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Abstract. G-protein coupled receptors (GPCRs) are a large superfam-
ily of integral membrane proteins that transduce signals across the cell
membrane. Because of that important property and other physiological
roles undertaken by the GPCR family, they have been an important tar-
get of therapeutic drugs. The function of many GPCRs is not known and
accurate classification of GPCRs can help us to predict their function.
In this study we suggest a kernel based method to classify them at the
subfamily and sub-subfamily level. To enhance the accuracy and sensi-
tivity of classifiers at the sub-subfamily level that we were facing with a
low number of sequences (imbalanced data), we used our new synthetic
protein sequence oversampling (SPSO) algorithm and could gain an over-
all accuracy and Matthew’s correlation coefficient (MCC) of 98.4 % and
0.98 for class A, nearly 100% and 1 for class B and 96.95% and 0.91
for class C, respectively, at the subfamily level and overall accuracy and
MCC of 97.93% and 0.95 at the sub-subfamily level. The results shows
that Our oversampling technique can be used for other applications of
protein classification with the problem of imbalanced data.

1 Introduction

G-protein coupled receptors (GPCRs) are a large superfamily of integral mem-
brane proteins that transfer signals across the cell membrane. Through their
extracelluar and transmembrane domains they respond to a variety of ligands,
including neurotransmitters, hormones and odorants. They are characterized by
seven hydrophobic regions that pass through the cell membrane (transmembrane
regions) [1], as shown in Fig. 1. Each GPCR has an amino terminal (NH2 or
N-terminal) region outside of the cell, followed by intracellular and extracellular
loops, which connect the seven transmembrane regions, and also an intracellular
carboxyl terminal (COOH- or C-terminal) region. GPCRs are involved in signal
transmission from the outside to the interior of the cell through interaction with
heterotrimeric G-proteins, or proteins that bind to guanine (G) nucleotides. The
receptor is activated when a ligand that carries an environmental signal binds
to a part of its cell surface component.A wide range of molecules is used as
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the ligands including peptide hormones, neurotransmitters, pancrine mediators,
etc., and they can be in many forms: e.g., ions, amino acids, lipid messengers
and protease [2].

The function of many GPCRs are unknown and understanding the signaling
pathways and their ligands in laboratory is expensive and time-consuming. But
the sequence of thousands of GPCRs are known [3]. Hence, if we can develop
an accurate predictor of the class (and so function) of GPCRs from their se-
quence it can be of great usefulness for biological and pharmacological research.
According to the binding of GPCRs to different ligand types they are classified
into different families. Based on GPCRDB (G protein coupled receptor data
base) [3] all GPCRs have been divided into a hierarchy of ’class’, ’subfamily’,
’sub-sub-family’ and ’type’ (Fig. 2).

Because of the divergent nature of GPCRs it is difficult to predict the clas-
sification of GPCRs by means of sequence alignment approaches. The standard
bioinformatics approach for function prediction of proteins is to use sequence
comparison tools such as PSI-BLAST [4] that can identify homologous proteins
based on the assumption of low evolutionary divergence, which is not true for
GPCRs families. Here, we are facing a more difficult problem of remote homol-
ogy detection, where classifiers must detect a remote relation between unknown
sequence and training data.

There have been several recent developments to the classification problem
specific to the GPCR superfamilies. Moriyama and Kim [5] developed a classi-
fication method based on discriminant function analysis using composition and
physicochemical properties of amino acids. Elrod and Chou [6] suggested a co-
variant discriminant algorithm to predict GPCR’s type from amino acid compo-
sition. Qian et al. [7] suggested a phylogenetic tree based profile hidden Markov
model (T-HMM) for GPCR classification. Karchin et al. [8] developed a system
based on support vector machines built on profile HMMs. They generated fisher
score vectors [9] as features for SVM classifier form those profile HMMs. They
showed that classifiers like SVMs that are trained on both positive and negative
examples can increase the accuracy of GPCRs classification compared with only
HMMs as generative method.

To increase the accuracy of remote homology detection by discriminative
methods, researchers also focused on finding new kernels, which measure the
similarity between sequences, as main part of SVM based classifiers. So after
choosing an appropriate feature space, and representing each sequence as a vec-
tor in that space, one takes the inner product between these vector-space rep-
resentations. Spectrum kernel [10], Mismatch kernel [11] and Local alignment
kernel [12] are examples of those kernels and it has been shown that they have
outperformed previous generative methods for remote homology detection.

In our study we want to classify GPCRs at the subfamily and sub-subfamily
level. In this case, a problem in classification of GPCRs is the number of proteins
at the sub-subfamily level. At this level in some sub-subfamilies we have only a
very low number of protein sequences as positive data (minor class) compared
with others (major class). In general, with imbalanced data, the SVM classifier
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tends to perform best for classifying the majority class but fails to classify the
minority class correctly. Because of that problem some researchers have not con-
sidered those GPCRs families, or if they have included them in their classifier
they did not get as good results for them as for other families with enough data
[13]. We used a new oversampling technique for protein sequences, explained in
[24] to overcome that problem. Based on that method at first we make a HMM
profile of those sequences and then try to increase the number of sequences in
that family synthetically considering the phylogenetic tree of that family and
also the distribution of other families near to that family. For classification, we
use the local alignment kernel (LA kernel) that has been shown to have bet-
ter performance compared with other previously suggested kernels for remote
homology detection when applied to the standard SCOP test set [15]. It repre-
sents a modification of the Smith-Waterman score to incorporate sub-optimal
alignments by computing the sum (instead of the maximum) over all possible
alignments. Using that kernel along with our oversampling technique we could
get better accuracy and Matthew’s correlation coefficient for the classification of
GPCRs at the subfamily and sub-subfamily level than other previously published
method.

Fig. 1. Schematic representation of GPCR shown as seven transmembrane helices de-
picted as cylinders along with cytoplasmic and extracellular hydrophilic loops.

2 Materials

The dataset of this study was collected from GPDRDB [3] and we used the lat-
est dataset of GPCRDB (June 2005 release, http://www.gpcr.org/7tm/). The
six main families are: Class A (Rhodopsin like), Class B (Secretin like), Class
C (Metabotropic glutamate/pheromone), Class D (Fungal pheromone), Class E
(cAMP receptors) and Frizzled/Smoothened family. The sequences of proteins
in GPCRDB were taken from SWISS-PROT and TrEMBL data banks [14]. All
six families of GPCRs (5300 protein sequences) are classified in 43 subfamilies
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and 99 sub-subfamilies. The three largest classes are the rhodopsin-like recep-
tors, the secretion-like receptors and the metabotropic glutamate receptors (class
A, B, and C). The rhodopsin-like family is the largest and most studied with
approximately 90 percent of all receptors (4737 out of 5300).

Fig. 2. GPCR family tree according to GPCRDB nomenclature.

3 Algorithms

3.1 Kernel Function

In discriminative methods, a classifier learns a rule to classify unlabelled se-
quences into a class of proteins by using both sequences belonging to this class
(positive examples) and sequences known as not belonging to that class (negative
examples). Given a set of positive training sequences χ+ and a set of negative
training sequence χ− an SVM learns a classification function f(x) of the form:

f (x) =
∑

i;xi∈χ+

λiK (x, xi)−
∑

i;xi∈χ
−

λiK (x, xi) (1)
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where non-negative λi weights are computed during training by maximizing a
quadratic objective function and K(., .) is the kernel function. Given this func-
tion, a new sequence X is predicted to belong to positive dataset if the value of
f(x) is positive, otherwise it belongs to the negative dataset.

On the other hand, variable length protein sequences must be converted to
fixed length vectors to be accepted as input to a SVM classifier. These vectors
should exploit prior knowledge of proteins belonging to one family and enable us
to have maximum discrimination for unrelated proteins. So the kernel function
is of great importance for SVM classifiers in learning the dataset and also in
exploiting prior knowledge of proteins and mapping data from input space to
feature space. The Smith Waterman (SW) alignment score between two protein
sequences tries to incorporate biological knowledge about protein evolution by
aligning similar parts of two sequences but it lacks the positive definiteness
as a valid kernel [15]. The local alignment kernel mimics the behavior of the
Smith Waterman (SW) alignment score and tries to incorporate the biological
knowledge about protein evolution into a string kernel function. But unlike the
SW alignment, it has been proven that it is a valid string kernel. We used this
kernel for our classification task, so we give a brief introduction to that algorithm:
If K1 and K2 are two string kernels then the convolution kernel K1?K2 is defined
for any two strings x and y by:

K1 ? K2(x, y) =
∑

x1x2=x,y1y2=y

K1(x1, y2)K2(x2, y2) (2)

Based on work of Haussler [16] if K1 and K2 are valid string kernels, then K1?
K2 is also a valid kernel. Vert et al. [12] used that point and defined a kernel to
detect local alignments between strings by convolving simpler kernels.The local
alignment kernel (LA) consists of three convolved string kernels. The first kernel
models the null contribution of a substring before and after a local alignment in
the score:

∀(x, y) ∈ χ2, K0(x, y) = 1 (3)

The second string kernel is for alignment between two residues:

K(β)
α (x, y) =

{

0 if |x| 6= 1 or |y| 6= 1
exp[βs(x, y)] otherwise,

(4)

where β ≥ 0 controls the influence of suboptimal alignments in the kernel value
and s(x, y) is a symmetric similarity score or substitution matrix, e.g. BLO-
SUM62.

The third string kernel models affine penalty gaps:

K(β)
g (x, y) = exp {β [g (|x|) + g (|y|)]} (5)

g(n) is the cost of a gap of length n given by:
{

g (0) = 0 if n = 0,
g (n) = d + e (n− 1) if n ≥ 1,

(6)
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where d and e are gap opening and extension costs. After that the string kernel
based on local alignment of exactly n residues is defined as:

K
(β)
n (x, y) = K0 ∗

(

K
(β)
α ∗K

(β)
α

)(n−1)

∗K
(β)
α ∗K0. (7)

This kernel quantifies the similarity of two strings x and y based on local align-
ments of exactly n residues. In order to compare two sequences through all
possible local alignments, it is necessary to take into account alignments with
different numbers n of aligned residues:

K
(β)
LA =

∞
∑

i=0

K
(β)
(i) . (8)

The implementation of the above kernel can be done via dynamic program-
ming [12].

3.2 Synthetic Protein Sequence Oversampling (SPSO)

In classification of GPCRs at the subfamily and specially sub-subfamily level we
are facing an imbalanced dataset. There have been two types of solutions to this
problem. The first type, as exemplified by different forms of re-sampling tech-
niques, tries to increase the number of minor class examples (oversampling) or
decrease the number of major class examples (undersampling) in different ways.
The second type adjusts the cost of error or decision thresholds in classification
for imbalanced data and tries to control the sensitivity of the classifier [17–20].
In protein classification problems the second type of those approaches has been
applied more and a class-depending regularization parameter is added to the di-
agonal of the kernel matrix: K ′(x, x) = K(x, x)+λn/N , where n and N are the
number of positive (or negative) instances and the whole dataset, respectively.

In GPCR classification, even with that method we could not get good results,
especially at the sub-subfamily level. One important issue with imbalanced data
is that making the classifier too specific may make it too sensitive to noise
specially with highly imbalanced datasets, having a ratio of 100 to 1 and more,
the classifier often treats positive data as noise and considers it as negative data
and we also have instabilities in the classifier. It means the cost that we consider
for an error can be an important issue, and sometimes choosing a value near
the optimum value can give unsatisfying results. Then, in this case, only using a
different error cost method (DEC) [19] is not suitable. We found out that if we
can add synthetic sequences (oversampling) at the sub-subfamily level (minority
class) in a way that those added sequences are related to that class and away from
other classes (majority class), the accuracy of a classifier will be increased. For
that, we used our newly developed algorithm named synthetic protein sequence
oversampling (SPSO) technique [24] in which the minority class in the data space
is oversampled by creating synthetic examples. It considers the distribution of
residues of the protein sequence using a hidden Markov model profile of the
minority class and also one of the majority class and then synthesizes protein
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sequences which can precisely increase the information of the minor class. We
used this method along with the DEC method to increase the sensitivity and
stability of the classifier.

4 Results

In this study we used the local alignment kernel (LA kernel) to generate vector
from protein sequences. For this, we divided the data into training and test data
and then build a kernel matrix K for the training data as shown in Fig. 3. Each
cell of the matrix is a local alignment kernel score between protein i and protein
j. After that we normalized the kernel matrix via Kij ← Kij/

√

KiiKjj . We
used the SPSO algorithm, explained above, for each subfamily or sub-subfamily
whose number of sequences in the training set was less than 50 and more than
4, to synthetically increase the number of data up to 800 percent (depending
on the number of sequences). Each subfamily or sub-subfamily is considered as
positive training data and all others as negative training data. After that the
SVM algorithm with RBF kernel is used for training and for highly imbalanced
data (after oversampling) we also use the DEC (different error cost) method. For
testing, we create feature vectors by calculating a local alignment kernel between
the test sequence and all training data.

Fig. 3. Calculating the kernel matrix of the training data.

In subfamily classification we randomly partitioned the data in two non-
overlapping sets and used a two-fold cross validation protocol. The training and
testing was carried out twice using one set for training and the other one for test-
ing. The prediction quality was then evaluated by Accuracy (ACC), Matthew’s
correlation coefficient (MCC), overall Accuracy (ACC)and overall MCC (MCC)
as follows:
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ACC =
TP + TN

(TN + FN + TP + FP )
(9)

MCC =
TP × TN − FN × FP

√

(TN + FN)(TP + FN)(TN + FP )(TP + FP )
(10)

ACC =

N
∑

i=1

ACC(i)

N
(11)

MCC =
N

∑

i=1

MCC(i)

N
(12)

(TP = true positive, TN = true negative, FP = false positive , FN = false
negative, N=number of subfamily or sub-subfamily)

In our study, we used the Bioinformatics Toolbox of MATLAB to create
the HMM profiles of families and the SVMlight package [23], to perform SVM
training and classification.

Tables 1, 2 and 3 show the results of subfamily classification for classes A,B
and C of GPCRs. We see that even when the number of sequences is low, the
accuracy of our method is high. The overall accuracy for families A, B and C
is 98.94%, 99.94% and 96.95%, respectively, and overall MCC for families A, B
and C is 0.98, 0.99 and 0.91, respectively. The results show that almost all of
the subfamilies are accurately predicted with our method.

Table 1. The performance of our method in GPCRs subfamily classification (Class
A).

Class A subfamilies Accuracy (%) MCC

Amine 99.9 0.99
Peptide 97.8 0.97
Hormone protein 100.0 1.00
(Rhod)opsin 99.6 0.99
Olfactory 99.9 0.99
Prostanoid 99.9 .98
Nucleotide-like 100.0 1.00
Cannabinoid 100.0 1.00
Platelet activating factor 100.0 1.00
Gonadotropin-releasing hormone 100.0 1.00
Thyrotropin-releasing hormone 100.0 1.00
Melatonin 100.0 1.00
Viral 87.0 0.8
Lysosphingolipid 100.0 1.00
Leukotriene 100.0 1.00

Overall 98.4 0.98
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Class B subfamilies Accuracy (%) MCC

Calcitonin 100.0 1.00
Corticotropin releasing factor 100.0 1.00
Glucagon 100.0 1.00
Growth hormone-releasing hormone 100.0 1.00
Parathyroid hormone 100.0 1.00
PACAP 100.0 1.00
Secretin 100.0 1.00
Vasoactive intestinal polypeptide 100.0 1.00
Diuretic hormone 99.1 0.91
EMR1 100.0 1.00
Latrophilin 100.0 1.00
Brain-specific angiogenesis inhibitor 100.0 1.00
Methuselah-like proteins (MTH) 100.0 1.00
Cadherin EGF LAG (CELSR) 100.0 1.00

Overall ≈ 100 0.99

Table 2. The performance of our method in GPCRs subfamily classification (Class
B).

Class C subfamilies Accuracy (%) MCC

Metabotropic glutamate 92.1 0.84
Calcium-sensing like 94.2 0.82
Putative pheromone receptors 98.7 0.93
GABA-B 100.0 1.00
Orphan GPRC5 97.1 0.96
Orphan GPRC6 100.0 1.00
Taste receptors (T1R) 97.2 0.81

Overall 96.95 0.91

Table 3. The performance of our method in GPCRs subfamily classification (Class
C).

For sub-subfamily classification we used 5-fold cross validation. Table 4 shows
the results for the sub-subfamily level. We see that in this level also the accuracy
is high and we could classify most of GPCRs sub-subfamilies. We could obtain
an overall accuracy of 97.93% and a MCC of 0.95 for all sub-subfamilies. At this
level we could increase the accuracy, especially when the number of sequences
in the positive training data was less than 10, and there was no example in
which with our oversampling method the accuracy decreases. Table 5 shows the
result of classification in some sub-subfamilies that we used only DEC (different
error cost) compared with DEC along with the SPSO method. We tried to
find optimum value for both rate of oversampling and error costs. We used the
numbers to show the level of family, subfamily and sub-subfamily. For example
001-001-002 means the sub-subfamily Adrenoceptors that belongs to subfamily
of Amine (001-001) and class A (001) (as shown in Fig. 2). We see that with
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our method the MCC in general increases and, especially when the number of
sequences is low, the efficiency of our method is apparent.

Table 4. The performance of our method in GPCRs sub-subfamily classification for
Class A,B and C.

Class A subfamilies Overall Accuracy (%) Overall MCC

Amine 97.1 0.91
Peptide 99.9 0.93
Hormone protein 100.1 1.00
(Rhod)opsin 96.6 0.95
Olfactory 98.9 0.92
Prostanoid 98.0 0.94
Gonadotropin-releasing hormone 96.1 0.93
Thyrotropin-releasing hormone 91.2 0.94
Lysosphingolipid 98.4 1.00

Class B Latrophilin 100.0 1.00

Class C Metabotropic glutamate 98.1 0.96
Calcium-sensing like 97.2 0.93
GABA-B 100.0 1.00

Overall 97.93 0.95

5 Discussion and conclusion

GPCR family classification enables us to find the specificity for ligand that
binds to the receptor and also to predict the function of GPCRs. Our aim in
this study was to develop an accurate method for classification of GPCRs at
the sub-subfamily level, at which we have the problem of imbalanced data. We
chose a local alignment kernel(LA kernel) as suitable kernel for our classification
task. Compared with HMMs, the LA kernel takes more time during the training
phase, but according to results of other researchers, the accuracy of discrimi-
native methods with that kernel is higher than with a generative method like
HMMs [8–10]. To solve the problem of imbalanced data we used the SPSO al-
gorithm that can be used along with DEC (different error cost). It makes the
classifier less sensitive to noise (here negative data) and increases its sensitivity.
Based on our experiments (not showed here) in classifying sub-subfamilies of a
subfamily, we get more accurate results if we select all other sub-subfamilies as
negative data rather than only sequences in that subfamily, despite the fact that
the learning step of the SVM classifier takes more time, because of the higher
dimension of the kernel matrix. But the problem of imbalanced data in this case
is severe and we tried to solve it with DEC along with the SPSO algorithm. Our
study shows again that a discriminative approach for protein classification of
GPCRs is more accurate than a generative approach. At the subfamily level we
compared our method with that of Bhasin et al. [21]. They used an SVM-based
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method with dipeptide composition of protein sequences as input. The accuracy
and MCC values of our method outperform theirs. For example in classification
of subfamily A, the overall accuracy and MCC of their method were 97.3% and
0.97 but ours are 98.4% and .98, respectively. They did a comparison with other
previously published methods like that of Karchin et al. [8] and showed that
their method outperformed the others. To the best of our knowledge there is
only one study which has been done for sub-subfamily classification [13]. Their
approach is based on bagging a classification tree and they achieved 82.4% ac-
curacy for sub-subfamily classification, which is less accurate than ours (97.93%
with MCC of 0.95) despite the fact that they had excluded families with less
than 10 sequences (we only excluded families with less than 4 sequences).

Table 5. The result of sub-subfamily classification with and without SPSO oversam-
pling for subfamilies of Peptide(Class A).

DEC DEC+SPSO
sub-subfamily Number of sequence Accuracy(%) MCC Accuracy(%) MCC

001-002-002 17 99.7 0.81 99.9 0.97
001-002-003 19 99.9 0.94 100.0 1.00
001-002-005 12 99.9 0.91 100.0 1.00
001-002-021 20 99.8 0.66 99.9 0.91
001-002-024 4 99.7 0.38 100.0 1.00
001-002-025 5 99.9 0.79 100.0 1.00
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