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Abstract. This paper describes the Attempto Tübingen Robot Soccer
Team 2004. The robot platform, its sensors and actuators, and the soft-
ware system running on the onboard computer are presented. The main
part of the paper concentrates on our current scientific work on mod-
elling and tracking a dynamic environment. Information about dynamic
objects moving around in the environment can be useful especially in
RoboCup to predict the motion of the ball, to avoid collisions, or to con-
sider objects which cannot be detected over a short period of time. In
our robot soccer team we recently implemented an efficient object and
landmark detection algorithm based on images of our omnidirectional
vision system. To track the detected objects, we use a tracking approach
which on the one hand combines the specific advantages of Kalman- and
particle filters and on the other hand uses an interacting multiple model
filtering approach to model object dynamics as accurately as possible. In
addition to the general tracking techniques we present our real-time ap-
proach to detect and track uncoloured objects, such as a standard soccer
ball.

1 Introduction

Teams of cooperative robots for solving a given task are often based on the
idea of a highly precise sensor system giving the robot a complete and accurate
view of its environment. In our RoboCup Middle Size League team we followed
this idea by building our robots around a very precise laser scanner, at the
cost of loosening other constraints like small size and light weight. Although we
still played with the laser scanner at RoboCup 2003 at Padova, several aspects
including recent rule changes force us to remove that sensor from our robots.
In this paper we will present our current team of robots which fully relies on
vision sensors for environment modelling. We believe that our scientific research
on tracking dynamic objects will help us to cope with imperfect and incomplete
sensor data. In any case we are prepared for future rule changes concerning the
orange ball through our real-time approach to track uncoloured objects, such
as a standard FIFA soccer ball. The remainder of this paper is structured as
follows: Section 2 briefly describes the robot, sensor and computer hardware of
the Attempto robots, whereas Section 3 focuses on the software controlling the
robots. The main part of the paper, however, deals with our current scientific
research on object detection and tracking in Section 4. Section 5 concludes the
paper with a short summary.



2 Hardware

2.1 Robot Platform

We are currently using the Pioneer2 DX platform from ActivMedia Inc. as the
basic robot platform for our field players. This platform is driven by a differential
drive system which can achieve translational speeds up to 1.5 m/s and rotational
speeds up to 2π/s. The Pioneer2 DX can carry weights up to 20 kg and can be
equipped with a maximum of three 7,2 Ah batteries, which allow an operating
time of nearly three hours including all additional hardware like onboard PC
and additional sensors and actuators.

The two driving motors are equipped with 500 tick position encoders. With
the data from these encoders the speed and the relative position and orientation
of the robot can be calculated by the onboard Siemens C166 microcontroller
board which is also responsible for controlling the actuators of the robot. The
communication between the controller board and a remote computer is done via
a RS232 serial connection at a maximum speed of 38400 baud.

Our new goalkeeper is based on an omnidirectional platform developed by
the University of Dortmund for their own robot team ([1]). We equipped this
platform with a set of motors enabling movements at a speed of up to 2.5 m/s.

2.2 Sensors and Actuators

In the past we were employing a diversity of sensors, being convinced that the
use of several sensors can result in a highly redundant system and, by the use
of suitable data fusion techniques, a better assessment of the situation around
the robot. A maximum of six different sensor types including sonars, a 2D laser
range finder, two different types of vision systems, infrared proximity sensors,
and a digital compass was used on our robots in several configurations. However,
the constantly changing environment in RoboCup reduced the applicability of
several sensors while others, such as the sonars, and infrared proximity sensors
where simply outperformed by better sensors like the high accuracy laser scanner.
The trend towards a small number of sensors is further pushed by the need of
fast and reactive robots that are able to handle a ball shot by the new kicking
devices that are able to accelerate the ball to several metres per second. This
forced us to even remove the accurate but heavy laser scanner and led to a new
philosophy in the design of our robots, with vision sensors as the only type of
external sensors.

Apart from the motors we have our robots equipped with only one more
actuator. This pneumatic kicking device will be described in this section, too.

Cameras: The two vision systems we have installed on the robot (perspec-
tive camera and omnidirectional vision system) both use a Siemens SICOLOR
C810 CCD-DSP color camera, comprising a 1/3” CCD chip with a resolution of
752x582 pixels. The output of the camera is a regular CCIR-PAL signal with 50
half frames per second.



One of the cameras is equipped with a 2,8f wide angle lens and is mounted
at the front of the robot. It is used for a precise detection of the ball.

The second camera is equipped with a 4,2f lens pointing up towards a hyper-
bolic mirror. Although this mirror was designed to maximize the surrounding
mapped into the vision system of the FhG Volksbot, a complete mapping of the
surrounding is achieved with this vision system, when mounted on top of our
Pioneer 2-DX Robots, too.

Kicker: Our kicking device is a self-made construction actuated by com-
pressed air. The air is compressed into a 2 litre tank before the games at a
pressure of 10 bar. The air reservoir is connected via an electric valve to two
pneumatic actuators that can accelerate a metallic bar which shoots the ball.
The special feature of this device compared to others is that the bar is mounted
and connected to the pneumatic cylinders in a way that accelerate the bar in
a circular motion forwards and also upwards. This reduces the overall speed of
the ball but leaves the possibility to lift the ball over a goalkeeper as we could
show in a game against ISePorto at RoboCup 2003. Currently we are thinking
about an electronic kicking device for our new goalkeeper.

2.3 Onboard Computer

Our onboard computer is a custom designed system based on a PISA-3P4I Back-
plane by JUMPtec which provides 4 ISA/PISA slots and 3 PCI slots. One of
these slots is used to plug a CoolMonster/P3 PISA board by Jumptec which in-
tegrates the complete functionality of a motherboard, like a network controller,
IDE controller, and USB controller. This board is equipped with a low power
Pentium-3 running at 850 MHz, 128 MB of RAM and a 20 GB harddisk. Ad-
ditionally two PCI framegrabber boards based on the Booktree BT848 chipset
are added to the computer to simultaneously grab the images of the two vi-
sion systems at 25 fps. The laser scanner is connected via a high speed RS422
serial device card which was modified to achieve the 500 kbps data rate. The
computers of different robots can communicate via IEEE 802.11b wireless LAN
by ARtem Datentechnik over an external access point. Therefore each robot is
equipped with a WLAN client which is connected to the onboard computer via
RJ45 network cable. The communication to the controller board of the robot is
done over the RS232 serial device and a crosslink cable. We are running RedHat
7.3 Linux on the computer.

3 Software

The software system of the Attempto Tübingen Robot Soccer Team is based on
a Client/Server architecture and can be divided into three layers: the data server
layer, an intermediate layer and the high level robot control layer.

In the data server layer several server programs perform the communication
with the sensor and robot hardware. They provide the data from the sensors
and the robot to the preprocessing clients in the intermediate layer via shared



memory segments. These segments are organised in a ring buffer structure to
provide a free buffer for the next data packet even if one or more clients are
processing data from other segments and thus blocking the use of these segments.
The robot server that supplies odometry data is actually a client, too, as it reads
command data from a shared memory segment and makes the robot fulfill these
commands. All the servers in this layer can be replaced by simulation servers
which provide previously recorded or artificial data for simulation purposes.

The intermediate layer acts as a data compression layer. Several prepro-
cessing stages extract the relevant information out of the raw sensor data and
provide it to the high level layer, again being both client and server. The image
preprocessing stages (one for each camera) compute the position of objects (own
robots, opponent robots, and the ball) relative to the robot and extract points
on the white field markings. In an object tracking stage the objects generated
from the image preprocessing stages are fused to further reduce the amount of
data and to remove inconsistencies and the remaining objects are tracked over
time by our tracking system presented in [4]. A localisation stage processes the
field markings from the images, and the odometry data from the robot to gener-
ate new position estimations. These estimations are used to update a filter that
keeps track of the robot’s position. The output of the stages in the intermediate
layer provide a consistent world model to the high level layer.

The high level robot control layer realises the hybrid robot control archi-
tecture [3]. It consists of a reactive component where a set of independent be-
haviours like obstacle avoidance, ball search, or ball following try to fulfill their
tasks. The behaviours can react quite fast to changes in the environment because
they can work on the compact world model data from the immediate layer. The
behavioural system is easy to expand beacuse it is possible to start and stop
behaviours at runtime. Control commands are passed to the robot via the robot
server. A more detailed description of the software system is given in [9].

4 Research Topics

4.1 Object Detection

This section briefly describes the algorithm to detect objects and landmarks with
our vision systems. A detailed description can be found in [5].

In order to create an environment model from the images obtained with our
vision systems, two basic steps have to be performed. First, the objects and
landmarks in an image have to be identified, according to the distinct colour
coding in the RoboCup environment. Second, the real world position of objects
and landmarks has to be calculated from their pixel coordinates. For these steps
of environment modelling, mappings from colours to different classes of objects
and landmarks (e.g. black for robots and orange for the ball), and from pixels to
real world coordinates are needed. These mappings are identified during colour
calibration and a distance calibration, once for each of the two vision systems,
each robot, and for each different environment. To reduce the time and effort



needed, we implemented a graphical tool helping us to do the calibration, but
nevertheless these steps are still done manually. Currently we are working on
algorithms to automatically calibrate the vision systems.

Once the vision systems are calibrated, the algorithm cycles through five
major steps for every image:

1. Transformation of the image into colour classes
2. Segmentation of the image by colour class
3. Clustering of segments that are believed to belong to the same object
4. Mapping of the cluster to world coordinates using the point with minimum

distance to the image centre
5. Output of this position as new object, if size constraints are fulfilled.

These steps are described in the following subsections.

Colour Transformation In the colour transformation step the pixels of the
image are transformed into the different colour classes using the trained colour
LUT. Instead of transforming the whole image, we use a regular grid in world
coordinates and map this grid back to image coordinates to reveal the position
of interesting pixels. With a resolution of the grid that is high enough to cover
even the smallest robot with at least one gridline, we process less than 5%
of the image, which makes the colour transformation very efficient. The pixel
coordinates of the gridpoints can be calculated during the calibration steps and
are stored into a look up table (gridLUT ).

Colour Segmentation To find the longest sequences of a given colour class in
the colour transformed grid the fast and fault-tolerant Smith-Waterman algo-
rithm for local alignment of common molecular subsequences ([11]) was adapted.
This algorithm finds best matching substrings by comparing the amino acids (aa)
of two strings one by one, assigning high scores for exact matches and lower or
negative scores for unequal pairs. In the end of this process, the substring with
the best score is considered as the best matching substring. The algorithm is
fault-tolerant, as it allows a certain number of unequal aa in the two strings.
This number is based on the scores given to the compared aa, which in turn
are based on statistical analysis of how likely two aa may be exchanged without
affecting the characteristics of the whole sequence.

Regarding the colour transformed gridlines as an aa string, with the colour
class of the pixels being an identifier similar to the character of an aa, substrings
(segments) of a given colour class can be found when comparing the gridline
against a string completely filled with this colour class. The algorithm assigns
positive scores to pixels belonging to the same colour class and a negative score to
pixels of a different colour class. Pixels of a different colour class would usually
end a segment, without consideration of errors in the colour transformation
step due to noise in the image. Using the Smith-Waterman algorithm, however,
segments are extended over gaps of pixels of a different colour class.



The algorithm processes each gridline, one at a time. For each gridpoint in
the current line a new segment of the pixel’s colour class is started, if there was
currently no unfinished segment of this colour class. For all unfinished segments,
regardless of their colour class, the score for this pixel based on the pixel’s
colour class and the colour class of the segment is added to a grand total for this
segment.

A segment is finished, when its score drops below zero, which is the case
after a certain number of non-matching pixels occured in a row, or when the
current gridline is finished. However, the end of the segment is determined as
the position which reached the highest score in the segment, as this is the point
of the highest number of matching pixels and only some small errors in a row.

Clustering of Segments The clustering step clusters the segments based on
their centre points in pixel coordinates. This is only done for segments of black
colour (robots) and orange colour (ball) as these are the only objects that appear
on a RoboCup field. For the white line markings and blue and yellow goal colour
no further processing is needed after the segmentation step.

Calculation of Real World Position From all segment points of a cluster
the point nearest to the image centre is mapped to its world coordinates using
the distance mapping learned in the calibration step.

Apply Size Constraints Finally some size constraints are verified to ensure
that small objects resulting from pixel noise are dropped and objects that are un-
derestimated in their size are enlarged at least to their minimum size to prevent
the robot from collision with such objects.

In [5] we were able to show that this algorithm is very efficient as the compu-
tation time for the whole algorithm was 7.2ms on a Pentium III 850MHz that is
used on our robots, leaving enough time for other tasks while processing the full
25 frames per second of the camera. In addition to the efficiency we could show
that the accuracy of the object detection is sufficiently high, when compared to
laser scanner measurements.

4.2 Self-Localisation

In the RoboCup 2003 competition at Padova we already used a new approach to
the problem of self-localisation based on the white field markings obtained from
the omnidirectional vision system. From a given starting position the robots
were able to constantly correct the odometry errors and track the current po-
sition. This approach, however, had some drawbacks concerning accuracy and
efficiency. As it was designed to correct small estimation errors from the odom-
etry, longer periods without a correction often caused the localisation to end in
a local minimum, e.g. an estimation error of 90◦ compared to the correct ori-
entation. Futhermore the algorithm was unable to detect this estimation error,



as there was no quality measure for the estimation. Although it was possible to
do a global positioning from scratch this last one or two seconds which was too
much to use during a match.

Inspired by the ideas given in [6] we implemented a new version of the field
markings based self-localisation. As a quality measure this approach uses the
matrix of qualities explained in [6]. This is a precalculated look up table con-
taining the distance to the nearest element of the field markings model for every
position on the field.

If the set of white line points observed by the omnidirectional vision system
is transformed according to the current position estimation of the robot, we can
efficiently add up the distance to the field markings for each point, given in the
matrix, and devide by the number of points. The result is the total distance of
all observed line points to the field markings model, which serves as a quality
measure of our position estimation. With this approach we are able to control
the accuracy of our localisation and reinitialise the tracking in case of a pos-
sibly wrong position estimation. In this case, we calculate the quality of a set
of position estimations lying on a coarse grid with 16 possible orientations at
each position. The position with the highest quality is considered as the correct
position estimation. Due to the precalculated distances, this reinitialisation is
very efficient.

Once we have an initial position estimation, the tracking is done as before.
The position estimation is updated with the odometry and corrected with the
data of the vision system. To correct the position, however, we need to know
in which direction we have to correct the estimation. Therefore we calculate a
matrix of forces representing the direction in which the nearest element of the
field markings model lies and in which a point should be moved to match the
model. If we add up all forces that attract the observed line points, we get an
idea in which direction the position estimation has to be corrected to improve the
quality. The correction in orientation is calculated as a torque, the forces exert
on the centre of gravity of all line points. Iteratively we can now correct the
position estimation until a desired quality is achieved, or until a given maximum
number of iterations was exceeded. If the quality is still lower than a specified
value, we start again with the reinitialisation step.

First experiments show that this method is very efficient and accurate.

4.3 Tracking Uncoloured Objects

In the RoboCup environment every object is marked with a special colour so that
fast and robust colour segmentation algorithms can be used for object detection
[7][12]. In the future these colour markers will be removed in order to come to a
more realistic setup. Therefore, the aim of our research is to introduce algorithms
to detect and track objects that do not have colour information. In a first step
we want to be able to replace the orange soccer ball and play with a standard
FIFA ball. In this section we will give a short overview of this work. A more
detailed description can be found in [2].
To build a colourless model of the ball we use an algorithm proposed by Viola and



Jones [8] that has been used to detect faces in real-time based on simple gray-
level features. We used their approach to come to a feature based description of
the ball. As proposed in [8] we use four different types of features (see figure 1).

Fig. 1. Four different types of rectangle features within their bounding box. The sum
of pixels in the white boxes are subtracted from the sum of pixels in the black areas.

The advantage of using these features is that they can be calculated very fast
on top of a so called integral image (see [8] for details). To build a ball classifier
based on these gray level features one has to select the most relevant features.
Remember that within a box sized 24x24 there are more than 160000 features,
which is far more than the number of pixels. As proposed by Viola et. al., we use
the machine learning procedure called Adaboost [13] to select a small number of
relevant features. For the offline training of the ball classifier we collected a set
of 980 pictures (sized 19x19) showing the ball under different viewing conditions
and 8290 pictures that do not contain the ball. These sets are randomly split
into a training and a test set. To classify the training set correctly, Adaboost
selects 132 features. On the test set we achieve a detection rate of 91.22% and a
false positive rate of 0.018%.
To track the ball we use a particle filter: The ball is described by the state vector

x
(i)
t = [xI , yI , sI , vx, vy, vs]

T (1)

where (xI , yI) is the position of the ball in the image, (vx, vy) is the velocity in
x- an y-directions, sI represents the size of the ball and vs is the velocity in size.
The dynamics of the ball are modelled as a movement with constant velocity
and small random changes in velocity (random walk). Every particle is weighted
with the classification result of the ball classifier that has been learned offline
by the Adaboost mechanism. Instead of using the binary value we weight every
particle with the result of the linear combination of the features. We use random
initialization for the particle filter.
Using 400 samples and a ball classifier with 40 features, one timestep of the
tracking algorithm requires about 9ms on a AthlonXP 1600MHz processor so
that we are able to track the ball with more than 25 fps. In different experiments
the tracker has shown to be robust against occlusion and distraction. Examples
of our ball tracking system can be seen in figure 2 and 3.

We treat the weighted mean of the best 30% of the particles to be the final
hypothesis of the ball position. Nevertheless, there are situations were we get



Fig. 2. Tracking the ball at different scales.

Fig. 3. Tracking the ball through occlusion.

false detections so that the tracker is not able to recover from distraction. To
improve robustness further, we will implement methods to measure the shape.
Besides the work of Hanek et. al. [10] who do not deal with the problem of
global detection, our approach is one of the first to detect and track a “normal”,
non-coloured FIFA-ball in real-time. The presentation of this work was the main
reason for winning the Technical Challenge Award of the Middle Size League at
the RoboCup world championship in Padova 2003.

5 Summary and Diskussion

In this paper we introduced our current and new approaches to stay competitive
in future RoboCup competitions. Besides the introduction of a new goal keeper,
we mainly focus on research to improve the capabilities of our team. Our ability
to do robust and reliable self-localisation, object detection, and object tracking,
enables us to concentrate on higher level tasks, such as improved cooperative
team play, in the future. Being able to detect and track a standard uncoloured
FIFA ball in real-time as one of the first teams in the world we are also prepared
for a further reduction of the colour markings on the field. In RoboCup 2003 at
Padova we could successfully present this new ability.
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