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Abstract. With the invention of biotechnological high throughput
methods like DNA microarrays and the analysis of the resulting huge
amounts of biological data, clustering algorithms gain new popularity.
In practice the question arises, which clustering algorithm as well as
which parameter set generates the most promising results. Little work
is addressed to the question of evaluating and comparing the cluster-
ing results, especially according to their biological relevance, as well on
distinguishing biologically interesting clusters from less interesting ones.
This paper presents two cluster validity indices intended to evaluate clus-
terings of gene expression data in a biological manner.

1 Introduction

In an attempt to understand complex biological regulatory mechanisms of a
cell, biologists tend to use large scale techniques to collect huge amounts of gene
expression data. Thus, DNA microarrays became a popular tool in the past few
years. A problem inherent in the use of DNA arrays is the tremendous amount
of data produced, whose analysis itself constitutes a challenge. Data mining
techniques like cluster algorithms are utilized to extract gene expression patterns
inherent in the data and thus find potentially co-regulated genes [14]. Various
methods have been applied, such as Self-Organizing-Maps (SOMs) [22], K-Means
[23], Hierarchical Clustering [7] as well as Evolutionary Algorithms [13,20].

Since different cluster algorithms or different runs of the same algorithm
generate different solutions given the same data set, in practice, biologists are
faced with the problem of choosing an appropriate algorithm with appropriate
parameters for the data set. The evaluation of cluster results is a process known
as cluster validity and is an important task in cluster analysis.

Several cluster validity indices are known in literature, such as Dunn’s Index
[6], Rand Index [15], Figure of Merit [25], Silhouette Index [18] or Davies-Bouldin
Index [5] and many of them have already been used with gene expression data
[1,3,25]. All these indices evaluate the mathematical properties of a clustering,
but especially for gene expression data, the biological cluster quality plays an
important role, too [17,19]. Some attempts in this direction were based on text
mining methods for literature abstracts [16]. Others simply count Gene Ontology
annotations per cluster [2,17,19], but in contrast to our approach, none of them
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relies on biological distances between genes, an advantage that enables the use
of established cluster indices.

The paper is organized as follows: a brief introduction to the Gene Ontology
is given in section 2. Section 3 explains our method in detail. The performance
on real world data sets is shown in section 4. Finally, in section 5, we conclude.

2 The Gene Ontology

The Gene Ontology (GO) is one of the most important ontologies within the
bioinformatics community and is developed by the Gene Ontology Consortium
[24]. It is specifically intended for annotating gene products with a consistent,
controlled and structured vocabulary. Gene products are for instance sequences
in databases as well as measured expression profiles. The GO is independent
from any biological species and is rapidly growing. Additionally, new ontologies
covering other biological or medical aspects are being developed.

The GO represents terms in a Directed Acyclic Graph (DAG), covering three
orthogonal taxonomies or ”aspects”: molecular function, biological process and
cellular component. The GO-graph consists of over 18.000 terms, represented
as nodes within the DAG, connected by relationships, represented as edges.
Terms are allowed to have multiple parents as well as multiple children. Two
different kinds of relationship exist: the ”is-a” relationship (photoreceptor cell
differentiation is, for example, a child of cell differentiation) and the ”part-of”
relationship that describes, for instance, that regulation of cell differentiation is
part of cell differentiation.

By providing a standard vocabulary across any biological resources, the GO
enables researchers to use this information for automatic data analysis done by
computers and not by humans.
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Fig. 1. Relations in the Gene Ontology. Each node is annotated with a unique accession
number.
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3 Methods

3.1 Mapping Genes to the Gene Ontology

To properly evaluate a clustering result with GO information, a mapping M that
relates the clustered genes to the nodes in the GO graph is required. For eucary-
otic genes the common biological databases (e.g. TrEMBL or GenBank) provide
GO annotation for their entries and also biotech companies like Affymetrix pro-
vide GO mappings for their DNA microarrays. Such a mapping is not one-to-one,
which means that there are genes annotated with more than one GO term as
well as genes without a GO annotation. The first point will be discussed later in
this section, the latter reduces the number of genes that can take part in such
an analysis.

3.2 Distances Within the Gene Ontology

To calculate biological distances within the GO, we rely on a technique that was
originally developed for other taxonomies like WordNet to measure semantic
distances between words [11]. The distance measure is based on the informa-
tion content of a GO term. Following the notation in information theory, the
information content (IC) of a term t can be quantified as follows:

IC(t) = − ln P (t) (1)

where P (t) is the probability of encountering an instance of term t.
In the case of a hierarchical structure, such as the GO, where a term in the

hierarchy subsumes those lower in the hierarchy, this implies that P (t) is mono-
tonic as one moves towards the root node. As the node’s probability increases,
its information content or its informativeness decreases. The root node has a
probability of 1, hence its information content is 0. As the three aspects of the
GO are disconnected subgraphs, this is still true if we ignore the root node ”Gene
Ontology” and take, for example, ”biological process” as our root node instead.

To compute a similarity between two terms one can compute the IC of their
common ancestor. As the GO allows multiple parents for each term, two terms
can share ancestors by multiple paths. We take the minimum P (t), if there
is more than one ancestor. This is called Pms, for probability of the minimum
subsumer [12]:

Pms(ti, tj) = min
t∈S(ti,tj)

P (t) (2)

where S(ti, tj) is the set of parental terms shared by both ti and tj . Based on
Eq. 1 and 2, Jiang and Conrath developed the following distance measure [11]:

d(ti, tj) = 2 lnPms(ti, tj) − (ln P (ti) + lnP (tj)) (3)

Since genes can have more than one function and are therefore often annotated
with more than one GO term, multiple functional distances can be computed
between two genes. Since, we don’t know which of these functions play a role in
the underlying biological experiment, we assume the best and use the smallest
distance between two genes during the calculation of cluster validities.
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3.3 Cluster Validities

A good cluster validity index should be independent of the number of clusters,
thus allowing to compare two clusterings with different number of clusters. At
the same time, it is desirable that genes in one cluster have minimum possible
distance to each other and maximum distance to the genes in other clusters, in
other words, we seek clusters that are compact and well separated. Two cluster
validity measures that fulfill these criteria are the Silhouette and the Davies-
Bouldin index [18,5].

Given a set of genes G = {g1, g2, . . . , gn} and a clustering of G in C =
{C1, C2, . . . , Ck}, the Silhouette index is defined as follows [18]: for each gene gi

of cluster Cj , a confidence measure, the Silhouette width s(gi), is calculated that
indicates if gene gi belongs to cluster Cj . The Silhouette width s(gi) is defined
as follows:

s(gi) =
min(d̄B(gi)) − d̄W (gi)

max{d̄W (gi), min(d̄B(gi))}
(4)

where d̄W (gi) is the average distance from gi to all other genes of the cluster to
which gi is assigned and d̄B(gi) is the average distance between gi and all other
genes assigned to the clusters Cl with l = 1, · · · , k ∧ j �= l. Observations with
a large s(gi) (almost 1) are very well clustered, a small s(gi) (around 0) means
that the observation lies between two clusters, and observations with a negative
s(gi) are probably placed in the wrong cluster. Thus, for each cluster Cj , a mean
Silhouette index

Sj(Cj) =
1

|Cj |

|Cj |∑

i=1

s(gi) (5)

can be computed. |Cj | denotes the number of genes included in cluster Cj . The
index ranges between 1 (for a perfect cluster/clustering) and -1. Thus, the overall
quality of a clustering C can be measured using:

S(C) =
1
n

n∑

i=1

s(gi), (6)

Given the same notation as above, the Davies-Bouldin index has been defined
in [5] as:

DBj(Cj) = max
i�=j

{
∆(Ci) + ∆(Cj)

δ(Ci, Cj)

}
(7)

where ∆(Ci) and ∆(Cj) represent the inner cluster distance of cluster Ci and
Cj and δ(Ci, Cj) denotes the distance between the clusters Ci and Cj . Usually
∆(Ci) and δ(Ci, Cj) are calculated as the sum of distances to the respective
cluster center and the distance between the centers of two clusters. Since means
are not defined in a DAG, we use the average diameter of a cluster as ∆(Ci) and
the average linkage between two clusters as δ(Ci, Cj):

∆(Ci) =
1

|Ci|(|Ci − 1|)
∑

gi,gj∈Ci,gi �=gj

d(gi, gj) (8)
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δ(Ci, Cj) =
1

|Ci||Cj |
∑

gi∈Ci,gj∈Cj

d(gi, gj) (9)

where d(gi, gj) defines the distance between the genes gi and gj . It is clear from
the above definition, that DBj(Cj) is the average similarity between cluster Cj ,
and its most similar one. It is desirable for the clusters to have minimum possible
similarity to each other. Therefore, we seek clusterings that minimize DBj(Cj).
The index for the whole clustering can be computed as:

DB(C) =
1
k

k∑

j=1

DBj(Cj). (10)

4 Results

4.1 Data Sets

The performance of the cluster validity indices are discussed on two real world
data sets. For our work, we only use the taxonomy biological process, because we
are mostly interested in gene function. However, our method can be applied in
the same way for the other two taxonomies.

The authors of the first data set examined the response of human fibroblasts
to serum on cDNA microarrays in order to study growth control and cell cycle
progression. They found 517 genes whose expression levels varied significantly,
for details see [10]. We used these 517 genes for which the authors provide NCBI
accession numbers. The GO mapping was done using GeneLynx [8]. After map-
ping to the GO, 238 genes showed one or more mappings to biological process or
a child term of biological process. These 238 genes were used for the clustering.
We selected 14 clusters as indicated in our previous publication [21].

In order to study gene regulation during eukaryotic mitosis, the authors of
the second data set examined the transcriptional profiling of human fibroblasts
during cell cycle using microarrays [4]. Duplicate experiments were carried out
at 13 different time points ranging from 0 to 24 hours. Cho et al. found 388 genes
whose expression levels varied significantly [4]. In [9] Hvidsten et al. provide a
mapping of the data set to the GO. 233 of the 388 genes showed at least one
mapping to the biological process taxonomy and were thus used for clustering.
We selected 10 clusters as indicated in our previous publication [21].

4.2 Computational Experiments

If our proposed cluster indices are able to distinguish biologically meaningful
clusterings from less meaningful ones, a functional clustering according to the
GO annotations should show better validity index values than a clustering that
was produced according to the normalized expression vectors of the genes.

Therefore, in our experiments, we used a clustering algorithm based on an
Evolutionary Algorithm from earlier publications [20,21] to produce these two
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Fig. 2. Davies-Bouldin index (left, small values indicate good clusterings) and Silhou-
ette index (right, large values indicate good clusterings) averaged over 25 runs. Max-
imum and minimum values are indicated by a cross, the mean by the rectangle, the
standard deviation is indicated by the box, the error bars indicate the 5-95 confidence
intervals.

different clusterings for each data set: an expression based clustering and a func-
tional clustering. In principle, any cluster algorithm could be used in place that
does not rely on mean calculation (this is important for the functional clus-
tering, since we cannot compute means in the GO as mentioned earlier). The
only reason why we use this algorithm is that we got good results compared to
other non-mean based methods like Average Linkage clustering [20,21]. While
producing these two clusterings, all parameters of the algorithm were fixed (200
generations, population size of 40 and 40% mutation and recombination rate),
except the distance function used: for the functional clustering, we used the GO
distance (Eq. 3) and for the expression based clustering, we used the Euclidean
distance of the normalized expression vectors of each gene. The normalization
was performed as described in [23]. We also compared the clusterings to a ran-
dom partition. For the random partition, one result corresponds to the best
partition out of 8000 (200 generations ∗ 40 individuals) tries. All results are
averaged over 25 runs.

Fig. 2 shows the Davies-Bouldin index (left) and the Silhouette index (right)
of the expression based and functional clusterings and for the random partition
for both data sets. Maximum and minimum values are indicated by a cross, the
mean by the rectangle, the standard deviation is indicated by the box, the error
bars indicate the 5-95 confidence intervals. For both indices and both data sets,
the GO based clustering obtains significant better values than a gene expression
based clustering. These results were of course expected since we used a biological
clustering method to produce this clustering. But nevertheless, it indicates that
our validity measures are able to detect biological meaningful clusterings. Beside
that, it is notable that the expression based clustering is only slightly better
than random concerning its biological similarity, which emphasizes the need for
methods that can distinguish between biologically interesting and less interesting
clusterings.
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Table 1. Cluster validity values for the individual clusters for a GO based clustering.
A low value of the Davies-Bouldin and a high value for the Silhouette index indicate
good clusters. A good and a bad cluster are marked in bold.

Cluster Davies-Bouldin Index Silhouette Index
1 1.49 -0.67
2 1.76 -0.55
3 1.32 -0.09
4 1.29 0.24
5 1.55 0.16
6 1.73 -0.20
7 1.39 0.21
8 1.76 -0.40
9 1.57 -0.22
10 1.29 -0.21
11 1.32 -0.26
12 1.28 -0.16
13 1.07 0.49
14 1.29 0.05

Furthermore, the presented cluster validity measures can not only be used
to distinguish between whole clusterings but also to validate individual clus-
ters and thus find interesting clusters that contain genes that are biologically
closely related and already known to be involved in the same pathway. Such a
cluster would indicate that a whole biological process might be switched on or
off under the given experimental condition, e.g. that cells leave the GO- phase
and enter cell proliferation. Tab. 1 shows the individual cluster validity values
for the overall best clustering. As an example, we show two extreme clusters in
more detail.

For both cluster validity measures, cluster 13 has a good quality, whereas
cluster 8 is much more functionally diverse. The GO annotations of cluster 13
are displayed in Tab. 2 and those of cluster 8 are shown in Tab. 3. The genes
of the good cluster are mostly closely related to DNA replication and repair,
which is a defined and separated process in biology. So cluster 13 is a small
and functionally compact cluster that was also indicated by the validity val-
ues. Instead, the other example is larger and much more diverse. Genes in that
cluster are related to cell adhesion, cell motility, inter- and intra-cellular signal
transduction, metabolism, nervous system development and pregnancy. All the-
ses functions are quite different biological processes, which was already indicated
by the validity measures.

We showed that our two biological cluster indices are able to distinguish
biologically more homogeneous clusters from less homogeneous ones, a fact that
can be used to find those clusters in a clustering that contain genes that are not
only co-expressed, but also related to the same biological process. Additionally,
we showed that one can use these indices to measure the biological quality of
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Table 2. Example of the GO annotation of a good functional cluster (cluster 13)

Probeset Id GO Term Name
H63374 DNA repair

pyrimidine-dimer repair, DNA damage excision
N22858 chromosome organization and biogenesis (sensu Eukarya)

DNA methylation
DNA recombination
DNA repair

N68268 DNA replication
DNA replication, priming

W93122 DNA dependent DNA replication
DNA replication

N93479 DNA replication
H29274 DNA repair

DNA replication
double-strand break repair
UV protection

AA053076 DNA replication
AA031961 cell cycle

regulation of cell cycle
cell proliferation
DNA repair
regulation of CDK activity

a whole clustering and therefore find biologically meaningful clusterings out of
a bunch of given clusterings. Thus, our two presented biological cluster validity
indices can be used to evaluate clusterings and single clusters of genes in a
biological manner.

5 Conclusion

In this paper, we presented two biological cluster validity indices that are based
on the Gene Ontology. We showed that they can be utilized to detect clusters
of genes that share similar functions. This is especially important, because such
clusters indicate that a whole regulatory pathway might be affected under the
given conditions, which leads to an information gain about the underlying reg-
ulatory mechanisms of a cell. The fact that a clustering due to gene expression
profiles does not always implicate a biological clustering as shown by our results
even emphasizes the need of a tool like the presented biological cluster indices.

The advantage of our method compared to other approaches is, that it is
based on biological distances, which enable the usage of established cluster valid-
ity measures including the knowledge of their weaknesses and advantages. Beside
that, the utilized GO annotation is easy to obtain from biological databases.

One problem of our method is, of course, that for each gene at least one
Gene Ontology annotation is needed. In most of the cases the GO annotation
is available in public databases. Nevertheless, there are still some genes that do
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Table 3. Example of the GO annotation of a bad functional cluster (cluster 8)

Probeset Id GO Term Name
W89002 peroxidase reaction
H63779 central nervous system development

epidermal differentiation
lipid metabolism
peripheral nervous system development

N79778 cell-matrix adhesion
N67806 respiratory gaseous exchange
R37986 pregnancy
AA029995 pregnancy
W86618 DNA metabolism

intracellular protein transport
G2 phase of mitotic cell cycle
NLS-bearing substrate-nucleus import
regulation of DNA recombination
spindle pole body and microtubule cycle (sensu Saccharomyces)

T70079 chemotaxis
G-protein coupled receptor protein signaling pathway
inflammatory response

T62835 cell adhesion
N22383 cell adhesion

cell-matrix adhesion
cell-substrate junction assembly
integrin-mediated signaling pathway

AA056401 cellular morphogenesis
epidermal differentiation

N63308 cell adhesion
neuronal cell recognition

AA037351 cell adhesion
neuronal cell recognition

AA045473 cell adhesion
N93476 cell adhesion

G-protein coupled receptor protein signaling
W49619 cell adhesion
R80217 cell motility

inflammatory response
peroxidase reaction
physiological processes
prostaglandin metabolism

AA044993 cell adhesion
cell growth and/or maintenance
cell motility
DNA metabolism
epidermal differentiation
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not have that kind of annotation. One way to solve this problem might be to
use all genes for clustering, but calculate the validity index only with those that
can be annotated. In this case, one might additionally think of giving a score
to each cluster, indicating how many genes participate in the validity index. We
will address this point in future work.
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