e.g.
graphs). Let us denote the parts of some object x (e.g.
the nodes of a graph) by x1, ..., x|x|, i.e. x consists of
|x| parts, while another object y consists of |y| parts.
Let X ′ denote the domain of all parts, i.e. xi ∈ X

′

for 1 ≤ i ≤ |x|. Further let π be some permutation
of either an |x|−subset of natural numbers {1, ..., |y|}
or an |y|−subset of {1, ..., |x|} (this will be clear from
context).

Figure 1. Matching regions of two molecular structures.

Definition 2.1. (Optimal Assignment Kernels) Let
k1 : X ′ × X ′ → R be some non-negative, symmetric
and positive semidefinite kernel. Then kA : X×X → R

with

kA(x, y) :=

{

maxπ

∑|x|
i=1 k1(xi, yπ(i)) if |y| ≥ |x|

maxπ

∑|y|
j=1 k1(xπ(j), yj) otherwise

is called an optimal assignment kernel.

This definition captures the idea of a maximal
weighted bipartite matching (optimal assignment) of
the parts of two objects.Each part of the smaller of
both structures is assigned to exactly one part of the
other structure such that the overall similarity score
between both structures is maximized.

Lemma 2.2. For all x: kA(x, x) =
∑

i k1(xi, xi).

Proof. For any π it is

k1(x1, xπ(1)) + . . . + k1(x|x|, xπ(|x|)) (1)

≤
1

2

(

k1(x1, x1) + k1(xπ(1), xπ(1)) + . . . (2)

+k1(x|x|, x|x|) + k1(xπ(|x|), xπ(|x|))
)

=
∑

i

k1(xi, xi) (3)

because 2k1(xi, xπ(i)) ≤ k1(xi, xi) + k1(xπ(i), xπ(i)) for
all i. This is a direct consequence of the positive
semidefiniteness of k1. If we now take the maximum
over all π, then (1) = kA(x, x) = (2) = (3)

Theorem 2.3. kA is a symmetric and pos. def. ker-
nel.

Proof. Clearly, kA is symmetric, because of the defini-
tion.

W.l.o.g. let |y| ≥ |x|. Because of the lemma, we have
kA(x, x) =

∑

i k1(xi, xi), kA(y, y) =
∑

j k1(yj , yj).
Further it holds for all α, β ∈ R and i, j

2αβk1(xi, yj) ≤ α2k1(xi, xi) + β2k1(yj , yj) (4)
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because k1 is a positive semidefinite kernel. It is

α2kA(x, x)− 2αβkA(x, y) + β2kA(y, y) = (5)

α2
∑

i

k1(xi, xi)− 2αβ max
π

∑

i

k1(xi, yπ(i))

+β2
∑

j

k1(yj , yj)

By definition of kA the second sum of (5) has
min(|x|, |y|) = |x| addends. Let y′

i be the part of
y to which xi is assigned. Using (4) we have (5) ≥
∑|x|

i=1(α
2k1(xi, xi)− 2αβk1(xi, y

′
i) + β2k1(y

′
i, y

′
i)) ≥ 0.

This proofs the positive semidefiniteness of each 2× 2
kernel matrix. From this we can generalize the result
to n × n matrices by induction using the assumption
that k1 is non-negative: Suppose we already know that
each n×n kernel matrix K = (kA(xi, xj))ij for a set of
objects x1, ..., xn is positive semidefinite. Now assume
we extend the matrix to size n + 1× n + 1 by adding
an object xn+1. It is

n+1
∑

i,j=1

vivjKij =

n
∑

i,j=1

vivjKij (6)

+2
n

∑

j=1

vn+1vjKn+1,j + v
2
n+1Kn+1,n+1

By induction assumption we know the first part of
(6) to be non-negative. Furthermore, by definition
k1 and thus also kA is non-negative. Hence, we have
v

2
n+1Kn+1,n+1 ≥ 0. Therefore, in order to make

(6) < 0 we have to suppose 2
∑n

j=1 vn+1vjKn+1,j <

0. Using (4) this leads to 2
∑n

j=1 vn+1vjKn+1,j ≤
∑n

j=1 v
2
n+1Kn+1,n+1 + v

2
jKjj < 0, which is a con-

tradiction to the non-negativity of kA. Hence, it is
(6) ≥ 0, which proofs the theorem.

3. Optimal Assignment Kernels for

Chemical Compounds

Let us assume now we have two molecules m and m′,
which have atoms a1, ..., a|m| and a′

1, ..., a
′
|m′|. Let us

further assume we have a kernel knei, which compares
a pair of atoms (ah, a′

h′) from both molecules, includ-
ing information on their neighborhoods, membership
to certain structural elements and other characteris-
tics. Then, given our result from the last section, a
valid kernel between m,m′ is the optimal assignment
kernel

kA(m,m′) = (7)
{

maxπ

∑|m|
h=1 knei(ah, a′

π(h)) if |m′| ≥ |m|

maxπ

∑|m′|
h′=1 knei(aπ(h′), a

′
h′) otherwise

That means we assign each atom of the smaller of both
molecules to exactly one atom of the bigger molecule
such that the overall similarity score is maximized.
This can be computed efficiently in O(max(|m|, |m′|)3)
(Mehlhorn & Näher, 1999). Although this seems to be
a drawback compared to the quadratic time complex-
ity of marginalized graph kernels, we have to point out,
that marginalized graph kernels have to be iteratively
computed until convergence, and thus in practice, de-
pending on the size of the molecules, there might be
no real difference in computation time.

In order to prevent larger molecules automatically
to achieve a higher kernel value than smaller ones,
we should further normalize our kernel (Schölkopf &
Smola, 2002), i.e.

kA(m,m′)←
kA(m,m′)

√

kA(m,m)kA(m′,m′)
(8)

We now have to define the kernel knei. For this pur-
pose let us suppose we have kernels katom and kbond

which compare the atom and bond features, respec-
tively. These feature vectors should include various
information, for instance, whether an atom belongs to
a ring, if it is in a donor or acceptor, what partial
charge it has and so on (see also experimental sec-
tion). A natural choice for katom and kbond would be
the RBF-kernel, which computes the similarity of the
feature vectors associated to a pair of atoms or bonds.
Thereby we should normalize these feature vectors,
e.g. to unit length. Let us denote by a → ni(a) the
bond connecting atom a with its ith neighbor ni(a).
Let us further denote by |N(a)| the number of neigh-
bors of atom a. We now define a kernel R0, which
compares all direct neighbors of atoms (a, a′) as the
optimal assignment kernel between all neighbors of a
and a′ and the bonds leading to them, i.e.

R0(a, a′) = (9)

1

|N(a′)|
max

π

|N(a)|
∑

i=1

(

katom(ni(a), nπ(i)(a
′))

·kbond(a→ ni(a), a′ → nπ(i)(a
′))

)

were we assumed |N(a′)| ≥ |N(a)| for the sake of sim-
plicity of notation. As an example consider the C-
atom 3 in the left and the C-atom 5 in the right struc-
ture of figure 2: If our only atom and bond features
were the element type and bond order, respectively,
and katom and kbond would simply count a match by
1 and a mismatch by 0, our kernel R0(a3, a

′
5) would

tell us that 2 of 3 possible neighbors of atom 3 in
the left structure match with the neighbors of atom
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Figure 2. Direct and indirect neighbors of atom 3 in the
left and atom 5 in the right molecule.

5 in the right structure. It is worth mentioning that
the computation of R0 can be done in O(1) as for
chemical compounds |N(a)|and|N(a′)| can be upper
bounded by a small constant (e.g. 4). Of course it
would be beneficial not to consider the match of di-
rect neighbors only, but also that of indirect neigh-
bors and atoms having a larger topological distance.
For this purpose we can evaluate R0 not at (a, a′)
only, but also at all pairs of neighbors, indirect neigh-
bors and so on, up to some topological distance L.
In our example that would mean we also evaluate
R0(a2, a

′
2), R0(a4, a

′
2), R0(a7, a

′
2), ... and so on. If we

consider the mean of all these values and add them
to katom(a, a′) + R0(a, a′), this leads to the following
definition of the kernel knei:

knei(a, a′) = (10)

katom(a, a′) + R0(a, a′) +

L
∑

`=1

γ(`)R`(a, a′)

Here R` denotes the mean of all R0 evaluated at neigh-
bors of topological distance `, and γ(`) is a decay pa-
rameter, which reduces the influence of neighbors that
are further away and depends on the topological dis-
tance ` to (a, a′). It makes sense to set γ(`) = p(`)p′(`),
where p(`), p′(`) are the probabilities for molecules
m,m′ that neighbors with topological distance ` are
considered.

A key observation is, that R` can be computed effi-
ciently from R`−1 via the recursive relationship

R`(a, a′) =
1

|N(a)||N(a′)|

∑

i,j

R`−1(ni(a), nj(a
′))

(11)
I.e. we can compute knei by iteratively revisiting all
direct neighbors of (a, a′) only. In case that L is set
to a constant we thus have a O(1) time complexity for
the calculation of knei. In case that L → ∞, we can
prove the following theorem:

Theorem 3.1. Let γ(`) = (p̂1p̂2)
` with p̂1, p̂2 ∈ (0, 1).

If there exists a C ∈ R
+, such that katom(a, a′) ≤ C

for all a, a′ and kbond(a → ni(a), a′ → nj(a
′)) ≤ C

for all a→ ni(a), a′ → nj(a
′), then (10) converges for

L→∞.

Proof. It is R0(a, a′) ≤ min(|N(a)|,|N(a′)|)
max(|N(a′)|,|N(a′)|)C

2 ≤ C2 and

thus R1(a, a′) ≤ 1
|N(a)||N(a′)|

∑|N(a)|
i=1

∑|N(a′)|
j=1 C2 =

C2. Hence also R`(a, a′) ≤ C2 for ` = 2, ..., L.
Therefore we have (10) ≤ C + C2 + (p̂1p̂2)

1C2 + ... +

(p̂1p̂2)
LC2 = C + C2 +

∑L

`=1(p̂1p̂2)
` which converges

for L→∞.

Note, that the boundedness of katom and kbond is es-
pecially fulfilled, if we take the RBF-kernel for both.

4. Possible Extensions

4.1. Reduced Graph Representation

The main intuition of our method lies in the match-
ing of structural elements from both molecules. In the
previous section we achieved this by using structural,
neighborhood and other characteristic information for
each single atom and bond, and computing the optimal
assignment kernel between atoms of both molecules
then. A quite natural extension of this idea is to col-
lapse structural elements, like rings, donors, acceptors
and others, into one single node of the molecular graph
in a precomputing step and then apply our method to
this reduced graph representation. Atoms not belong-
ing to a-priori defined types of structural elements can
even be removed (Martin, 1998). This allows us to
concentrate on important structural features, where
the definition of what an important structural feature
actually is may be given by expert knowledge, depend-
ing on the QSAR problem at hand. The high relevance
of such a pharmacophore mapping for QSAR models
is also reported e.g. in (Chen et al., 1999; Oprea
et al., 2002). However, two principal problems have
to be solved to implement this idea: Firstly, if cer-
tain atoms are removed from our graph, then we may
obtain nodes, which are disconnected from the rest
of the graph. They have to be reconnected by new
edges again such that these new edges preserve the
neighborhood information, i.e. if before we had a→ b
and b → c and node b is removed, we should obtain
a → c. These new edges should contain information
on the topological and geometrical distance of their
end nodes (fig. 3). Secondly, we have to define how
the feature vectors for each single atom and bond in-
cluded in a structural element can be transfered to the
whole structural element. This can, for instance, be
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Figure 3. Example of a conversion of a molecule into its
reduced graph representation with edge labels containing
the topological distances.

solved by recursively applying our method from the
last section, if two nodes representing structural ele-
ments have to be compared. From the computational
side the reduced graph representation can be advanta-
geous for larger molecules, because the effort for com-
puting the optimal assignment is reduced.

4.2. Incorporating Expert Knowledge

For some QSAR problems it is known by experts that
certain molecular properties are crucial. E.g. for hu-
man intestinal absorption the polar surface area of a
molecule plays an important role (van de Waterbeemd
& Gifford, 2003). In some sense these features describe
global properties of a molecule, whereas our kernel re-
lies on the graph structure and hence on local proper-
ties of a molecule. A natural question is, if it would
be beneficial to combine both types of information. A
straight forward way of doing so, is to consider the
sum of a RBF-kernel for the descriptor information
we have from our expert knowledge and the optimal
assignment kernel.

5. Experimental Results

5.1. Datasets

We used the PTC dataset (Helma et al., 2001), which
is the result of the following pharmaceutical experi-
ments: Each of 417 chemical compounds is given to
four types of test animals – Male Mouse (MM), Female
Mouse (FM), Male Rat (MR) and Female Rat (FR).
According to their carcinogenicity, each compound is
assigned to one of the categories EE, IS, E, CE, SE,
P, NE, N, where CE, SE and P indicate “relatively
active” and NE and N “relatively inactive”, and EE,
IS, E “can not be decided”. Following the approach

in (Kashima et al., 2003), we simplified the problem
by putting CE, SE and P into class “positive” and NE
and N in class “negative”. The rest of the compounds
was not considered. Hence, all in all we had four two-
class problems. After removing the hydrogens (the
hydrogen information can be encoded in the features
“heavy valence”, “implicit valence” and “atom type” for
each remaining atom - see table 1), the maximum size
of a molecule in all four problems was 64 atoms, and
the average size was 14 (FM/MM/MR) and 15 (FR)
atoms, respectively.

The HIA (Human Intestinal Absorption) dataset con-
sists of 164 structures from different sources in liter-
ature, which has been used in an earlier publication
(Wegner et al., 2003). The molecules are divided into
2 classes “high oral bio-availability” and “low oral bio-
availability”. The maximal molecule size was 57 and
the average size 25 atoms after removing hydrogens.
By expert knowledge 1 chemical descriptor (polar sur-
face area) is provided, which is known to be relevant
for the problem (van de Waterbeemd & Gifford, 2003).

The Yoshida dataset (Yoshida & Topliss, 2000) has 265
molecules divided into 2 classes “high bio-availability”
and “low bio-availability”. After removing hydrogens,
the maximum molecule size was 36 and the average
size 20 atoms. For this problem 6 chemical descrip-
tors are provided by expert knowledge describing the
presence or absence of typical functional groups most
likely to be involved in metabolic reactions (van de
Waterbeemd & Gifford, 2003).

The BBB dataset (Feher et al., 2000) consists of 109
structures having a maximum molecule size of 33 and
an average size of 16 atoms after removing hydrogens.
The target is to predict the logBB value, which de-
scribes up to which degree a drug can cross the blood-
brain-barrier. Two chemical descriptors (polar surface
area and octane/water partition coefficient) are given
by expert knowledge (van de Waterbeemd & Gifford,
2003).

5.2. Results

We compared the optimal assignment (OA) kernel
from section 2 (7), (8) to the marginalized graph (MG)
kernel using the same atom and bond features. All fea-
tures were computed using the open source software
JOELib1 (table 1). The feature vectors for atoms and
bonds were scaled to unit length. The kernels katom

and kbond, which compare atom and bond features,
were the same for the OA and the MG kernel. In both
cases we used a RBF kernel with σ = 2−0.5. We ex-

1http://sourceforge.net/projects/joelib
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Table 1. Atom and bond features chosen in our experi-
ments

features nominal real valued

atom element type, in donor,

in acceptor, in donor

or acceptor (Böhm &

Klebe, 2002), in termi-

nal carbon, in aromatic

system (Bonchev

& Rouvray, 1990),

negative/positive, in

ring (Figueras, 1996),

in conjugated environ-

ment, free electrons,

implicit valence, heavy

valence, hybridization,

is chiral, is axial

electro-topological

state, conjugated

topological dis-

tance (Todeschini

& Consonni, 2000),

Gasteiger/Marsili par-

tial charge (Gasteiger

& Marsili, 1978), mass

bond order, in aromatic

system, in ring,

is rotor, in car-

bonyl/amide/primary

amide/ester group

length

plicitly set katom to 0, if the element type of two atoms
was different (e.g. if a C-atom is compared to a N -
atom). This corresponds to the multiplication with a
δ-kernel. The same was done for bonds, if one bond
was in an aromatic system and the other not, or if both
bonds had a different bond order.

For the OA kernel the probabilities p(`), p′(`) to reach
neighbors with topological distance ` was set to p(`) =
p′(`) = 1 − 1

L
` with L = 3. This allows us to con-

sider the neighborhood of a whole 6-ring for an atom.
We used a C−SVM on the classification problems
and a ε−SVR on the regression problem. The pre-
diction strength was evaluated by means of 10-fold
cross-validation, and on each training fold a model
selection for the necessary parameters was performed
by evaluating each candidate parameter set by an ex-
tra level of 5-fold cross-validation. On the classifi-
cation problems the cross-validation procedures were
stratified. For the MG kernel the model selection
included testing the termination probabilities pt =
0.1, 0.3, 0.5, 0.7. The parameter C was chosen from the
interval [2−2, 214]. Thereby on the classification prob-
lems we trained the SVM with asymmetric soft margin
penalties C+ = w+ ·C and C− = w− ·C, where w+ = 1
and w− = #negatives/#positives in the actual train-
ing set. On the regression dataset (BBB) the param-
eter ε was chosen from the interval [2−8, 2−1]. The
logBB values were normalized to mean 0 and standard

deviation 1 on each training fold, and the calculated
scaling parameters were then applied to normalize the
logBB values in the actual testing set.

Table 2 shows the results we obtained. Our OA ker-
nel on almost all data achieved better results than the
MG kernel. The difference on the MR and BBB data
was statistically significant (p-value = 0.01, p-value =
0.06) at significance level 10%. Thereby significance
was tested by means of a two-tailed paired t-test. In
tendency our OA kernel seems to better reflect the
chemical and biological relevant aspects, which deter-
mine the similarity of chemical compounds. Compar-
ing computation times, we could not find any signifi-
cant difference between the MG kernel and the OA ker-
nel on our data. Using our JAVA implementation one
kernel function evaluation on our Pentium IV 3GHz
desktop PC on average took 6± 9 (4± 10) ms on the
BBB for the OA (MG) kernel, 10 ± 9 (7 ± 8) ms on
the HIA, 7 ± 4 (5 ± 4) ms on the Yoshida, and 2 ± 3
(3± 4) ms on the PTC dataset.

We also investigated the effect of the reduced graph
representation (OARG kernel - last column of table
2). Thereby in the reduced graph representation only
direct neighbor subgraphs were considered to compute
knei (i.e. L′ = 1), whereas for the comparison of
nodes representing structural elements we used L = 3
as before. Considered structural features were: ring,
donor, donor or acceptor, acceptor and terminal car-
bon. Molecules, which did not contain any of these
features and hence lead to an empty graph were re-
moved: 2 compounds in the FM, FR, MR and BBB
data, and 3 in the MM data. As represented in table
2 using the reduced graph representation we achieved
similar error rates than with the original OA kernel.
Compared to the MG kernel the improvement on the
Yoshida dataset was statistically significant (p-value =
0.05). This demonstrates that the reduced graph rep-
resentation, although using less structural information
than the original OA kernel, covers well the relevant
biological aspects of the molecules in our data.

Next we investigated the effect of incorporating expert
knowledge. We used the same experimental frame-
work as described above. We first tested the predic-
tion error when using the molecular descriptors pro-
vided by the expert only. The model selection thereby
included the tuning of the width σ′ of the RBF ker-
nel in the range σ̂′/4, ..., 4σ̂′, where σ̂′ was set such
that exp(−D/(2σ̂′2)) = 0.1 (D = dimensionality of
the data). The individual descriptors were normalized
using the same procedure as described for the logBB
values. In a second step we combined both kernels as
described in 4.2. Thereby we just used a fixed σ′ = σ̂′.
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Table 2. 10-fold CV error ± std. error. For classification
problems the class loss (%) is reported, for the BBB data
the mean squared error ×10

−2. Significant wins of the
OA/OARG kernels compared to the MG kernel are denoted
by “*”, losses by “-”.

Data MG OA OARG

FM 37.82 ± 3.01 38.69 ± 1.7 35.99 ± 3.31

MM 33.38 ± 2.19 32.75 ± 1.52 32.16 ± 2.25

FR 33.06 ± 1.73 33.06 ± 1.56 34.12 ± 1.47

MR 42.45 ± 1.15 36.66 ± 2.41
∗

40.99 ± 2.91

HIA 17.72 ± 2.17 15.33 ± 1.44 14.63 ± 1.35

Yoshida 37.79 ± 2.33 34.32 ± 2.53 32.21 ± 2.82
∗

BBB 54.66 ± 3.76 39.91 ± 6.55
∗

42.03 ± 7.03

Table 3. Effect of incorporating expert knowledge. Signif-
icant improvements compared to the original OA/OARG
kernels are marked by "*", deteriorations by "-".

Data expert OA+exp. OARG+exp.

HIA 14.12 ± 2.13 11.58 ± 1.88
∗

12.21 ± 1.79

Yoshida 32.45 ± 1.57 30.2 ± 1.52 31.3 ± 1.72

BBB 39.28 ± 4.41 40.42 ± 4.67 35.55 ± 5.14

Table 3 shows the results on this experiment. As one
can see the prediction error by using the molecular de-
scriptors, which are provided by expert knowledge, is
almost identical to that achieved by our OA/OARG
kernels in table 2. However, if both approaches were
combined, on the HIA data with the OA kernel we
obtained a significantly lower error rate (p-value =
0.08) than with using the original OA kernel. Fur-
thermore, in tendency the results on the other datasets
are improved as well. This demonstrates that indeed it
can be beneficial to incorporate further knowledge on
“global” molecular properties additionally to the “lo-
cal” properties encoded in the graph structure.

6. Conclusion

We introduced a new kernel for chemical compounds,
which is based on the idea of computing an optimal
assignment of atoms from one molecule to those of
another one, including information on neighborhood,
membership to a certain structural element and other
characteristics. This leads to a new class of kernel
functions, which we call optimal assignment kernels.
The optimal assignment can be computed by means
of the Hungarian method. We showed how the inclu-
sion of neighborhood information for each atom can be

done efficiently via a recursive update equation, even
if not only direct neighbors are considered. Compar-
isons to the marginalized graph kernel by Kashima et
al. in some cases lead to significantly lower error rates
on our QSAR problems. We investigated two major
extensions of our approach: the usage of a reduced
graph representation, in which certain structural ele-
ments are collapsed into a single node of the molecu-
lar graph, and the incorporation of molecular descrip-
tors provided by expert knowledge. We showed that
the latter can lead to a further significant reduction
of the error rate in comparison to the usual optimal
assignment kernel, whereas the major benefit of the
reduced graph representation lies in the fact that ex-
pert knowledge on important structural features can
be included and that larger molecules can be handled
more efficiently. All in all we see the main advantage
of our approach that it better reflects a chemists’ intu-
ition on the similarity of molecules than marginalized
graph kernels. The optimal assignment could also give
the opportunity to deduce so called pharmacophores
in future research. Especially for this purpose the re-
duced graph representation is advantageous. Other di-
rections of future research include a more systematic
investigation of the incorporation of expert knowledge,
e.g. by means of kernel CCA – e.g. (Bach & Jordan,
2002), semidefinite programming (Lanckriet et al.,
2004) or others.

Appendix: Preventing the “Tottering”

If we evaluate R0 (Eq: 9) at all neighbors of a cer-
tain topological distance `, we also revisit atoms and
bonds that we have considered at topological distance
` − 1. To prevent this “tottering”, we can make our
decay factor γ dependent not just on the topological
distance, but also on the path of visited atoms and
bonds. Thereby we have to explicitly forbid paths of
the form a → ni(a) → a. This can be achieved by
setting

γ′(`, a, a′, ni(a), nj(a
′)) = (12)

{

0 ∃k : nk(ni(a)) = a ∨ ∃t : nt(nj(a
′)) = a′

γ(`) otherwise

This requires the following changes in our computation
for knei:

knei(a, a′) = katom(a, a′)+ (13)

1

|N(a)||N(a′)|

∑

i,j

r0(a, a′, ni(a), nj(a
′)

+
L

∑

`=1

(

1

|N(a)||N(a′)|

∑

i,j

γ′(`, a, a′, ni(a), nj(a
′))
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·r`(a, a′, ni(a), nj(a
′)

)

r`(a, a′, ni(a), nj(a
′) =

1

|N(ni(a))||N(nj(a′))|
· (14)

∑

k,t

r`−1(ni(a), nj(a
′), nk(ni(a)), nl(nj(a

′)))

r0(a, a′, ni(a), nj(a
′) = (15)

katom(ni(a), nj(a
′))kbond(a→ ni(a), a′ → nj(a

′))

That means we can compute knei by iteratively re-
visiting the direct neighbors and indirect neighbors of
(a, a′). In contrast to (10) in (13) we do not use an
optimal assignment kernel to for the direct neighbors
of (a, a′), but compute the average match here. Up to
now we did not recognize any significant effect on the
error rate using the calculation described here instead
of that described in section 3.
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