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ABSTRACT

We propose an approach that can reduce the feature
extraction time of the Scale Invariant Feature Transform
(SIFT). The main idea is to search for the keypoints around
a set of randomly generated particles rather than to per-
form exhaustive search in the whole difference of Gaussian
pyramid. The proposed approach makes it possible to de-
fine the required number of keypoints in advance. A relation
between the number of required features and the feature ex-
traction time can be drawn. The matching time of two sets
of keypoints is consequently minimized. To demonstrate its
performance, the approach is applied to the robot global lo-
calization problem. The results are successful, with much
less keypoints and less computation time than the original
SIFT.

1 INTRODUCTION

The problem of robot localization can be classified as
either global or local localization [10]. In global localiza-
tion, the robot tries to discover its position without previ-
ous knowledge about its location. In local localization, the
robot must update its position using its current data from its
sensors as well as the previous information that it has al-
ready accumulated. The lack of any historical information
about its surroundings makes global localization more chal-
lenging [10].

Vision based robot localization demands image features
with many properties. On the one hand the features should
exhibit invariance to scale and rotation as well as robust-
ness against noise and illumination. On the other hand they
should be extracted very quickly so as not to hinder the other
tasks that the robot plans to perform. Local descriptors are
commonly employed in robot localization because they can
be computed efficiently, are resistant to partial occlusion,
and are relatively insensitive to changes in viewpoint.

There are two considerations to using local descriptors
[4]: First, the interest points should be localized in posi-
tion and scale. Typically, interest points are placed at local
peaks in a scale-space search, and filtered to preserve only

those that are likely to remain stable over transformations.
Second, a description of the interest point is built; ideally,
this description should be distinctive (reliably differentiat-
ing one interest point from others), and invariant over trans-
formations caused by changes in camera pose and lighting.
While the localization and description aspects of interest
point algorithms are often designed together, the solutions
to these two problems are independent [8].

SIFT features, explained in details in section 2, have been
widely used in the robot localization field. In [11] the SIFT
scale and orientation constraints are employed for match-
ing stereo images; after matching the features they used a
least-squares procedure to reach better localization prob-
lem. In [1] a modified version of the SIFT approach is pro-
posed and used to solve the global robot localization; their
approach takes the properties of panoramic images into con-
sideration. The work in [12] proposes an approach to mod-
eling the poses-dependent characteristics of the SIFT, their
model is a learning based one and is successfully applied to
the robot localization. In order to further minimize the clas-
sification errors during localization the work in [5] has pro-
posed extracting SIFT features from each image and then
using spatial relationships among the locations by means of
a hidden Markov model. In [3] an image map based on SIFT
and Harris corners is built and used later for localization.

The remaining sections of this paper are organized as fol-
lows: Section (2) is a review of the SIFT approach. Sec-
tion (3) introduces the idea behind the iterative SIFT and
presents its algorithm. Section (4) deals with the applica-
tion of our approach to the problem of global robot local-
ization and presents the similarity measure needed for suc-
cessful localization. In section (5) the computational time of
SIFT is compared with that of iterative SIFT and the advan-
tages and disadvantages of both approaches are discussed.
Section (6) gives the experimental results of applying the it-
erative SIFT to the robot localization. Finally we conclude
this paper in section (7).

2 SCALE INVARIANT FEATURE TRANSFORM

The Scale Invariant Feature Transform (SIFT) developed
by Lowe [7] is invariant to image translation, scaling, ro-
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Fig. 1. A sample image which has320× 240 pixels and 181 key-
points.

Fig. 2. A sample image which has320× 240 pixels and 254 key-
points.

tation, and partially invariant to illumination changes and
affine for 3D projection. The SIFT algorithm has 4 major
stages:

1. Scale-space extrema detection: The first stage searches
over scale space using a Difference of Gaussian func-
tion to identify potential interest points.

2. Keypoint localization: The location and scale of each
candidate point is determined and keypoints are se-
lected based on measures of stability.

3. Orientation assignment: One or more orientations are
assigned to each keypoint based on local image gradi-
ents.

4. Keypoint descriptor: A descriptor is generated for each
keypoint from local image gradients information at the
scale found in stage 2.

An important aspect of the algorithm is that it generates
a large number of features over a broad range of scales and
locations. The number of features generated is dependent
on image size and content, as well as algorithm parameters.
Figures 1 and 2 show two images of the same size but the
number of features, illustrated using arrows, is nearly dou-
bled.

The SIFT feature algorithm is based upon finding loca-
tions within the scale space of an image which can be re-
liably extracted. The first stage finds scale-space extrema
located inD(x, y, σ), the Difference of Gaussians (DoG)

Fig. 3. Local extrema detection, the pixel marked× is compared
against its 26 neighbors in a3 × 3 × 3 neighborhood that spans
adjacent DoG images (from [7]).

function, which can be computed from the difference of two
nearby scaled images separated by a multiplicative factor k:

D (x, y, σ) = (G (x, y, kσ)−G (x, y, σ)) ∗ I (x, y)
= L (x, y, kσ)− L (x, y, σ) (1)

whereL(x, y, σ) is the scale space of an image, built
by convolving the imageI(x, y) with the Gaussian kernel
G(x, y, σ). Points in the DoG function which are local ex-
trema in their own scale and one scale above and below are
extracted as keypoints. Generation of extrema in this stage
is dependent on the frequency of sampling in the scale space
k and the initial smoothingσ0. The keypoints are then fil-
tered for more stable matches, and more accurately local-
ized to scale and subpixel image location using methods de-
scribed in [9].

Before a descriptor for the keypoint is constructed, the
keypoint is assigned an orientation to make the descriptor
invariant to rotation. This keypoint orientation is calculated
from an orientation histogram of local gradients from the
closest smoothed imageL(x, y, σ). For each image sample
L(x, y) at this scale, the gradient magnitudem(x, y) and
orientationθ(x, y) is computed using pixel differences:

m (x, y)2 = (L (x + 1, y)− L (x− 1, y))2

+ (L (x, y + 1)− L (x, y − 1))2 (2)

θ (x, y) = tan−1 L (x, y + 1)− L (x, y − 1)
L (x + 1, y)− L (x− 1, y)

(3)

The orientation histogram has 36 bins covering the 360
degree range of orientations. Each point is added to the his-
togram weighted by the gradient magnitude,m(x, y), and
by a circular Gaussian with varianceσ that is 1.5 times the
scale of the keypoint. Typical keypoint descriptors use 16
orientation histograms aligned in a4 × 4 grid. Each his-
togram has 8 orientation bins each created over a support
window of 4 × 4 pixels. The resulting feature vectors are
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128 elements with a total support window of16× 16 scaled
pixels. For a more detailed discussion of the keypoint gen-
eration and factors involved see [9].

3 ITERATIVE SIFT

SIFT features are distinctive invariant features used to
robustly describe and match digital image content between
different views of a scene. While invariant to scale and rota-
tion, and robust to other image transforms, the SIFT feature
description of an image is typically large and slow to com-
pute.

For example, the work in [2] is a study of SIFT features
for outdoor robot localization. Although his approach was
able to pick up features which stay in place despite the vary-
ing illumination, the authors reported some disadvantages
of using SIFT, specifically the time it takes to extract the
features from an image is long. Further, the number of fea-
tures is immense, which poses problems when searching for
the patching pairs, along with having to store a large amount
of data.

The main objective of the iterative SIFT approach is to
reduce the number of keypoints and their corresponding ex-
traction and matching time, while maintaining the same de-
scriptor for each keypoint. In the classical SIFT approach,
keypoints are detected by testing each value in the DoG at
each scale with the 8 surrounding values of the same scale
as well as with 9 neighbouring values in the scale above and
9 neighbouring values in the scale below. The first and last
DoG scales are not examined. This means26×m×n com-
parisons for a DoG of sizem× n, taking into consideration
that points around a given border of each DoG are not in-
cluded in the keypoint detection, as seen in figure 3 . Since
SIFT establishes multiple scales in each octave, the above
analysis is applied several times to each scale in each oc-
tave. Each octave has one quarter of the pixels of the pre-
vious one, so that keypoint detection in lower octaves re-
quires more time than in higher ones. We aim to modify this
exhaustive search into a sample based one.

In the proposed approach, the number of keypoints can
be defined in advance. The process of finding the keypoints
continues iteratively without the need for sequentially going
through the whole scale space. This involves two phases.
The first phase is randomly searching the scale space for
local extrema. The random search is followed by an up-
date phase only when the local extremum is more likely to
be found. The theory behind the iterative SIFT approach is
mainly based on the assumption that local extrema points
are located in a blob region [6], i.e. smooth wide two di-
mensional hills or valleys. In other words, blobs are re-
gions in the image that are either significantly brighter or
significantly darker than their surroundings. A local ex-
tremum cannot be located on a flat region and can hardly

Algorithm 1 The iterative SIFT algorithm.
Definitions:

NSamples: The number of samples.
NKeys: The number of requested keypoints.
NTrials: The number of trials.
NScales: The number of Scale images.

initialization:Keypoints← {};
for Scale← 1 to NScales do
{(xi, yi)} ← RandomCoord(), given that
isBlob (p (xi, yi)) is True,∀i = 1, 2, ..., Nsamples;
i← 0;
while i < NSamples And |Keypoints| < NKeys
do

i← i + 1;
trial← 0;
ExtremaFound← False;
while trial < NTrials And ¬ExtremaFound
do

if isExtremum (xi, yi) then
Keyi ← KeypointDescriptor(xi, yi);
Keypoints← Keypoints ∪ {Keyi};
ExtremaFound← True;

else
(xi, yi)← findNewCandidate (xi, yi);

end if
trial← trial + 1;

end while
end while

end for

be found near it. Another possible location of local extrema
are spikes, i.e. rapidly changing narrow regions. But since
the scale space structure involves multiple smoothing oper-
ations on the image, only information on the coarse scale
remains and the spikes are filtered out.

With the above assumption we can say that our search
mechanism involves dealing only with two cases when
searching for a local extremum: 1) In the case where we de-
tect a blob region, an update phase handles the search for the
position of the local extremum in that region. The search
ends either when the local extremum is found or when a
given number of trials elapses. 2) In the case where we de-
tect a non-blob region, the result of the search in this area is
ignored and the search is started somewhere else.

The test whether a pointp lies in a blob region or not is
shown as a functionisBlob() in equation (4), whereTScale

is a threshold depending on the scale of the pointp.

isBlob =

{
True (Abs(p) > TScale)
False otherwise

(4)

In the iterative SIFT algorithm, see algorithm (1), the fol-
lowing functions are used: The functionKeypointDescrip-
tor() builds the keypoint descriptor for the point located in
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(xi, yi). The functionRandomCoord()returns a set of ran-
domly chosen (x,y) coordinates bounded by the size of the
current scale. The functionisExtremum()tests whether the
point located in(xi, yi) is a local maximum or local mini-
mum. This involves comparing the value of a point with the
26 neighbours as explained above. The functionfindNew-
Candidate()searches the8 neighbours of the point(xi, yi)
in the same scale and returns the coordinate of the maxi-
mum point ifp(xi, yi) is positive and the coordinate of the
minimum point if p(xi, yi) is negative. Note that the DoG
image contains both positive and negative points with the
median0.

The algorithm is clarified as follows: We first initialize a
set of samples with random numbers, each of which holds a
value that represents the coordinate of one of the points in
the current scale. The samples are then verified so that only
those that have a value above the given thresholdTScale re-
main. This reflects our assumptions that a value above this
threshold is most probably a point that lies in a blob. The to-
tal number of samples in the algorithm after the verification
should beNSamples and depends on the size of the scale
image. After some initial experiments, we found that set-
ting NSamples = r ×M × N with r = 3 leads to best
results. Here(M, N) are the size of the current scale im-
age. The search for the keypoints in the algorithm is applied
to one scale after another. The search stops when the re-
quired number of keypointsNKeys is reached. The search
within a blob involves testing whether the current point is
a local extremum using the functionisExtremum(). If the
point is an extremum then the keypoint descriptor is gener-
ated for that point. If the current keypoint is not a local ex-
tremum, the functionfindNewCandidate()returns a new co-
ordinate for a candidate local extremum. With this update,
the sample is assumed to move in the direction of the lo-
cal extrema. The update goes on until the local extremum
is found or until the maximum number of trials,NTrials,
is reached. In the later case the point is neglected and the
search is performed by another sample in another new loca-
tion.

4 GLOBAL ROBOT LOCALIZATION

Now we apply the iterative SIFT approach to the prob-
lem of global localization and compare the performance of
it with the SIFT approach in terms of accuracy and compu-
tation time.

4.1 Problem Definition

Vision based global localization can be generally consid-
ered as an image retrieval problem [13], where features of
the images that the robot encounters during its navigation
are compared with those stored in the database of the robot.

Unlike the local localization problem, here the robot is as-
sumed to retrieve its location without considering any his-
torical information about the position of the robot. For this
reason the problem of global localization is also referred to
as the kidnapped robot problem [10].

The localization in mainly performed in two phases:
First, the robot performs an exploration phase during, which
it discovers the environment for its first time, collects im-
ages from different positions and extracts features from
these images. The features are stored in the robot mem-
ory along with the corresponding robot positions, usually
in (x, y, θ) terms. The computation power that the robot re-
quires during the exploration phase is not critical.

When the robot performs the localization phase, the
robot should retrieve its position by comparing the features
from its current image with the features in the database. The
robot should perform this as fast as possible so as not to de-
lay the other jobs which the robot intends to perform.

When applying iterative SIFT to the robot localization,
we try to reduce the computational effort of the feature ex-
traction as much as possible while maintaining high local-
ization accuracy. This means that the robot will try to local-
ize itself using less keypoints than the classical SIFT. The
keypoints in iterative SIFT are found through a random pro-
cess. This makes it dangerous that those keypoints found in
the exploration phase are different from those found in the
localization phase or that the common keypoints between
the two are not sufficient for localization. Since the compu-
tation time of the exploration phase is not critical, we over-
come this problem by applying classical SIFT in the explo-
ration phase and iterative SIFT in the localization phase.

4.2 Similarity Measure

When comparing images through their corresponding
features we apply the following similarity measure between
each two images: For each keypoint in a given imageka

(with 128 elements) we find the two closest matched key-
pointskb andkc from the other image. The matches are cal-
culated through the squared distance measure in equation
(5):

d (kx, ky) =
128∑

i=1

(kxi − kyi)
2 (5)

A positive match of the keypointka with kb is recognized
if 4 ∗ d (ka, kb) < d (ka, kc). This leads to robust match-
ing. The final decision which image is similar to which is
then given by the one with the maximum number of posi-
tive matches.
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Fig. 4. The time required to find a given number of keypoints us-
ing iterative SIFT versus the time of SIFT.
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Fig. 5. Average distance from the ground truth.

5 TIME CONSIDERATIONS OF ITERATIVE SIFT

Before introducing the experimental results, we first
demonstrate the ability of iterative SIFT to extract a given
number of keypoints and how this varies with the re-
quired time. Figure 4 consists of repeated experiments with
the given keypoints and the corresponding time. The plot
also shows that the SIFT approach finds a constant num-
ber of keypoints and requires a relative high and constant
time.

It is worth noting that even though iterative SIFT finds
a good amount of features in less time than it would take
SIFT, our approach fails to keep doing so as the number of
given keypoints gets higher and is not able find the num-
ber of keypoints that the classical SIFT finds within less or
equal time. This is because our approach is based on par-
ticles which are randomly distributed in the search space.
These particles need much more time than the linear ap-
proach of SIFT in order to cover the whole search space.

Still, the application of robot localization, as well as
other similar applications does not need such a large num-
ber of keypoints as SIFT produces, as seen in section (6).
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Fig. 6. Average time to match the keypoints during localization.
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Fig. 7. Robot pose estimates and corresponding ground truth using
SIFT. Average distance =12.81 cm.
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Fig. 8. Robot pose estimates and corresponding ground truth using
iterative SIFT with 50 keypoints. Average distance = 12.35 cm.

6 EXPERIMENTAL RESULTS

To simulate the global localization of a mobile robot we
made the following experiments, which consist of trying to
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Fig. 9. Matching two images using the SIFT approach. There are
57 common keypoints. The distance between the positions of the
two images is 10.17 cm.

Fig. 10. Matching two images using the iterative SIFT approach
with 50 keypoints. There are 17 common keypoints. The distance
between the positions of the two images is 10.17 cm.

match a set of indoor images taken by a mobile robot during
its localization phase to another set of images which repre-
sents the exploration phase. Each of the images is associated
with ground truth information, namely the robot position in
(x, y, θ) terms. An accurate localization is then judged to
be the one which minimize the distance between the posi-
tions of the images being compared from the two sets. We
use the same image set as in [12], which consists of 121 in-
door images. The images are taken in a11 × 11 grid in a
robot lab, 20 cm apart from each other. For testing, another
30 images distributed in the robot lab are used. The camera
in all the experiments is always headed towards the same an-
gle, which means that we deal only with(x, y) coordinates
and can neglect the orientationθ.

During the exploration phase we apply the classical SIFT
approach to extract all the keypoints from the 121 images.
Then we use the iterative SIFT approach to extract the key-
points from the 30 test images and match them with the key-
points of the exploration phase.

We have seen that the iterative SIFT can be applied with a
small amount of time, but this should be compromised with
the localization accuracy. Figure 5 illustrates the localiza-
tion accuracy in terms of the average distance between the
robot positions. This distance is to be minimized for bet-

Fig. 11. Matching two images using the iterative SIFT approach
with 25 keypoints. There are 11 common keypoints. The distance
between the positions of the two images is 18.1 cm.

Fig. 12. Matching two images using the iterative SIFT approach
with 10 keypoints. There are 5 common keypoints. The distance
between the positions of the two images is 14.9 cm.

ter localization. The figure shows the results of both SIFT
and iterative SIFT using different numbers of keypoints.
It is worth mentioning that this experiment was repeated
many times to test the different random distributions of the
particles and consequently to possibly find different key-
points. We have noticed that the final matching results did
not change as we repeated the experiments. This is because
of the robustness in the keypoints and the similarity mea-
sure.

Figure 5 also shows that using an iterative SIFT with
50 keypoints worked even better than SIFT itself and re-
quires less time. Although this result can not be generalized
it shows that the many features that the SIFT produces do
not always lead to more accurate localisation.

Since the number of keypoints in the iterative SIFT is
clearly reduced, the time for matching two sets of keypoints
during the robot localization, as explained in subsection
(4.2), can be minimized to a great extent. Figure 6 shows
the time required by each approach.

In figure 7 a map is illustrated, the squares are the im-
age positions during the exploration phase, and the stars are
the image positions in the localization phase. The lines be-
tween them are the matching results when applying SIFT
features. Matching is accomplished as discussed in section
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(4.2). When repeating the same experiment using iterative
SIFT with 50 keypoints as seen in figure 8 we can see that
the localization results are better than with SIFT.

Figures 9, 10, 11 and 12 demonstrate the localization of
an image using SIFT and iterative SIFT of different num-
ber of keypoints. The common keypoints between the im-
ages are also illustrated.

7 CONCLUSION

In this paper we have introduced a practical idea to speed
up the SIFT approach. The number of keypoints can be de-
fined in advance and the computation time is proportional
to that given number of keypoints. When applying the ap-
proach to the global robot localization problem, we demon-
strated that this approach is suitable since not many key-
points are needed. The approach can be generally applied
to any similar problem. It should be obvious that any mod-
ification to the original SIFT approach, such as in the key-
point descriptor or orientation assignment, may also be ap-
plied to this approach.
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