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Abstract— With the invention of high throughput methods,
researchers are capable of producing large amounts of biological
data. During the analysis of such data the need for a functional
grouping of genes arises. In this paper, we propose a new
method based on spectral clustering for the partitioning of genes
according to their biological function. The functional information
is based on Gene Ontology annotation, a mechanism to capture
functional knowledge in a shareable and computer processable
form. Our functional cluster method promises to automatize,
speed up and therefore improve biological data analysis.

I. INTRODUCTION

In the past few years, DNA microarrays have become major
tools in the field of functional genomics. In contrast to tradi-
tional methods, these technologies enable researchers to collect
tremendous amounts of data, whose analysis itself constitutes
a challenge. On the other side, these high-throughput methods
provide a global view on the cellular processes as well as on
their underlying regulatory mechanisms and are therefore quite
popular among biologists.

During the analysis of such data, researchers use different
approaches in order to deal with the huge amounts of data they
gathered. Some use statistics to find significantly regulated
genes that may be involved in the underlying process due to
their change in expression. Others apply pattern recognition
methods to cluster the genes according to their expression
profiles. The hypothesis is, that genes with expression pattern
similar to those of known genes involved in the examined
biological process, may play a role in the process, too. In both
cases, researchers often end up with long lists of interesting
candidate genes that need further examination. At this point,
a second step is almost always applied: biologists categorize
these genes by known biological functions and thus try to com-
bine a pure numerical analysis with biological information.

So far, many approaches are known that address the problem
of combining new experimental data with existing biological
knowledge. Some methods score whole clusterings or each
single cluster due to their biological relevance [5], [12], [7],
[15]. Others evaluate all annotations in a group of genes and
score each single annotation using sophisticated methods [2],
[17], [20]. In order to receive more meaningful clustering
results, some methods use the Gene Ontology as a filter to

find genes that belong to a special functional category. These
genes are then clustered according to their expression pattern
[1]. Approaches intending to find clusters of co-expressed
genes that share a common function directly incorporate the
biological knowledge into the clustering process [8], [23], [21].

In this paper we address the problem of finding functional
gene clusters only based on Gene Ontology terms. The ad-
vantage of such a method is that no a priori knowledge about
relevant pathways is necessary except a mapping from genes
to their ontological information. The latter is often available in
public databases. Given the GO terms we are able to compute
a functional similarity between genes [13]. This information is
fed into a clustering algorithm. To our best knowledge, so far
there exists no automatic method that produces a biologically
plausible functional clustering of genes just based on the GO
apart from our earlier publication [22]. In contrast to this
earlier publication, in this paper we represent each gene by its
functional similarity to all other genes. This encoding allows
us to construct a valid mathematical distance measure between
genes. There is also a deeper connection to “Kernel Methods”
[19], which will be discussed later on in this paper. The final
grouping of the genes is performed by a spectral clustering
method [14].

The organization of this paper is as follows: a brief intro-
duction to the Gene Ontology is given in section II. Section
IIT explains our method in detail. The performance of our
functional clustering algorithm on real world datasets is shown
in section IV. Finally, in section V, we conclude.

II. THE GENE ONTOLOGY

The Gene Ontology (GO) is one of the most important on-
tologies within the bioinformatics community and is developed
by the GO Consortium [24]. It is specifically intended for an-
notating gene products with a consistent, controlled and struc-
tured vocabulary. Gene products are for instance sequences in
databases as well as measured expression profiles. The GO
independent from any biological species and additionally new
ontologies covering other biological or medical aspects are
being developed.

The GO represents terms in a directed acyclic graph (DAG)
covering three orthogonal taxonomies or "aspects": molecular
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Fig. 1. Relations in the Gene Ontology. Each node is annotated with a unique
accession number.

function, biological process, and cellular component. The GO
graph consists of over 18.000 terms represented as nodes,
which are connected by relationships represented as edges.
Terms are allowed to have multiple parents as well as multiple
children. Two different kinds of relationship exist: the "is-a"
relationship (neurogenesis and odontogenesis are for example
children of organogenesis) and the "part-of" relationship,
which describes e.g. that histogenesis is part of organogenesis
or axongenesis is part of neurogenesis. Providing a standard
vocabulary across any biological resources, the GO enables
researchers to use this information for automated data analysis.

III. METHODS

A. Distances within the Gene Ontology

There are a couple of semantic similarity and distance
measures of different complexity [3], most of them were
originally developed for taxonomies like WordNet. In this
paper we use a distance measure based on the information
content of each GO term developed by Jiang and Conrath
in [11]. The information content of a term is defined as the
probability of occurrence of this term or any child term in
a dataset [16]. Following the notation in information theory,
the information content (/C)) of a term ¢ can be quantified as
follows:

IC(¢)=—=InP(c)

where P(c) is the probability of encountering an instance of
term c.

In the case of a hierarchical structure, such as the GO, where
a term in the hierarchy subsumes those lower in the hierarchy,
this implies that P(c) is monotonic as one moves towards the
root node. As the node’s probability increases, its information
content or its informativeness decreases. The root node has a
probability of 1, hence its information content is 0. As the three
aspects of the GO are disconnected subgraphs, this is still true
if we ignore the root node (Gene Ontology, GO:0003673) and
take, e.g., cellular component (GO:0005575) as our root node
instead. P(c) is simply computed using maximum likelihood
estimation: P(c) = freq(c)/N, where N is the total number
of terms occurring in the dataset and freq(c) is the number of
times term c or any child term of ¢ occurs in the dataset.

The similarity of two terms c;,c; can then be defined as
followed:

min

Sim(Ci7Cj) - _hlceS(c. C.)
i,Cj

P(c) = —InPys(ci,c;) (D
where S(c;, cj) is the set of parental terms shared by both
¢; and c;. As the GO allows multiple parents for each term,
two terms can share parents by multiple paths. We take the
minimum P(¢), if there is more than one parent. This is called
P,.s, for probability of the minimum subsumer [13]:

Pms(cia Cj) = P(C)

min
ceS(ci,cj)
Given the similarity score (Eqn. 1), Jiang and Conrath [11]
developed a distance measure, which is the inverse of similar-
ity. They defined the semantic distance of two classes c;, ¢;
as follows:

d(ci, ;) =2In Phs(ci,cj) — (InP(e;) +InP(cj)) (2)

Since genes are often annotated with more than one GO term,
multiple functional distances can be computed between two
genes. Therefore, we need to combine all or choose one
of the calculated distances. We decided to use the smallest
distance found. Obviously, this causes a loss of information
(from multiple known gene functions, only one is used).
Additionally, the problem with using the smallest GO-distance
(Eqn. 2) between two genes x and y is that it can be 0, even if
two genes are not identical, because they belong to the same
functional class. This prevents us from using (Eqn. 2) directly
as a metric for clustering. We solve both problems, by using
a feature vector representation for each gene.

B. Distances between Genes Using Feature Vectors

For each gene = we construct a feature vector ¢, (z) relative
{0 prototypes p = (pi, ., o) "

¢p(x) = (d(x’pl)v sy d(xva))T

This construction is known as an empirical feature map [19].
In our case prototypes are just all genes from our data set. That
means each gene x is represented by its smallest functional
distance to all other genes. Now, the distance between two
genes z and y is simply given by d(z,y) = ||¢(z) — ¢(y)]|.

There exists a deep connection to the construction of so
called “kernel functions”, which can be viewed as a general
similarity measure k£ : X x X — R with the property of being
symmetric and positive definite: More specifically, we have
the equality (c.f. [19])

d*(z,y) = [|¢(x) — $(v)|
= (9(2),0(x)) = 2(o(x), () + (¢(y), D(y))
= k(z,2) = 2k(z,y) + k(y, y)
That means by defining ¢ : X — H we map our data into
some Hilbert space H. The scalar product in this space defines

a kernel £ : X x X — R and hence a similarity measure
between two genes x and y in our original input space X. If



we take the normalization ¢y,epm () = %, we recover the

normalized kernel [19]

k(x,y)
k(z, 2)k(y, y)

C. Spectral Clustering using Feature Vector Representation

knorm (xv y) = <¢norm(x)a ¢n0rm(y)> =

Given our representation of each gene as a feature vector,
we can choose any clustering algorithm to group our data. In
this paper we took the spectral clustering algorithm by Ng
et al. [14]: given the distance measure d on data L1,y Ty
one computes the k largest eigenvalues and corresponding
Eigenvectors of the graph Laplacian L = D~ /2KD~1/?
where K = (exp(d®(zi,x;)/20°));; and D is a diagonal
matrix with D;; = >, K;;. After renormalization to unit
length the Eigenvectors are then clustered e.g. by k-means.
Here we choose the k-means algorithm by Zha et al. [25],
which leads to a unique and global optimal solution. This has
the advantage that no restarts are necessary. The parameter o
can be tuned automatically such that the average distortion of
the points in eigenvector space becomes minimal (c.f. [14]).

D. Cluster Validity

We selected the number of clusters & in our data according
to the maximal mean Silhouette index [18]. The Silhouette
value for each point is a measure of how similar that point
is to points in its own cluster vs. points in other clusters, and
ranges from -1 to +1. It is defined as:

min(dp(i, §)) — dw (i)
max(dw (), min(dg (i, 7))

S(i) = 3)
where dyy (i) is the average distance from the j-th point to
the other points in its own cluster, and dp (4, j) is the average
distance from the ¢-th point to points in another cluster j.

IV. EXPERIMENTS
A. Datasets

One possible scenario where researchers would like to group
a list of genes according to their function is when they
examine gene expression with DNA microarray technology,
afterwards apply some filtering or statistical analysis and end
up with a list of genes that show a significant change in their
expression according to a control experiment. Thus, we chose
two publicly available microarray datasets, annotated the genes
with GO information and used them for functional clustering.

The authors of the first dataset examined the response of
human fibroblasts to serum on cDNA microarrays in order to
study growth control and cell cycle progression. They found
517 genes whose expression levels varied significantly, for
details see [10]. We used these 517 genes for which the authors
provide NCBI accession numbers. The GO mapping was done
via GeneLynx Ids [6]. Since we are interested in gene function,
we only use the taxonomy biological process of the GO. Out of
the 517 genes, 238 genes showed one or more GO mappings

to biological process or a child term of biological process.
These 238 genes were used for the functional clustering.

In order to study gene regulation during eukaryotic mitosis,
the authors of the second dataset examined the transcriptional
profiling of human fibroblasts during cell cycle using microar-
rays [4]. Duplicate experiments were carried out at 13 different
time points ranging from 0 to 24 hours. Cho et al. found 388
genes whose expression levels varied significantly. Hvidsten
et al. [9] provide a mapping of the dataset to GO. 233 of the
388 genes showed at least one mapping to the GO biological
process taxonomy and were thus used for clustering.

B. Results

In the experiments, we compared our method to k-means
and Single Linkage clustering which are also based on the
proposed feature vector representation, and evaluated them by
means of the Silhouette clustering index (Eqn. 3). Beside that,
we show the actual GO annotations of some selected clusters.
Due to space limitations, we cannot show all clusters.
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Fig. 2. Average Silhouette index of dataset I. The arrow indicates the solution
with the best Silhouette index that was examined in more detail.
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Fig. 3. Average Silhouette index of dataset II. The arrow indicates the
solution with the best Silhouette index that was examined in more detail.

Figures 2 and 3 show the average Silhouette index for



cluster numbers k& = 5, ..., 25 for all three clusterings (spectral,
k-means and Single Linkage). Both figures show that the
spectral clustering method gives significant better results than
the other two approaches.

TABLE III

CLUSTER 13 FROM DATASET I: REGULATION OF TRANSCRIPTION

Acc. number |

RELATED GENES

Gene Ontology terms

‘W90080 cellular morphogenesis
TABLE I embryogenesis and morphogenesis
CLUSTER 7 FROM DATASET I: APOPTOSIS RELATED GENES microtubule cytoskeleton organization and biogenesis
pattern specification
Acc. number | Gene Ontology terms regulation of transcription, DNA-dependent
AA029900 apoptosis AA034054 cellular defense response
RNA splicing regulation of transcription, DNA-dependent
response to stress regulation of transcription from Pol II promoter
AA0I2996 anti-apoptosis AA029205 transcription from Pol II promoter
NG7978 anti-apoptosis W70150 regulation of transcription, DNA-dependent
N79013 apoptosis N39221 response t(? heat
induction of apoptosis transcr}ptlon from P(‘)l !I promoter
R62600 apoptosis regulation of transcription, DNA-dependent
axon guidance H14569 regulation of transcription, DNA-dependent
embryogenesis and morphogenesis regulation of transcription from Pol II promoter
neurogenesis AA040156 transcription from Pol II promoter
proteolysis and peptidolysis regulation of transcription, DNA-dependent
AA0252T5 apoptosis AA035360 regulation of transcription, DNA-dependent
induction of apoptosis by extracellular signals N98485 transcription from Pol IT promoter
protein amino acid phosphorylation regulation of transcription, DNA-dependent
R51770 apoptosis T91871 anterior compartment specification
AA053239 apoptosis oncog;nesis . .
AA037360 electron transport posterior compartment sRec1ﬁcat10n
induction of apoptosis regulation of transcription, DNA-dependent
H27557 regulation of transcription, DNA-dependent
T50056 regulation of transcription, DNA-dependent
TABLE II R39209 regulation of transcription, DNA-dependent
Ww44416 drug resistance
CLUSTER 12 FROM DATASET I: PROTEIN METABOLISM AND glutamine metabolism
MODIFICATION RELATED GENES nucleobase, nucleoside, nucleotide and nucleic
acid metabolism
Acc. number | Gene Ontology terms ’de novo’ pyrimidine base biosynthesis
AA0I4G10 proteolysis and peptidolysis R49309 regul.atlon qf trz?nscrlptlon, DNA-dependent
AA027277 protein biosynthesis AAQ26120 protein .modlﬁcatlon L.
AA0I3I03 protein modification regulatgon of transcrfpt%on, DNA-dependent
AA0IIAS amino acid activation N99070 regu}atlon oi transcrlptlon,fDNAi;ielp;:Indent
e s N tion of transcription from Po promoter
protein biosynthesis regua - i s
W73157 protein amino acid dephosphorylation AA055585 regulation of transcription, DNA-dependent
AA045480 protein biosynthesis
AA039663 response to oxidative stress TABLE IV
protein amino acid phosphorylation CLUSTER 12 FROM DATASET II: DNA REPLICATION, REPAIR AND
AA004517 protein modification RECOMBINATION RELATED GENES
H94471 protein complex assembly
AA024572 protein biosynthesis Acc. number | Gene Ontology terms
AA057638 protein biosynthesis D26018_at DNA dependent DNA replication
AA056621 protein folding D38073_at DNA replication initiation
AAD43969 proteolysis and peptidolysis D38551_at double-strand break repair
vision _ DNA recombination
N49296 protegn fOIdlflg _ meiotic recombination
AA045437 protein modification D50370_at nucleosome assembly
N98463 protein modification J04611_at DNA ligation
AA057826 protein biosynthesis double-strand break repair
AA057359 protein amino acid phosphorylation double-strand break repair via nonhomologous
sodium ion transport end-joining
response to stress DNA recombination
LO07541_at DNA strand elongation
According to these plots, we picked 17 clusters for dataset I ~_M87339_at | DNA strand elongation
d 20 clust for dataset II. Th luti th d U27516_at double-strand break repair
an clusters .01‘ .a ase . €S€ solutions were then use mitotic recombination
for further examination. For dataset I, we show three selected meiotic recombination
clusters: cluster 7, 12, and 13. Each gene in cluster 7 is beside =~ _X062153_at DNA replication initiation
X74331_at DNA replication, priming

other functions related to apoptosis (Tab. I).
All genes of cluster 12 have at least one, but in most of
the cases more than one GO annotation that is related to




TABLE VI
CLUSTER 19 FROM DATASET II: CELL CYCLE, CELL PROLIFERATION RELATED GENES.

Acc. number | Gene Ontology terms

Acc. number | Gene Ontology terms

L11353_at negative regulation of cell proliferation U63743_at centromere binding
L22005_at cell cycle checkpoint mitosis
DNA replication checkpoint cell proliferation
G1/S transition of mitotic cell cycle X00588_at cellular morphogenesis
M60974_at regulation of cell cycle EGF receptor signaling pathway
regulation of CDK activity cell proliferation
DNA repair X05360_at regulation of cell cycle
apoptosis start control point of mitotic cell cycle
response to stress X54941_at regulation of cell cycle
cell cycle arrest regulation of CDK activity
M81933_at regulation of cell cycle cell proliferation
regulation of CDK activity X54942_at regulation of CDK activity
M90657_at N-linked glycosylation cell proliferation
cell proliferation X58377_at cell-cell signaling cell proliferation
pathogenesis positive regulation of cell proliferation
S81914_at apoptosis X62048_at regulation of cell cycle
anti-apoptosis X65550_at regulation of cell cycle
embryogenesis and morphogenesis cell proliferation
cell growth and/or maintenance X66364_at cell proliferation
U05340_at regulation of cell cycle X80230_at regulation of cell cycle
ubiquitin-dependent protein catabolism transcription initiation from Pol II
cell cycle promoter RNA
U33286_at nucleocytoplasmic transport elongation from Pol II promoter
apoptosis cell proliferation
cell proliferation X81851_at chemotaxis
U37426_at mitotic spindle assembly immune response
mitosis cellular defense response
U40343_at regulation of CDK activity cell proliferation
cell cycle arrest X85137_at mitotic spindle assembly
negative regulation of cell proliferation mitosis
U47414_at cell cycle checkpoint Z724725_at regulation of cell cycle
U53446_at cell proliferation cell proliferation
U56816_at regulation of CDK activity 729066_at regulation of cell cycle
mitosis mitosis
regulation of mitosis regulation of mitosis
736714 _at regulation of cell cycle 729067_at cell cycle

protein modification, either by (de-)phosphorylation, protein
folding, protein complex assembly or protein biosynthesis in
general (Tab. II). The genes of cluster 13 are mainly involved
in transcription and regulation of transcription (Tab. III). Other
clusters (the data is not shown due to space limitations) contain
genes that share the three functions cell growth, cell-cell-
signalling and transcription regulation (cluster 6). Others are
related to development (cluster 8), DNA repair and replica-
tion (cluster 9), cell adhesion in combination with cell-cell-
signalling (cluster 10), immune and stress response (cluster
11), electron transport, gycolysis and small molecule transport
(cluster 14), signal transduction (cluster 15), fatty acid, amino
acid and cholesterol biosynthesis and metabolism (cluster 16)
and cell cycle (cluster 17).

For dataset II we show 3 clusters: cluster 10 (Tab. V),
12 (Tab. IV) and 19 (Tab. VI). The genes of cluster 10 are
completely annotated with GO terms related to DNA replica-
tion, repair and recombination whereas those of cluster 12 are
related to cell cycle (mitosis) in combination with oncogenesis.
Oncogenes are cancer inducing genes and cancer is often
known to occur due to defects in cell cycle regulation. Cluster
19 genes are also related to cell cycle (mitosis), but are not

related to oncogenesis. Beside these three, similar clusters are
found in dataset II as in dataset I (data not shown), e.g. protein
modification and catabolism (cluster 13), energy pathways
and metabolism (cluster 16), signal transduction (cluster 17),
cell-cell signalling (cluster 18) and transcription and RNA
processing (cluster 20). Beside that, four smaller clusters are
present containing genes with identical GO annotations of two
or three completely independent biological functions.

V. CONCLUSION

In this paper we presented a new functional clustering
method for genes based on the GO that is available in most
public databases. The fact that we use the smallest distance to
combine different GO term distances to one functional distance
between on the gene level previously caused the two problems:
first too much information is discarded and second one does
not operate in a proper metric space. With the feature vector
representation of each gene used in this method, we are now
able to overcome this problem. We showed that our method is
able to detect functional clusters of genes. Additionally, we are
able to distinguish between clusters of genes that share one,
but differ in a second function, e.g. cell cycle genes related to



TABLE V
CLUSTER 10 FROM DATASET II: CELL CYCLE, CELL PROLIFERATION AND
ONCOGENESIS RELATED GENES

Acc. number | Gene Ontology terms

M13150_at oncogenesis

G-protein coupled receptor protein signaling pathway
embryogenesis and morphogenesis

cell proliferation

M31423_at oncogenesis

cell growth and/or maintenance
M86699_at regulation of cell cycle

oncogenesis

spindle assembly

mitotic spindle assembly

mitotic spindle checkpoint

positive regulation of cell proliferation
U01038_at regulation of cell cycle

oncogenesis

mitosis

cell proliferation

U09579_at regulation of cell cycle

regulation of CDK activity

oncogenesis

cell cycle arrest

negative regulation of cell proliferation
induction of apoptosis by intracellular signals
U33203_at oncogenesis

negative regulation of cell proliferation
U33761_at regulation of cell cycle

G1/S transition of mitotic cell cycle
oncogenesis

cell proliferation

U43916_at oncogenesis

development

cell death

cell proliferation

epidermal differentiation

U58090_at G1/S transition of mitotic cell cycle
oncogenesis

cell cycle arrest

negative regulation of cell proliferation
induction of apoptosis by intracellular signals
X51688_at regulation of CDK activity

oncogenesis

mitotic G2 checkpoint

oncogenesis and cell cycle genes not related to oncogenesis.
Our experiments revealed that the spectral clustering algorithm
using our feature vector representation lead to significantly
better results than k-means and Single Linkage clustering. The
clusters found by our method contain genes annotated with the
same or very similar functions. Thus, our method enormously
facilitates the analysis of high throughput data.
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