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Abstract—Echolocating bats can make nocturnal
flights in acoustically cluttered environments with
the use of echolocation. Their ability to evaluate tar-
gets in complete darkness provides mobile robots an
opportunity to learn target detection, classification
and identification with similar biomimetic platforms.
In this work, natural landmark classification with a
binaural system, a sequential sensing strategy and
a frequency after reconstruction algorithm were de-
veloped and tested. The aim of the work is to over-
come some inherent shortcomings of airborne sonar
and take advantage of bats’ perceived properties for
mobile robots’ navigation in natural environments.
Experimental results suggest considerable improve-
ments in classification accuracy can be achieved by
the use of this sequential classification method.

I. Introduction

Since the 19th century there is an increasing inter-
est to study bats’ marvellous ability to ”see in the
dark”. Some of the recent work relevant to sonar target
classification is reviewed here: Leonard and Durrant-
Whyte used the feature of Region of Constant Depth
(RCD) for navigation[5]. Kimoto and Yuta detected
hedges with standard deviation of range readings[3].
McKerrow extacted features both for indoor and out-
door landmark classification[6][7]. L. Kleeman achieved
accurate measurement and classification of three target
types (plane, corner and edge[1]. Roman Kuc tried to
recognize penny coins using binaural information of
a biomimetic sonar system[4]. Walker and Peremans
used a bionic sonar head successfully for single target
tracking in clutter[13]. Rolf Mueller made classification
of 4 trees with the features of Distant Interspike Inter-
vals (DIIS)[8]. Although it is believed that the broad-
band FM echolocation calls cannot provide detailed
information about the fine texture of objects [11], it
still deserves study when it can provide sufficient cues
for certain tasks such as mobile robot navigation with
certain sensing strategies. The aim of this work is to
avoid some inherent shortcomings of airborne sonar and
take advantage of bats’ perceived properties for mobile
robot’s navigation. A sequential sensing strategy and
a frequency after signal reconstruction algorithm are
developed and tested, aiming at biosonar’s practical

application in mobile robots’ outdoor navigation, where
complex natural landmarks are far more richer than
simple geometrical forms. The organization of this pa-
per is the followings: section 2 describes some inherent
problems of the biosonar signal, section 3 introduces
the method of sequential sensing. Section 4 presents
experimental results, while conclusions are given in
section 5.

II. PROBLEM

The auditory system of echolocating bats assembles
information over time to build a representation of the
relative moving targets [9]. Successful classification of
a few simple geometric targets has been achieved by
special configuration of broadband ultrasonic sensors[1].
But in natural environments most of the landmarks like
plants are irregular and consist of many small reflectors,
which pose a special challenge for sonar systems limited
to sparse sampling[8]. Eyes can image all spatial visible
reflectors like leaves at the same time, but their percep-
tion mechanism is totally different to a biosonar’s due to
physical limitations of the airborne sonar. The first lim-
itation of a biosonar signal is its low dimension. The 1D
echoes received by ears are the result of superposition
from 3D reflections. There is still no perfect means like
a camera lens to decompose the signal concurrently into
higher dimensions with good resolution, although some
multi-pixel sonar system have reached the resolution
beyond 64×64. The second limitation is the incomplete-
ness of individual echo’s representation of the observed
target. All visible reflectors of a multi-faceted target
shall give a reflection when ensonified, but only those
that give a strong perpendicular reflection may be heard
by the receiving sensors. Most features extracted from
a single echo are not robust enough to be directly used
for natural landmark classification. The third limita-
tion is the signal distortion from spatial superposition.
Due to the duration length Δt of the chirp sent, the
received echo over time A(t) doesn’t solely represent
the reflections over distance d(t). It brings trouble to
our work of studying 3D geometrical difference through
1D signal probing. The second limitation gives reason
for using statistical features, which can be extracted
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from large numbers of random echoes [8]. But it poses
a hard challenge for the computing speed of mobile
robots, which must make decisions quickly in real world
navigation. Instead of utilizing echoes randomly, a se-
quential sensing strategy is used in this paper to solve
this problem. By keeping the information of the original
sampling sequence (section 3.1) we can extract robust
cues about a target’s structural geometry over sequen-
tial observations. In theory, the third limitation can be
overcome with the utilization of a short enough chirp.
But in reality a chirp’s minimum duration is limited by
the maximum sample frequency of the hardware, and
a too short chirp can’t generate echoes with enough
energy and signal to noise ratio (SNR). In this paper a
frequency after signal reconstruction algorithm is used
to correct false superposition (section 3.2), it works only
with FM chirps.

III. SEQUENTIAL CLASSIFICATION

METHOD

The hardware of our biosonar system consists of a
robot which has two Intel Pentium 3 computer(Robin1
and Robin2), a National Instruments NI6110 analog
I/O card, a Mini SSCII serial servo controller, a
BNC2110 connector, and this biosonar head (figure1).
The biosonar head consists of 3 Polaroid sensors in a
triangular layout, similar to the layout of a bat’s mouth
and ears[10]: two Polaroid 600 sensors spaced 12.5cm
apart as ears, a Polaroid 7000 sensor as mouth in the
middle between the two ears but 2.5cm lower. With two
turning ears, which have two degrees of freedom each,
we can not only obtain a measurement of the target’s
distance and bearing to the robot by calculating time
of flight (TOF), but also enhance the signal to noise
rate (SNR) and record pairs of related echoes from 2
orientations for further study. The maximum sampling
speed of the NI6110 card is 5MHz, we utilize 1MHz
in our research. The NiMH charger box provides the
sensors with a 150V power supply.

Fig. 1. Biosonar head

The software consists of four layers in Red Hat Linux
(figure2). The NI6110 driver software is required for the
AI/AO card to achieve 1MHz input sampling speed.

A. Sequential sensing

Since an individual echo is only a partial and in-
complete representation of the observed target, and
bats typically make some inspections of a potential
target through hovering before a decision is made[2], we
believe that the sequence of echoes can provide decisive
information for complex natural landmark classifica-
tion. The dynamic sensing strategy of bats is simulated
by looking around the target with certain intervals and
certain observing ranges. The sequence of continuous
probing chirps along the navigation track is kept as
the sensing sequence for the following processing. The
primary movement strategy used in this paper is the
biosonar’s relative turning around 3 artificial land-
marks. In this way an additional dimension of sequential
movement is added into the observation space. The
inter-echo’s variations can also yield additional cues for
classification.

Fig. 2. Software structure

B. Sequential reconstruction

Before extracting features, we used a reconstruction
algorithm that we invented to overcome the superpo-
sition problem in sequentially sensed echoes (figure3).
Through reconstruction of different frequency compo-
nents in echo A(t), we got the resulting signal A′(t).
A′(t) corresponds directly with reflection along distance
d(t).

Fig. 3. Echo shifting and reconstruction according to frequencies

A
′
(t) = A1(t) + A2(t + Δ2) + · · · + An(t + Δn) (1)
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Δi = Δt × (fhigh − fi)
(fhigh − flow)

(2)

Δt = N/S (3)

Where Ai(t) is the result of band pass gamma tone
filtering, whose centre frequency is fi, fhigh and flow

are respectively the maximum and minimum frequency
of the sent FM chirp. Shifting time Δi is decided by the
position of fi in the chirp, whose duration Δt is certain
under certain chirp length (N = 256) and sampling
rate(S = 1Mhz).

C. Feature extraction and matching

After signal reconstruction, Seven features are ex-
tracted (see table I ) from an individual echo signal
A′(t). They are selected from twelve tested features
due to their performances. Their original sampling
sequences are kept by storing them in feature arrays
fi(θ, d), where θ is the horizontal orientation, d the
distance between biosonar head and target, i the feature
code number (1-7). Those features’ performance varies
under different circumstances. In order to reduce their
dependence on distance and keep the amplitude differ-
ence between trees, a normalization is performed before
feature extraction (figure4), A”(t) = A

′
(t)/

∑
A

′
(t).

Following extraction of seven 1D features (in table
1) from all individual A”(t) in the observation range,
three new 2D features are then calculated (S1, S2, S3)
out of them, where the second dimension is the original
sampling sequence and s3 is a combined feature from 3
to 7 features. In the following sections we only discuss
three 2D signatures generated from those 7 features:

• S1, amplitude envelope signature (feature 1 in
table)

• S2, local maximum’s position signature (feature 2)
• S3, combined signature {f (i, j)}, i ∈ [3, 7]
Feature S1 and S3 are then processed with a moving

window 2D correlation algorithm.

r =
∑

m

∑
n (Amn − A) (Bmn − B)√(∑

m

∑
n (Amn − A)2

)(∑
m

∑
n (Bmn − B)2

)
(4)

where the sampled feature matrix B is correlated
with the stored matrix templates A like a moving win-
dow. But feature S2 is so salient that a single randomly
emerged perpendicular leaf may change it radically. It
can only be used through statistical calculation. Here a
Kolmogorov-Smirnov algorithm is used to calculate the
individual signal similarity in sequence.

K2 =
k∑

i=1

(EXPi − OBSi)2

EXPi
(5)

Three matching results from these 3 features are the
input of the k-nearest neighbour algorithm to make the

Fig. 4. Process of signal processing

Fig. 5. Three plants: ficus, bamboos and schefflera

final classification. The whole process of this method is
shown in figure 4.

Three matching results from these 3 features are the
input of the k-nearest neighbour algorithm to make the
final classification. The whole process of this method is
shown in figure 4.

IV. EXPERIMENT RESULTS

Since it is believed that the frequency-modulated
(FM) chirps are well suited for target localization [12],
a 256us duration broadband FM chirp is used here.
Natural landmarks in this paper were 3 artificial trees
of similar size (1.7m high, see figure5). Because there
are normally no geometrical models of the multi-faceted
landmarks, a biosonar can not decide precisely its
distance to them from unpredictable orientation, we
sample deliberately in ±0.15m distance range to see
how this method can tolerate some distance variance,
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TABLE I

Features

Num Name formula Denotation

1 Wave form dij =
n∑

k=1

(Ai(k)−Aj(k)) envelope matching degree

Distance Ai =
m∑

l=1

Ai(l)/m

2 Local maxi. P (pi
max) local maximums’ position set

3 Sum-area Sumi =
edage2∑

k=edage1

Aik effective reflection area

4 Global max ampli. Xi
max = max

i
(Ai(j)/

n∑
j=1

Ai(j)) the largest amplitude

5 Mean amplitude Xi
mean =

n∑
j=1

Ai(j)/n average reflection ability

6 Crest factor Xi
c = Xi

max / Xi
rms impulsiveness of echo

7 Depth Di = (edge(2) − edge(1)) scale of target

Fig. 6. One round of sequentially sampled echoes of 3 trees

which is important for robot’s application. The results
of one round of sequential sensing of three trees in
1.5 ± 0.15m distance are shown in the figure 6. Their
corresponding reconstructed signals are shown on the
figure 7, where the direct noises is gotten rid of by cut
the beginning part of the signal away .

Firstly, a statistical classification method that uses

Fig. 7. The reconstructed signal from sampled echoes of 3 trees

the features of Distant Interspike Intervals (DII) [8] was
performed. It only works with a limited angle range
of observation. When sensing from random relative
orientations between trees and biosonar head, the clas-
sification rates with different orientations of observation
are shown in figure 8. The horizontal axis in the figure
denotes the observation orientation. From every 10
degree orientation 20 random echoes were sampled.
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Fig. 8. Classification rate with different orientations by the
statistical method using DII features

Fig. 9. classification rate with sequential sensing under different
orientations without signal reconstruction

Secondly, the proposed sequential sensing method
was tested. The signal reconstruction block in the clas-
sification process (see figure 4) is at first omitted and
2D Fast Fourier Transform (FFT) is used to pave the
sequential echoes smooth before extracting 7 features.
The classification rates under sequential observing an-
gles are shown in figure 9, which is calculated from
420 sequential tests. The horizontal axis denotes the
orientation of sequential observation.

Then, through another 420 sequential tests with sig-
nal reconstruction , the classification rates are shown in
figure 10. The improvements in SNR and accuracy are
obvious. The method can tolerate the adopt distance
variations. The whole process of a 30 degree decision by
our present system needs 7.6 seconds(5+2.6), where the
scan movement of robot(robin in figure 1) takes about 5
seconds. They can still be shortened by optimizing the
software and changing the robot respectively.

V. Conclusion and future work

This paper has presented a method for natural land-
mark classification with biosonar. Test results indicate
that obvious improvements in classification accuracy
can be achieved by the use of this sequential sensing
method. They suggest that a mobile robot can achieve
the ability to classify natural landmarks like trees only
based on sonar.

Fig. 10. Sequential classification rate under different orientations
with signal reconstruction

The research tried to take advantage of perceived
properties of bats’ prey identification and landmark
identification mechanisms and strategies, without the
claim to be a precise model of bats echolocation. It
can not separate multi-targets from limited orientation
ranges at present. Further work will include studying
this correspondence problem, quantifying the distance
compensation model, realizing different sensing strate-
gies, and utilizing advanced computation algorithms to
enhance classification performance.
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