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Abstract— In this paper we address the problem of predicting
gene activities by finding gene regulatory dependencies in exper-
imental DNA microarray data. Only few approaches to infer the
dependencies of complete gene interconnectivity networks can be
found in the literature. Due to the limited number of available
data, the inferring problem is under-determined and ambiguous.
Therefore, we introduce a new algorithm to infer relationships
only between selected genes and the unknown gene network.
This method is able to predict gene activation by mathematical
modeling of the network and its simulation. The parameters of
the mathematical model are determined by optimization with
evolutionary algorithms. In this paper we will show that our
approach is able to correctly predict gene responses in immune
related regulatory processes and correctly identify some of the
true genomic relationships of these genes.

I. INTRODUCTION

Recently developed DNA microarray technology allows
measurement of gene expression levels for a whole genome at
the same time. Experiments using this technique provide new
insights into activities of genes under different biochemical
and physiological environment conditions and can therefore
be used to extract relationship information of interacting
genes. A gene interconnectivity network (GIN) defines the
complex structure of dependencies of mRNA produced by one
expressed gene influencing regulatory mechanisms of other
genes. The amount of expression data grows rapidly because
this technique allows for high-throughput experiments. And
although increasing numbers of microarray data sets become
available, mathematical methods are still infeasible to deter-
mine genome-wide regulatory networks from a small number
of chips.

In this paper we propose a methodology for reverse engi-
neering the dependencies of selected genes only, which are of
special interest. The relationships between the specified gene
and the other genes within the network, i.e. within the data
set, are modeled mathematically. Due to the complexity of the
inference problem some researchers suggested evolutionary
algorithms (EA) for this purpose. We introduce an extended
EA framework for evolving the mathematical models to even-
tually infer the parameters of these models. And in contrast
to previous publications, we are not trying to reconstruct the
complete network but only inferring relationships between a
priori selected genes and the unknown gene network system to
predict their regulatory dependencies and activation dynamics.

Section II of this publication presents an overview over
related work and lists associated publications. A description
of the proposed method is given in section III and applications
for inferring immune-relevant genes are shown in section V.
Finally, conclusions and an outlook are covered by section VI.

II. RELATED WORK

Inferring the underlying relationships between genes is
subject to current research and has recently become one of the
major topics in bioinformatics and in systems biology due to
the increased computing power available. There already have
been some approaches in the field of system biology to solve
the combinatorial problem of the inference process. A good
overview of related work can be found in [6].

The earliest models to simulate regulatory systems found
in the literature are Boolean or Random Boolean Networks
(RBN) [13]. In Boolean Networks gene expression levels can
be in one of two states: either 1 (on) or 0 (off). The quantitative
level of expression is not considered. Two examples for
inferring Boolean Networks are given by Akutsu et al. [1]
and the REVEAL algorithm [18] by Liang et al. These models
have the advantage that they can be solved with only small
computational effort. But they suffer from the disadvantage
of being tied to discrete system states. In contrast, qualitative
network models allow for multiple levels of gene regulation.
An example for this kind of approach is given by Thieffry
and Thomas in [29]. But these models use only qualitative
dependencies and therefore only a small part of the informa-
tion hidden in the time series data. Quantitative models based
on linear models for gene interconnectivity networks like the
weighted matrix model by Weaver et al. [32] or the singular
value decomposition method by Yeung et al. [33] consider the
continuous level of gene expression. Other approaches to infer
regulatory systems from time series data by using Artificial
Neural Networks [14] or Bayesian Networks [11] have been
recently published, but face some drawbacks as well. Bayesian
networks, for example, do not allow for cyclic networks. More
general examples for mathematical non-linear models like S-
systems to infer regulatory mechanisms have been examined
by Maki et al. [19] or Kiguchi et al. [15]. And in stochastic
models, e.g. Bayesian networks, the dependencies between the
components of a system are modeled by probabilistic transition
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values. There are many publications on this kind of model,
examples can be found in [10], [7].

So far, only parameterized models have been considered in
this section. Other approaches, for example non-parameterized
models, to infer regulatory systems from time series data
using artificial neural networks [14] or bayesian networks [11]
have been recently published, but face some drawbacks as
well. Bayesian networks, for example, do not allow for cyclic
networks, which are known to exist in biological systems.
Another kind of non-parameterized model are arbitrary differ-
ential equations, which can also be used to model regulatory
structures as Ando et al. showed with genetic programming
(GP) in [2]. In this publication, GP was used to set up a system
of suitable differential equations, whose time series were then
compared to the experimental data.

III. MATHEMATICAL AND COMPUTATIONAL MODELS

On an abstract level, the behavior of a cell is represented
by a directed graph with N nodes representing N genes.
Each gene gi produces a certain amount of mRNA xi when
expressed and changes the concentration of the mRNA level
over time: ~x(t + 1) = h(~x(t)) , ~x(t) = (x1, · · · , xn). Here,
function h represents the changes of the vector of expression
levels from one state to the next.

A. Model

To model and to simulate regulatory networks we decided to
use S-systems since they are well-documented and examined
and are flexible. Their drawback is that they have 2(N2 +N)
parameters for a network with N genes. S-systems are a type
of power-law formalism that has been suggested by Savageau
[23] and can be described by a set of nonlinear differential
equations:

dxi(t)
dt

= αi

N∏

j=1

xj(t)Gi,j − βi

N∏

j=1

xj(t)Hi,j (1)

where Gi,j and Hi,j are kinetic exponents, αi and βi are
positive rate constants and N is the number of equations in the
system. The equations of (1) can be seen as divided into two
components: an excitatory and an inhibitory component. The
kinetic exponents Gi,j and Hi,j determine the structure of the
regulatory network. In the case Gi,j > 0, gene gj induces the
synthesis of gene gi. If Gi,j < 0, gene gj inhibits the synthesis
of gene gi. Analogously, a positive (negative) value of Hi,j

indicates that gene gj induces (suppresses) the degradation of
the mRNA level of gene gi. We solve the equation system by
integration using a fourth-order Runge-Kutta algorithm and
the parameters of the S-System ~α, ~β, G, and H are optimized
with evolutionary algorithms.

B. Optimization

Evolutionary algorithms are stochastic optimization tech-
niques that mimic the natural evolution of mutation and
selection as proposed by Charles Darwin. They have proved
to be a powerful tool for solving complex optimization prob-
lems and in particular combinatorial problems. Three main

types of evolutionary algorithms have been proposed in the
last decades: Genetic Algorithms (GA), mainly developed by
J.H. Holland [9], Evolution Strategies (ES), developed by I.
Rechenberg [22] and H.-P. Schwefel [24], and Genetic Pro-
gramming (GP) by J.R. Koza [16]. Each of these uses different
solution representations and different operators working on
them. They are, however, inspired by the same principles of
natural evolution.

In our method we used a method, which separates the
inference problem into two subproblems. The first task is
to find the topology or structure of the network with a
genetic algorithm. In the second task the parameters of a
mathematical model are optimized for the given topology
with an evolution strategy. The second problem can be seen
as a local search phase of a memetic algorithm (MA).

1) Global Genetic Algorithm: In our implementation the
genetic algorithm evolves populations of structures of possible
networks. These structures are encoded as bitsets where each
bit represents the existence or absence of an interaction
between genes and therefore of non-zero parameters in the
mathematical model. The evaluation of the fitness of each
individual within the GA population uses a local search
described below. Due to the binary representation of the
structures, they gradually become sparse in the optimization
process and thus the number of parameters to be optimized
decreases dramatically.

2) Local Evolution Strategy: For evaluation of each struc-
ture suggested by the global optimizer an evolution strategy is
used, which is suited for optimizing problems based on real
values. The ES optimizes the parameters of the mathematical
model used for representation of the regulatory network.

For assessing the quality of the locally obtained results we
used the following equation for calculation of the fitness values
for the ES optimization process:

f =
N∑

i=1

T∑

k=1

(
x̂i(tk)− xi(tk)

xi(tk)

)2

(2)

where N is the total number of genes in the regulatory
system, T is the number of sampling points taken from the
time series and x̂ and x distinguish between estimated data
and experimental data. The overall problem is to minimize
the fitness value f .

C. Separation

To model single genes we used a separation technique,
which is well known in systems theory. To identify the
underlying non-linear system, we separate the equations such
that only the one equation for xi of the system (1) is optimized.
In the original version, the concentrations of all genes were
depending on the model found so far in the optimization
process. The current mRNA concentration levels that actu-
ally influence a particular gene have a significant impact on
the modeling of this gene. An error in the network model
propagates to all other concentration levels. Thus, modeling
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large systems is a very difficult task and it is not guaranteed
to find the true system in case of a large number of system
components. However, separation reduces the mentioned issue
by separating the complete inference process into a number
of smaller sub-problems. For this, the mRNA concentration
levels of all the other genes xj , j 6= i are directly taken from
the experimental data and included in every time step of the
integration process while optimizing the model parameters.
Thus, the correct concentration levels are used in every time
step.

Separation reduces the complexity of the preceding N -to-
N system into N separated sub-systems, where each is only
having N -to-1 interactions to be inferred as illustrated in the
following figure.

A B

Fig. 1. Separation reduces the complexity of the N -to-N system (A) into
N separated sub-systems, where each is only having N -to-1 interactions (B).

However, this separated model is only guaranteed to be
valid for a single gene, and the dependencies of the other
components of the complete network structure are not found
during the inference, because they are not modeled. An
enhancement to our method to solve the complete inference
problem, may be the iterative combination of inferred genes to
a larger system that eventually represents the complete system.
This idea is currently implemented and will be subject of a
future publication.

D. Interpolation

In the case of immune specific processes biologists dis-
tinguish between four phases: immediate early response,
early response, intermediate response, and late response. The
processes that were studied in the experiments stretch over
a relatively long period of time (24h). Further on, microarray
experiments are expensive. Therefore, the experiments have to
be planned to cover all relevant time steps within the biological
process with a minimum number of DNA chips. The sampling
points should be distributed in a way that all mentioned
phases are represented. But with such an experimental design,
the resulting sampling points are not necessarily distributed
equidistantly over time. Due to this issue, an interpolation
scheme has to be used to calculate mRNA concentrations at
intermediate time points. At present, we use a cubic spline
interpolation method to interpolate necessary data points lying
between sample points. This interpolating scheme has proven
to be very successful in engineering problems and is guaran-

teed to yield the correct values at each grid point that was
used to build the interpolation scheme [21].

E. Prediction

The last sampling point of the data sets was not included
in the inference data set to examine the prediction capabilities
of our algorithm (leave-one-out). After the inference of the
network, we simulated the model to obtain a predicted value
for the gene of interest and compared them to the true values of
the experiments. We repeated the inference experiment for 25
times to obtain statistically sound results to be able to evaluate
the predictive power of the method.

IV. BIOLOGICAL SYSTEM

Our approach was tested on real microarray data, which
were obtained by biological experiments within the ’Inflam-
matory and Infection’ subnetwork of the German National
Genome Research Network (NGFN). The details of the bi-
ological experiments will be subject of a future biological
publication. Therefore, we will not describe them in details
here. The data was obtained from a time course DNA microar-
ray experiment in which human macrophages were infected
by HCM viruses to study virus-specific immune response.
Expression levels of N = 22, 215 different probe sets were
monitored at six time points (1h, 2h, 4h, 8h, 16h, and 24h
after infection) both in uninfected and infected cells. The
two expression levels of each probe set were compared using
standard statistical algorithms to obtain a quantification of the
differential gene expression (infected versus uninfected). The
experiment was repeated 4 times under the same conditions to
gain enough data sets to statistically filter the gene lists and
thus to decrease the number of variables.

To reduce the size of the data sets, the first preprocessing
step was to filter probe sets that did not appear to participate
in the biological process of infection either because their ex-
pression signal was below a threshold, indicating experimental
noise, or there was so little variation over time that these
probe sets were likely not to be involved in the underlying
infectious regulations. For our experiments, we decided to
use a differential fold change value of ≥ 3.0 between the
uninfected and the infected cells for the threshold. Further on,
we used the standard statistical package SAM [30] as a second
step to further reduce the complexity of the inference problem.
The statistical methods merged the repeated experiments and
thus raised the level of confidence that only genes were
selected, which are involved in the immune response of the
cell. A False-Discovery rate of FDR = 0.04 was chosen for
the SAM analysis. After filtering and statistical preprocessing,
268 genes remained in the resulting data set.

For evaluating the performance of the method we decided
to infer eleven genes in the data set, which are known to be
relevant to immune specific response activities of an infected
cell and which have been suggested by the participating
biologists because they are of special interest. Due to the
limited space in this publication, we will only show three of
the predicted genes here:
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One of the relevant genes is the interferon-induced protein
G1P2 (UniGene Id Hs.432233). References can be found in
several biological articles, for example [20]. Gene Ontology
(GO) [3] classifies this gene in the category ’Biological
Process’ into the class ’6955 - immune response’. The sec-
ond gene to be inferred by the proposed algorithm was the
Human p53 cellular tumor antigen mRNA P53 (UniGene Id
Hs.426890) and the related tumor suppressor phosphoprotein
TP53. It was subject to several publications as for example in
[31]. According to GO the gene takes part in the cell cycle
and in the apoptosis pathway and is classified in the category
’Biological Process’ into the main class ’6915 - Apoptosis’.
And the third gene was the RASA3 RAS p21 protein activator
3 (UniGene Id Hs.119274). GO classifies this gene in ’7242
- intracellular signaling cascade’ and a reference on the gene
is given in [5].

The parameters of the inferred models have been evalu-
ated in a postprocessing step in collaboration with medical
researchers and with the help of the TRANSPATH [4] and the
KEGG [12] database. For each gene that was modeled using
the proposed inference strategy, we examined the strongest
relationships indicated by the significantly largest parameter
values in the mathematical model. These dependencies were
then evaluated by searching for corresponding relationships in
the databases and in the literature. The biological interpretation
sections for each gene list some of the found and confirmed
regulatory effects.

V. RESULTS

The GA evolved a population of 250 possible structures
with a tournament selection with a tournament group size of
tgroup = 8, 3-Point-crossover recombination with pc = 1.0
and a mutation probability pm = 0.1. The local optimization
was started using a (µ,λ)-ES with µ = 10 parents and λ =
50 offsprings together with a Covariance Matrix Adaptation
(CMA) mutation operator without recombination. The proba-
bilities of crossover and mutation were chosen as pc = 0.0 and
pm = 1.0. These parameters were determined in preliminary
experiments and have shown to yield the best results. Overall,
the MA evolved the individuals for 250, 000 generations. And
due to the separation of the system, the maximum number of
variables was 2N + 2 = 538 instead of 2N + 2N2 = 72, 360
variables in case of the complete inference problem.

To evaluate the quality of the solutions and to show that
the proposed memetic algorithm is learning and thus finding
solutions with better fitness values in each generation, we
compared it to a totally random sampling of model parameters.
These results are also given in the corresponding fitness
graphs.

A. Interferon Alpha-inducible Protein G1P2

The expression pattern of the first gene is highly dynamic
as can be seen in figure 2, where the differences between
uninfected and infected is plotted with a straight line. The
maximum change of the gene expression levels is 13.98 for
the compared cell states.
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Fig. 2. Time dynamics of gene G1P2. Given are the time course of the
experiment data and the simulated course.
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Fig. 3. Fitness courses for gene G1P2 obtained by the inference process
using a separated memetic algorithm compared to a totally random set of
model parameters.

Figure 2 shows the inferred time course of gene G1P2 found
by the optimizing process. The lines represent the time dynam-
ics of the experimental and the simulated gene expression.
The fitness course for gene G1P2 of the inference process is
shown in figure 3 and suggests a very good compliance with
the experimental data as the values decrease continuously over
time. We implemented the optimization objective as a problem
to minimize the fitness values and the algorithm eventually
finds a solution with a fitness of 1.53057.

The last data point at t = 24h (indicated by the frame
in figure 2) is the predicted gene behavior that results from
our simulation. As one can see, the predicted value of the
gene response (dashed line) and the true behavior of the
gene (straight line) are very similar. The experiments yield
an expression value of 2801.6 for the last sampling point
t = 24h. And the simulation of the network that was found
in the optimization process results in a very close value
of 2922.7. Furthermore, due to the high quantitative level
of expression, the difference between these values is almost

464



negligible, especially in case of noisy biological experiments.
As mentioned in the previous section, we evaluated the

inferred models by searching for correspondence of strong
relationships in the model and known relationships in biology.
In case of the G1P2 model, we found relationships in the
model parameters between the Interferon Regulatory Factor
3 and 4 IRF3, IRF4, respectively, and the gene product
ISG15(h) of G1P2 represented by a positive dependency
value. This is affirmed by the work of Meraro et al. in [20].

IRF-3(h) → ISG15(h) (activation; transregulation), and

IRF-4(h) → ISG15(h) (activation; transregulation).

Further on, the model suggests relationships between
ICSBP and G1P2, which can also be found in the database:

ICSBP(h) → ISG15(h) (activation; transregulation).

However, the inference process was not able to find the
relationship between ISGF3G(h) and G1P2 with statistical
significance although ISGF3G(h) was included in the exper-
imental data set. Because the time dynamics of the inferred
model matches the biological system so well, further inves-
tigations of the model relationships are necessary to evaluate
unknown alternative regulatory effects that bypass this known
regulation.

B. Tumor Protein P53

The straight line in figure 4 shows the differential expression
signals between uninfected and infected cells with a maximum
change level of 4.7.

0 2 4 6 8 10 12 14 16 18 20 22 24
0

20

40

60

80

100

120

140

 p53 (experiment)
 p53 (simulation)

ex
pr

es
si

on
 le

ve
l

time [h]

Fig. 4. Time dynamics of gene P53. Given are the time course of the
experiment data and the simulated course.

Figure 4 shows the inferred time course of gene P53 found
by the optimizing process. The lines represent the time dynam-
ics of the experimental and the simulated gene expression. As
in the previous section, the proposed method finds a model that
shows very good resemblance to the biological experiment.
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Fig. 5. Fitness courses for gene P53 obtained by the inference process using
a separated memetic algorithm compared to a totally random set of model
parameters.

The expression levels of gene P53 and the simulated gene
differ only marginally. The fitness course for gene P53 of the
inference process is shown in figure 5 and as in the inference
before, the values decrease to very good fitness values, which
also corresponds to the good data match in figure 4.

As in the example above, we excluded the last data point
(t = 24h) from the inference process. Figure 4 shows the
value of the experiment together with the predicted value
obtained from the simulation. The predicted value of the gene
response (dashed line) and the true behavior of the gene
(straight line) are very similar: 99.1 for the true value and
95.2 resulting from our algorithm. This result, as the result of
the previous experiment, indicate a very high predictive power
of our method.

One of the strongest interactions of system components
in the inferred model was the dependency between P53 and
the paired box gene 8, PAX8(h), which can also be found in
TRANSFAC

PAX8(h) → p53(h) (transregulation).

The human immunodeficiency virus type I enhancer binding
protein 1 HIVEP1 (KEGG) or PRDII-BF1(h) (TRANSFAC)
expresses the Gatekeeper of Apoptosis Activating Proteins
1 GAAP-1(h) and regulates P53 as described in [17]. This
chain of regulation can also be found in the parameters of
our model, where this relationship is represented by a direct
link between PRDII-BF1(h) and P53. This shortcut is due to
the absence of GAAP-1(h) in the experimental data set such
that this intermediate product is not covered by our model.

Regulation in TRANSFAC:

PRDII-BF1(h) → GAAP-1(h) (expression)

GAAP-1(h) → p53(h) (activation; transregulation).
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Regulation in the inferred Model:

PRDII-BF1(h) → p53(h) (activation; transregulation).

Furthermore, the model suggests several downstream
relationships. Two of them are the following dependencies:
first, the model parameter suggest a relation between the
apoptosis-related cysteine protease CASP1 and P53, which is
confirmed by the work of Gupta et al. in [8]:

p53(h) → caspase-1(h) (activation; transregulation).

And secondly, Shin et al. examined the transcriptional
stimulation of the transforming growth factor alpha TGFA
by P53 in [25], which can also be found in our model, where

p53(h) → TGFalpha(h) (activation; transregulation).

Because the tumor protein P53 is a well studied gene
due to its participation in cancer disease, several known
interactions of this gene with other system components can
be found in the literature and thus several additional matches
between the databases and the model can be found. Due to
space restrictions, only the mentioned three most significant
relationships are listed here.

C. RAS p21 Protein Activator RASA3

Figure 6 gives the time dynamics of RASA3 with a max-
imum change of 5.1 between the uninfected and the infected
state (straight line).
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Fig. 6. Time dynamics of gene RASA3. Given are the time course of the
experiment data and the simulated course.

The predicted dynamics of gene RASA3 resulting from
the simulation are given figure 6 with a straight line. As in
the previous examples, the simulated activity level of gene
RASA3 shows a very good correlation with the true expression
value of the experiment. The actual value for the last sampling
point (t = 24h) in the simulation was 181.2 compared to a
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Fig. 7. Fitness courses for gene RASA3 obtained by the inference process
using a separated memetic algorithm compared to a totally random set of
model parameters.

true value of 189.6 in the experiment. This again suggests a
high predictive power of the algorithm.

One of the lesser known genes that was modeled with
our approach is RASA3, which yielded a very good model
fitness. This gene represents a class of genes for which their
particular regulating roles in the immune process are not as
well studied as for example those of the P53 gene. And
thus, only little information can be found in the literature.
Further on, no interactions with other system components are
listed in the databases. We found two genes of this class,
which yielded very good model fitness values but which were
almost not covered by any publication or database entries.
However, the inferred model suggests several relationships
between RASA3 and other genes that are to date unknown.
These new hypothesis of regulatory effects will be subject
of further analysis by biological researchers at our facility in
future work.

D. Remaining Gene Set

Due to the limited space available in this paper, we showed
only three example predictions. As mentioned in the be-
ginning, we inferred eleven different genes from which we
have been able to reliably model nine with our method with
very good prediction values. The remaining two genes did
not fit the true values correctly: one activity prediction was
completely wrong (99.2 in the experiment and 231.9 in our
simulation) and the other value showed only little resemblance
(78.6 in the experiment and 99.1 in the simulation). The
reason for the prediction to fail in these two cases may be
that these genes are participating in many different biological
processes and are thus stimulated by a large number of non-
immune-relevant genes, which may not be included in the
experiment data set due to the filtering. Another reason for
the failure of our modeling technique may be the variance
of the biological experiments, since the cell lines and their
environmental conditions have a strong impact on the resulting
gene expression levels as well.
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TABLE I
RESULTS OF THE EXPRESSION PREDICTION FOR EACH OF THE ELEVEN

MODELED GENES.

Gene ID Averaged Fitness Predicted Value

RASA3 Hs.119274 1.022 181.2 (189.6)
P53 Hs.426890 2.531 99.1 (95.2)

G1P2 Hs.432233 1.530 2922.7 (2801.6)
PHB Hs.75323 1.341 4.02
GJA1 Hs.74471 2.726 4.02

FASTK Hs.75087 1.943 4.02
DMD Hs.169470 2.776 4.02

EIF1AY Hs.155103 3.127 4.02
HSA9947 Hs.128866 3.591 4.02

PEX6 Hs.301636 3.998 231.9 (99.2)
TCF8 Hs.232068 4.194 99.1 (78.6)

Table I gives an overview of the results of the predicted
expression values for each gene that was modeled. The table
lists the gene symbol and the corresponding UniGene identifier
followed by the averaged fitness value that was achieved for
the model parameters. The last column gives the predicted
expression level for the gene and the true value in brackets.

VI. DISCUSSION

The problem of inferring complete GINs is a very difficult
problem due to the limited data available and the large number
of unknown variables in the system. And the ability of pre-
dicting the expression levels of genes under certain conditions
is an important task in bioinformatics. Thus, we proposed a
method to infer only selected genes in the context of the whole
experimental data. We showed that separation is dramatically
reducing the complexity of the problem. Moreover, our method
is able to find biological relationships between genes in
immune specific systems and is thereby able to predict gene
behavior to regulatory factors very accurately. We were not
only able to predict 82% of the selected genes correctly and
reliably in several runs. Moreover, we were able to reproduce
most of the dependencies of the genes that are known to date,
limited by the statistical preprocessing and the filtering of
genes that afterwards turned out to be important.

The capabilities of the separation strategies suggest to
divide a complete system inference into a preprocessing with
separation and a second phase, where the separated genes are
combined. However, preliminary computational experiments
showed that good fitness values are not necessarily an indi-
cator for a biologically correct model. Particularly, complete
inference experiments on artificial data sets advised that due
to limited available data the overall problem is highly under-
determined and therefore many different solutions may yield
comparably good fitness values. To cope with this issue, we
plan to enhance our method by introducing a new adaptive
separation strategy, where separated genes are iteratively com-
bined or split in the optimization process to build larger system
or building blocks. Another way of increasing confidence
in the inferred models may be the usage of techniques like

island model optimization or virtual knock-out strategies as
suggested by the authors in [28] and [27], respectively.

Further on, we plan to include a-priori information into the
inference process, like partially known pathways or informa-
tion about co-regulated genes, which can be found in litera-
ture or public databases. Additionally, other models for gene
interconnectivity networks will be examined for simulation of
the non-linear interaction system to overcome the problems
with those gene interconnectivity networks that hardly can be
modeled by S-systems. To further reduce the dimensionality
of the data set, we plan to use cluster methods. Recently,
we developed a new method that incorporates biological
ontologies [26] and thus yields biologically more plausible
clustering results.

We will continue to test our method with real microarray
data in close collaboration with biological researchers at our
facility in the area of signal transduction. And the computa-
tional results of this publication will be subject to detailed
verification processes, especially those of the RASA3 protein
activator. Our algorithm will be tested on repeated experiment
data sets to increase confidence in the model. And further on,
the medical researchers at our facility will try to verify the
mathematical model to gain information about the underlying
process with additional experiments.
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