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Abstract: With increasing number of pathways available in public databases, the
process of inferring gene regulatory networks becomes more and more feasible. The
major problem of most of these pathways is that they are very often faulty or describe
only parts of a regulatory system due to limitations of the experimental techniques or
due to a focus specifically only on a subnetwork of a larger process. To address this
issue, we propose a new multi-objective evolutionary algorithm in this paper, which
infers gene regulatory systems from experimental microarray data by incorporating
known pathways from publicly available databases. These pathways are used as an
initial template for creating suitable models of the regulatory network and are then
refined by the algorithm. With this approach, we were able to infer regulatory systems
with incorporation of pathway information that is incomplete or even faulty.

1 Introduction

Systems biology has become one of the major research areas in biology in the past few
years. Due to tremendous progress in experimental methods like DNA microarrays, sev-
eral thousand expression levels of genes in an organism can be measured in parallel un-
der specific environmental conditions. This enables researchers to examine intra-cellular
processes on a systemic level. Here, the inference of gene regulatory networks from ex-
perimental data is one of the main unsolved problems in the post-genomic area. A gene
regulatory network (GRN) is an abstract model representing dependencies between genes
using a directed graph. In this graph, each node is a gene or component of the regulatory
system and each edge represents a regulatory impact from one component to the other (e.g.
activation or suppression of the transcription and translation of the dependent gene).

Several publications addressing the problem of inferring gene regulatory networks can be
found in the literature. A good overview about related work can be found in [dJ02]. One
major part of the work done in this field is using deterministic mathematical models to sim-
ulate regulatory networks. One kind of those deterministic models are S-Systems, which
consist of a set of differential equations describing the changes in expression over time. So
far, only very small networks have been successfully inferred by computational methods
or larger networks have been reconstructed, where the participating genes show very sim-
ilar time dynamical behavior to the target system, but the correctness of the connections
in the graph cannot be verified [KTA103, TKO00, KIK*05]. The main obstacle is the



ambiguity in the data and the resulting high number of possible network structures. This
is caused by the limited number of microarrays compared to the number of variables in the
network model, thus making the estimation of the underlying system a very difficult task.
Only a small number of recent published methods are using additional biological data to
infer regulatory dependencies from microarray data sets and thus suffer from the problems
described above. Therefore, we think that algorithms for inferring gene regulatory systems
have to include biological knowledge to successfully reconstruct the network from exper-
imental data. An example for a combinatorial approach was introduced by [TKB103]
where the authors combined a Bayesian network model with biological knowledge about
promoter regions in the DNA sequence to find better solutions in the inference process.
With the recently increased number of pathways available in public databases, we suggest
to utilize this knowledge in the inference process to model network structures more effi-
ciently. However, the pathways available are often faulty or they describe only parts of a
regulatory system that is being examined. To overcome this problem, we introduce a new
algorithm, which incorporates known pathway information and uses it as a first template
for valid model structures. The advantage is that the algorithm is not using the pathway as
a fixed structure but as a clue to find the correct pathway. For this, it modifies the template
and is therefore able to find errors or unknown interactions in the given pathway. To do so,
we combine two objectives into a multi-objective optimization problem in our algorithm.
The first objective is the dissimilarity between the experimental and the simulated data.
The second objective is the difference to a given pathway that was imported from other
resources like public databases (e.g. KEGG [KG00], or TransFAC [WCFT01]) or from
biological knowledge at the researcher’s site. All objectives are to be minimized to gain
a system, which fits the data and at the same time is similar in its structure to the given
pathway and therefore biologically plausible.

Further more, previously work on this topic showed that, due to the multi-modal character
of the solution space, several sets of parameter exist, which fit the data satisfactorily. Thus,
standard optimization techniques are easily caught in local optima, i.e. finding a solution
with a good RSE but with no structural resemblance with the true system. This is known
to be a major problem in the inference process [SSSZ04, OYSOMO04, Her98, PC04]. Be-
cause MOEAs preserve the diversity of the solution within a population by maintaining the
Pareto-front and are therefore able to find multiple optima hopefully including the global
optimum.

2 System and methods

The first step of the proposed method is to import pathway information to gain a basic
knowledge about the pathway of interest. This imported pathway is then evolved and
optimized through the algorithm to build possible alternative structures (or topologies) of
the network, which are then evaluated. These topologies are optimized along with the
parameters of the mathematical model representing the regulatory system of this topology.

The optimization algorithm is independent of the mathematical model, and several models
can be used for simulating the dynamics of the regulatory system. Thus, we first introduce



the multi-objective EA (MOEA), and then discuss the mathematical model in detail. For
this paper, we decided to use an S-System for modeling the dependencies of the genes.

2.1 Evolutionary Algorithms

Evolutionary Algorithms (EAs) have proven to be a powerful tool for solving complex op-
timization problems. Three main types of Evolutionary Algorithms have evolved during
the last 30 years: Genetic Algorithms (GA), mainly developed by J.H. Holland [Hol75],
Evolution Strategies (ES), developed by I. Rechenberg [Rec73] and H.-P. Schwefel [Sch81]
and Genetic Programming (GP) by J.R. Koza [K0z92]. Each of these uses different repre-
sentations of the data and different main operators working on them. They are, however,
inspired by the same principles of natural evolution. Evolutionary Algorithms are a mem-
ber of a family of stochastic search techniques that mimic the natural evolution of repeated
mutation and selection as proposed by Charles Darwin.

2.2 Multi-Objective Evolutionary Algorithm

The mentioned basic evolutionary algorithms are referred to as single-objective optimiza-
tion algorithms, since they employ only single-objective selection criteria. Thus, they are
suitable to solve single-objective optimization problems, i.e. the result of the optimization
is a single solution that minimizes or maximizes a fitness value, which is directly related
to a single measure of quality. In many real world applications, the quality of a solution is
not only depending on a single objective, but on several, possibly conflicting, objectives.
For this kind of multi-objective problems, EAs have been extended by multi-objective se-
lection criteria and elite or archiving strategies to address these extended requirements.
Hence, they are referred to as multi-objective evolutionary algorithms (MOEA). The first
approaches in this area have been published in [Gol89] and [SD94]. Beside their ability to
handle multiple optimization objectives, MOEAs have several additional advantages. One
advantage, which becomes important in our application, is that they preserve the diversity
in the population of individuals in such a way that a whole set of solutions is maintained
during the optimization process, representing niches of high fitness in respect to one op-
timization objective. This is especially important for the inference problem due to the
highly multi-modal solution space. With a larger diversity, the algorithm is able to escape
local optima and thus increasing the probability to find the global solution.

Objective Functions For examining the data fitness and the distance to the given path-
way in parallel, we use a MOEA, which optimizes the parameters of a mathematical model
in respect to the following two optimization objectives:

I.) Data fitness: For evaluating the RSE fitness of the individuals, i.e. the similarity of the
time dynamics between the experimental and the simulated data, we used the following



equation for calculation of the fitness value, known as the relative squared error (RSE):
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where N is the total number of genes in the system, 7" is the number of sampling points
taken from the experimental time series and & and x distinguish between estimated data
of the simulated model and data sampled in the experiment. The optimization problem is
then to minimize the fitness values of objective function f7.

I1.) Pathway fitness: The second objective is to minimize the distance between the im-
ported pathway and the topology found by the optimization algorithm. This is done by
comparing the edges and their direction of the underlying directed graphs, which repre-
sent the pathways:
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where pathway is the imported pathway, topology is the topology of the current model,
1 denotes the ith edge of the directed graph, and F is the number of edges of the fully
connected graph.

In the proposed method, we use an EA with hybrid encoding individuals to minimize the
objectives, which was recently developed by the authors [SUZ04]. Here, each individual
combines a binary and a real valued genotype that are evolved in parallel. The binary
variables are used to code the topology or structure of the network and the double encoded
optimization variables represent the corresponding model parameters. The real valued
genotype gives the kinetic parameters of the mathematical model for the current topology.
The individuals always encode all possible model parameters, but only some of them are
used for simulation according to the binary representation of the topology. Nevertheless,
the unused variables are continuously evolved in the optimization process and are subject
to random walk and might be incorporated in the simulation, if the bitset at the correspond-
ing position changes. This enables the optimization algorithm to escape local optima more
efficiently.

2.3 Model

On an abstract level, the behavior of a cell is represented by a directed graph with N nodes
representing [V genes. Each gene g; produces a certain amount of RNA z; when expressed
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and changes the concentration of the RNA level over time: Z(¢t + 1) = h(Z(t)), Z(t) =
(z1,--+,x,). Here, function h represents the changes of the vector of expression levels
from one state to the next.

To model and to simulate regulatory networks in the present work, we decided to use S-
Systems, since they are well-documented and examined. S-Systems are a type of power-
law formalism, which has been suggested in [Sav91] and can be described by a set of
nonlinear differential equations:
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where G; ; and H; ; are Kinetic exponents, «; and (3; are positive rate constants and N
is the number of equations in the system. The equations in 4 can be seen as divided into
two components: an excitatory and an inhibitory component. The kinetic exponents G; ;
and H; ; determine the structure of the regulatory network. In the case G; ; > 0, gene g;
induces the synthesis of gene g;. If G; ; < 0, gene g, inhibits the synthesis of gene g;.
Analogously, a positive (negative) value of H; ; indicates that gene g; induces (suppresses)
the degradation of the mRNA level of gene g;. With this, the MOEA has to optimize the
parameters of G, H, «; and (3; and the binary interaction matrix in respect to the given
objective functions f; and f5.

3 Results

As described before, we used MOEA with hybrid encoding individuals to fit the data re-
sulting from the simulation of an artificial model to minimize the distance to the given
pathway. In the present case, the algorithm had to optimize 2(N + N?) real valued pa-
rameters for the S-System. Additionally, the bits of the binary genotype representing the
topology had to be optimized as well. Here, we decided to model the underlying S-System
in more details and used 2N? bits for each entry G; ; and H; ; and not only N? bits for a
simple quadratical interaction matrix. With this, the optimization algorithm had to evolve
2N + 4N? variables in total.

3.1 Gene Network

To verify the algorithm, we applied the proposed method to model the dynamics of a
regulatory system examined in [HS96].

Fig. 3.1 shows the network of the dependencies. This gene network consists of two genes
(system component 1 and 4). X; and X, are mRNA concentrations produced by gene 1
and 4, respectively. X5 is an enzyme translated from X, and X3 is an inducer protein
catalyzed by Xs. Component X35 is a regulator protein translated from X,. Note that
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Figure 1: Genetic network and the corresponding time course dynamics of the simulated network
introduced in [HS96].

X3 and X5 are assumed to supress/activate the mRNA transcription of genes 1 and 4 in
negative or positive feed back loops, respectively. The time series data for each gene
were created by simulating the S-System representing this GRN with 7" = 50 sampling
points. The parameters of the model were also examined in [TKO00, KTA*03] and the
time dynamics are given in figure 3.1.

3.2 Settings

The multi-objective optimization runs were performed using an NSGA-II algorithm with
a population size of 500 individuals, crowded tournament selection with a tournament
group size of ¢4.,,p, = 8, Uniform-crossover recombination with p, = 1.0 and a mu-
tation probability p,, = 0.1 on the real-valued genotype and Uniform-crossover recom-
bination with p. = 0.8 and BitFlip-mutation with a mutation probability p,, = 0.1 on
the binary genotype. Details on the implementation of NSGA-II are given in [DAPMO0].
To keep track of the Pareto-front the multi-objective algorithm maintained an archive of
(population size/2 = 250) individuals and used this archive as elite to achieve a faster
convergence. Each multi-run experiment terminated after 1, 000, 000 fitness evaluations
and the whole setting was repeated 20 times.

Additionally, an extended GA was used as a benchmark algorithm. It represents the class
of standard approaches to the inference problem of optimizing the parameters of the math-
ematical model without incorporation of any pathway information. The extension to the
GA was suggested in [TKOOO] and is referred to skeletalizing. This is an extension to a
standard real-coded GA that introduces a threshold value t5.;, which represents a lower
boundary for the parameters G; ; and H,; ; in the mathematical model. If the absolute
value of a decoded decision variable of the GA drops below this threshold during opti-
mization, the corresponding phenotype value is forced to 0.0 indicating no relationship
between the components. Thus, |G; ;| < tsger — Gi,; = 0.0. The skeletalizing algorithm
has the same total number of parameters to optimize as the MOEA described above. This



benchmark class was implemented as a standard real-coded GA with a population of 500
individuals, crowded tournament selection with a tournament group size of tyoup = 8,
Uniform-crossover with p. = 1.0, a mutation probability of p,, = 0.1 and a threshold
value ¢4 = 0.05.

3.3 Inference

The proposed algorithm was then tested on the problem of inferring the gene regulatory
system that was described in the previous section. As test cases we performed experi-
ments with noisy/faulty topological information, to see, whether the algorithm is able to
cope with noise and is still able to find the correct solution.

Noisy Pathway In the noisy test case we introduced noise to the imported pathway and
thus simulated faulty or incomplete knowledge about the biological process of interest.
This was done by randomly changing 7 entries of the correct topology. To study the ability
of our algorithm to cope with noise, we stepwise increased the number of changes 7 from 1,
which corresponds to a noise level of % = 4%, with an overall number of interactions of 5
system components of N2 = 25 parameters, to 2—55, which corresponds to 20% noise in the
system. For each noise level, we created 20 random topologies, which were then inferred
by the proposed algorithm. The resulting models were then evaluated by comparing the
dependencies between the system components.

Fig. 2 shows the fitness values of objective function f; (data matching) for the different
noise levels r = 1, ..., 5. The resulting fitness values of the first two test cases (r = 1 and
r = 2) are very close to the values of the initial test case described above. The RSE of the
last test case with a high noise level (20% noise) are comparably high, thus not resembling
the original time dynamics. However, the results of our algorithm still outperform the
skeletalizing GA, which is shown in the figure too.
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Table 1: Euclidian distance between the parameters of the true system and those of the model found
by the MOEA. For the topology distance, the edges and their direction of the directed graphs repre-
senting the pathways were compared. The parameter distance gives the euclidian distance between
the true system and the inferred model.

Noise Topology distance  Parameter distance  Standard deviation
r=1 0 0.15 0.21
r=2 1 0.19 0.28
r=3 2 1.88 1.07
r=4 2 1.95 1.16
r=>5 2 3.11 1.87
skel. GA 6 12.49 10.12

To evaluate the quality of the models found in the inference process, we compared them to
the true system that was used to create the experimental data. Since it is a multi-objective
optimization problem, a biologist would have to choose a trade-off between fitting the
current known pathway topology (low fitness of f5) or a good data fit with an alternative
topology (low fitness of f1). Here, we used the best f; solutions for comparison.

The compared true pathway topology is not identical to the noisy pathway that was im-
ported into the inference process. For assessing the differences we used the standard
euclidian distance between the parameters p; in the set of parameters P of the mathe-
matical model:

P
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Table 1 lists the distances between the true model and the model found by the algorithm
resulting from Equation. 5. For the first noisy test cases (r = 1 and r = 2, 4% and 8%
noise, respectively), the algorithm successfully finds the correct topology and is also able
to correctly identify the parameters of the model in all multi-runs resulting in good values
for the standard deviation. In the test cases with higher noise (r = 3 and r = 4) our
algorithm still finds very good solutions in the multi-runs. But as expected, in the last test
case (r = b), the impact of the noise is too high, so that the algorithm is no longer reliably
able to find the correct solution in either of the multi-runs. However, the quality of the
solution is by far better than the solution of the skeletalizing GA, which is also listed in
the table.

In the first two noisy test cases almost all multi-runs resulted in only one Pareto-optimal
individual, i.e. only one global solution was found that was performing best in both op-
timization objectives. But as from the third test case, the MOEA resulted in multiple
solutions, which were Pareto-optimal, due to the high level of noise. Fig. 3 shows ex-
emplarily the Pareto-front of one run of the MOEA optimizing process in case of r = 3.
The y-axis in the figure gives the fitness value with respect to objective f; (data fitness).
The x-axis shows the values of the second objective fo (pathway fitness). The distance of
this objective function was not calculated with the true system but with the noisy pathway
information that was imported.



In this example, four Pareto-optimal individuals were found. Note that the lower fitness
value with respect to the data fitness does not correspond to the examined topology indi-
cated by the higher value with respect to the pathway fitness. On the first glance this seems
to be contradictory, but as already mentioned, the algorithm is using a topology to evaluate
objective function f,, which is not the true topology due to the noise. In this example,
the algorithm finds a good solution with respect to the first objective, but with a pathway
mismatch of 3. This corresponds exactly to the level of noise of the test case. Thus, the
algorithm was able to determine the correct topology although this topology differs from
the noisy pathway information that was imported.

4 Conclusion

In this paper we proposed an algorithm to infer regulatory systems from experimental
microarray data with incorporation of pathway information. The most important advantage
is that researchers are able to import information for example from public databases like
KEGG or from self-modeled research results. Public pathway databases are continuously
increasing in size of their contents and thus more and more pathways become available.
Unfortunately, the information within the pathway databases is often incomplete and in
some cases even faulty. However, the proposed method is able to find correct pathways
although the available information is noisy. We showed that the algorithm performs very
well on small regulatory networks with noise levels up to 20%, making it very promising to
work also on larger network structures. We are currently working on an extended solution
representation to increase the performance of the simultaneous optimization of parameters
and topologies. This will enable us to examine larger networks in the future. We showed
that the proposed algorithm is able to identify network topologies correctly, even in the
case of noisy pathway information. In the test cases with a comparably low level of noise,
the algorithm identifies the topology and the kinetic parameters of the target system. And
even in the test cases with higher level of noise, it is able to outperform state-of-the-art
algorithms addressing the problem of sparseness of network connectivity.

Beside the ability of optimizing multiple and sometimes contradictory objectives another
advantage of MOEAs is that they preserve the diversity of the population in the solution
space. With this, the algorithm is able to escape local optima and thus the probability of
finding the global optimum is increasing. The MOEA approach showed the success of
combining multiple objectives into one optimization target, thus enabling to use a priori
knowledge and constraints to gain better and biologically plausible results. Using several
biological constraints also helps to decrease the number of valid network topologies, and
thus to narrow the solution space of the inference algorithm. This is especially impor-
tant because of the ambiguity in the experimental data, i.e. several contradictory network
structures result in very similar time dynamics compared to the true system. This issue has
already been discussed by the authors of this paper in previous publications.

In future work, we plan to extend the MOEA by adding new objectives like the sparseness
of the dependency matrix, since biological networks are known to be only sparsely con-
nected. Additionally, in future experiments we want to focus on different mathematical



models to simulate gene regulatory networks, which might also counteract the increasing
number of valid network structures and to overcome the problems with a quadratic number
of model parameters of the S-System.

Acknowledgement

This work was supported by the National Genome Research Network (NGFN-II) in Ger-
many under contract number 0313323.

References

[DAPMO0]

[dJO2]

[Gol89]

[Her98]

[Hol75]

[HS96]

[KGOO]

[KIKT05]

[Koz92]

[KTAT03]

[OYSOMO04]

K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan. A Fast Elitist Non-Dominated Sort-
ing Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In Proceedings
of the Conference on Parallel Problem Solving from Nature, number 1917 in Lecture
Notes in Computer Science, pages 849-858, 2000.

Hidde de Jong. Modeling and Simulation of Genetic Regulatory Systems: A Litera-
ture Review. Journal of Computational Biology, 9(1):67-103, January 2002.

David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, 1989.

J. Herz. Statistical Issues in reverse engineering of genetic networks. In Proceedings
of the Pacific Symposium on Biocomputing, 1998.

John H. Holland. Adaption in Natural and Artificial Systems: An Introductory Analy-
sis with Applications to Biology, Control and Artificial Systems. University Press of
Michigan, 1975.

W.S. Hlavacek and M.A. Savageau. Rules for coupled expression of regulator and ef-
fector genes in inducible circuits. Journal of Molecular Biology, 255:121-139, 1996.

Minoru Kanehisa and Susumu Goto. KEGG: Kyoto Encyclopedia of Genes and
Genomes. Nucleic Acids Research, 28(1):27-30, 2000.

Shuhei Kimura, Kaori Ide, Aiko Kashihara, Makoto Kano, Mariko Hatakeyama, Ry-
0ji Masui, Noriko Nakagawa, Shigeyuki Yokoyama, Seiki Kuramitsu, and Akihiko
Konagaya. Inference of S-system models of genetic networks using a cooperative
coevolutionary algorithm. Bioinformatics, 21(7):1154-1163, 2005.

John R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, 1992.

Shinichi Kikuchi, Daisuke Tominaga, Masanori Arita, Katsutoshi Takahashi, and
Masaru Tomita. Dynamic modeling of genetic networks using genetic algorithm and
S-system. Bioinformatics, 19(5):643-650, 2003.

Isao Ono, Ryohei Yoshiaki Seike, Norihiko Ono, and Masahiko Matsui. An Evolu-
tionary Algorithm Taking Account of Mutual Interactions among Substances for In-
ference of Genetic Networks. In Proceedings of the IEEE Congress on Evolutionary
Computation, pages 2060-2067, 2004.



[PCO4]

[Rec73]

[Sav9l]

[Sch81]

[SD94]

[SSSZ04]

[SUZ04]

[TKBT03]

[TKOO00]

[WCFT01]

Carey Pridgeon and David Corne. Genetic Network Reverse-Engineering and Net-
work Size; Can We Identify Large GRNs? In Proceedings of the IEEE Symposium
on Computational Intelligence in Bioinformatics and Computational Biology, pages
32-36, 2004.

Ingo Rechenberg. Evolutionsstrategie - Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Frommann-Holzboog, 1973.

Michael A. Savageau. 20 years of S-systems. In E.O. Voit, editor, Canonical Nonlin-
ear Modeling. S-systems Approach to Understand Complexity, pages 1-44, 1991.

Hans-Paul Schwefel. Numerical optimization of computer models. John Wiley &
Sons, 1981.

N. Srinivas and Kalyanmoy Deb. Multiobjective Optimization Using Nondominated
Sorting in Genetic Algorithms. Evolutionary Computation, 2(3):221-248, 1994.

Christian Spieth, Felix Streichert, Nora Speer, and Andreas Zell. Utilizing an Island
Model for EA to Preserve Solution Diversity for Inferring Gene Regulatory Networks.
In Proceedings of the IEEE Congress on Evolutionary Computation, volume 1, pages
146-151, 2004.

Felix Streichert, Holger Ulmer, and Andreas Zell. Evaluating a Hybrid Encoding
and Three Crossover Operators on the Constrained Portfolio Selection Problem. In
Proceedings of the IEEE Congress on Evolutionary Computation, pages 932-939,
2004.

Yoshinori Tamada, SunYong Kim, Hideo Bannai, Seiya Imoto, Kousuke Tashiro,
Satoru Kuhara, and Satoru Miyano. Estimating gene networks from gene expres-
sion data by combining Bayesian network model with promoter element detection.
Bioinformatics, 19(90002):227ii-236, 2003.

Daisuke Tominaga, Nobuto Kog, and Masahiro Okamoto. Efficient Numeral Opti-
mization Technique Based on Genetic Algorithm for Inverse Problem. In Proceedings
of the Genetic and Evolutionary Computation Conference, pages 251-258, 2000.

E. Wingender, X. Chen, E. Fricke, R. Geffers, R. Hehl, I. Liebich, M. Krull, V. Matys,
H. Michael, R. Ohnhauser, M. Pruss, F. Schacherer, S. Thiele, and S. Urbach.
The TRANSFAC system on gene expression regulation. Nucleic Acids Research,
29(1):281-283, 2001.



