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Abstract— A common practical problem in mobile robotics is
the task to calibrate the robot’s sensors. Although, the general
mapping of the sensor data to robot-centered world coordinates
is given by the hardware configuration, the parameters of this
mapping vary even between robots with the same configuration.
In the RoboCup domain, these parameters can change drasti-
cally after transport or physical contact during game play. It
is therefore necessary to recalibrate the robots for their next
assignment within a few minutes, not only in order to fulfill the
future regulatory requirements of the RoboCup organization
committee to keep the setup time as low as possible. As camera
systems, especially omni-directional systems, are currently the
most important sensors in RoboCup, a reliable and fast cali-
bration method for the mapping of image to world coordinates
is necessary. Since the RoboCup environment, i.e. the soccer
field, has known dimensions and is also static, automatic
calibration using the features and landmarks of the soccer field
is possible if the robot is given an image from a known pose.
In this paper, an efficient evolutionary approach to automatic
camera calibration is presented, which is independent of the
hardware configuration. It only requires a quality function
for the parameter settings, which allows lazy evaluation. To
meet the time constraints given for this real-world optimization
problem, a novel mutation operator is introduced to enhance the
performance of the evolutionary algorithm. It samples a number
of alternative solutions using a high rate of lazy evaluation,
before deciding on the true mutative change applied on the
given individual. This new mutation operator proves to be fast
and most reliable on the camera to world calibration problem.

I. INTRODUCTION

One of the major tasks for a mobile robot is the detection
of objects and landmarks in its environment. Self-localization
algorithms and the planning of collision-free paths are de-
pending on a model of the robot’s environment resulting
from these features. A consistent model of the complete
surroundings of the robot can only be extracted using a
sensor that delivers three-dimensional data. Unfortunately,
such sensors are rare and expensive and most of the current
mobile robots use vision systems as their main sensor.
Without using a complex stereo camera system, there is no
way of extracting a complete three-dimensional environment
model from a two-dimensional camera image.
In many applications of mobile robots, especially in the
RoboCup domain [9], it is sufficient to build a two-
dimensional model of the floor plane where the robot moves,
including all obstacles and landmarks. Thus, an environment
model can be generated by mapping the image coordinates
onto two-dimensional world coordinates on the ground floor.

With such a mapping the robot can extract objects and
landmarks in the image and map them to world coordinates
using their contact point to the floor [4]. The resulting model
is similar to a bird’s eye view from above the field.
For typical camera systems this mapping can be roughly

approximated by collecting corresponding coordinate pairs
that describe the same feature, followed by fitting a two-
dimensional function through these correspondences. How-
ever, this approximation procedure is very time consuming
and prone to errors. A better way to find the mapping is to
use camera calibration techniques that extract the extrinsic
and intrinsic parameters of the camera system and build a
complete physical model of the projection [14]. Although
this method results in a very accurate model of the mapping,
it is time consuming, too. Furthermore, this technique is only
used for perspective cameras.
Omni-directional camera systems are composed of a perspec-
tive camera pointing upwards onto a convex shaped mirror
that reflects the complete surrounding of the robot (cf. Figure
1). Thus, the camera of an omni-directional camera system
can also be calibrated using the algorithm of Tsai [14].
Knowing the calibrated parameters of the camera and the
exact position of the camera and the mirror on a robot, a
special mirror shape can then be calculated to map the ground
floor without distortion [6], [10], [11].
Even if the shape of the mirror is known or especially
designed, the displacement of the mirror in all three trans-
lational axes influences the mapping from image to world

Fig. 1. Distorted image of an overhead omni-directional camera.



Fig. 2. All extracted white points from the camera image given in Fig. 1.

coordinates, too. However, after transport or maintenance
of the robot these parameters change, often resulting in a
wrong mapping. Then, a time-consuming recalibration or
readjustment of the camera system is required using these
approaches. Therefore, a calibration method is needed, that
is able to automatically estimate the parameters of the vision
system in short time. Especially RoboCup robots must recali-
brate their cameras in-between their games, as a consequence
of physical contact to other robots during a match.
In this paper we present an approach to automatic calibration
of the camera to world mapping using an image taken by
the omni-directional camera system of a RoboCup robot
located at a predefined position on the field. In contrast to the
semi-automatic method presented in [1] which uses a special
reference pattern as feature input, our approach is based on
the landmarks and features that are already contained in the
robot’s environment.
We address this automatic camera calibration problem by
means of evolutionary algorithms, because they incorporate
significant advantages for the given optimization problem.
On the one hand, evolutionary algorithms are global opti-
mization approaches, able to deal with multi-modal fitness
functions. On the other hand, they allow problem specific
extensions to fit the optimization algorithm to the problem
at hand. Both features are utilized in this paper, resulting in a
feasible algorithm for the given time constrained real-world
optimization problem of camera to world calibration.
The following section gives an introduction to the camera
to world coordinates calibration problem. Then, the applied
evolutionary algorithms are outlined in Sec. III, which also
introduces the novel mutation operator based on lazy evalu-
ation using multiple mutant alternatives. Sec. IV introduces
the hardware and the field settings used for the experiments
in Sec. V where the optimization problem is applied to a
real RoboCup robot. Finally, Sec. VI gives our conclusions
on the results obtained.

II. CAMERA TO WORLD COORDINATES MAPPING

Depending on the hardware configuration, the camera to
world coordinate mapping functions can be very different.
In the context of RoboCup, cameras pointing upwards into a

convex mirror have become a common hardware configura-
tion. The resulting image of such an omni-directional camera
system is a distorted bird’s eye view of the environment, see
Fig. 1. One advantage of omni-directional camera systems in
the context of image to world mapping is the radial symmetry
of the system. Instead of a two-dimensional mapping

d : N
2 �→ R

2, (ri, φi) → (rw, φw) (1)

of polar image coordinates (ri, φi) originating in the center
of the image to robot centered world coordinates (rw, φw),
this symmetry simplifies the mapping to a one-dimensional
mapping of the radius

d : N �→ R, ri → rw, (2)

as the angle φ is not changed from image to world coor-
dinates in such a system. Preliminary experiments showed,
that the quality of the mapping does not change significantly
when using a one-dimensional mapping function instead of
a two-dimensional. Even if the optical axis of the camera
and the symmetry axis of the mirror are not collinear, a
one-dimensional mapping function gives good results, if this
displacement is a parameter of the function d.
A suitable mapping between image coordinates and robot-
centered world coordinates is evaluated by comparing the
resulting mapping of a number of reference points to their
true coordinates. This can be done by placing the robot in
the center of a checker board grid of known dimensions
for calibration. Due to the reduced time for preparation in
a tournament, this is no longer possible. But the known
dimensions of the soccer field can be used as reference
grid instead of an artificial grid, if the robot is given his
correct position for calibration. This approach allows an on-
site camera calibration for RoboCup robots.
Unfortunately, such a scenario limits the application of
classic approaches for two reasons: First, in this on-site
calibration, the reference points (i.e. the white points, see
Fig. 2) are not evenly distributed over a wide range of
distances, thus leaving too few intermediate points for linear
interpolation methods. Secondly, due to the limited amount
of reference points, noise has a significant effect on the
results of more sophisticated methods like B-splines, which
are likely to be subject to over-fitting. Therefore, we decided
to map the image coordinates onto world coordinates using
following parameterized mapping function:

d(x, r) = (x0 · ex1+x2r2
+ x3 · r2 + x4 · r + x5) · x6, (3)

with r being a function that is used to correct the offset of the
symmetry axis of the mirror to the optical axis as follows:

r(x, (ri, φi)) =
√

(x7 − ricosφi)2 + (x8 − risinφi)2. (4)

The mapping function given in Equ. 3 is mainly influenced
by a polynomial term. However, as the mapping of the omni-
directional camera system includes the horizon, we decided
to approximate the infinite slope of the real mapping function
through an exponential term. This results in a decision vector
x of nine parameters, which are to be optimized.



To validate that a pixel p = (ri, φi) observed in the camera
image corresponds to a white field line, it is transformed into
world coordinates (d(x, r), φi) and it is checked whether or
not (d(x, r), φi) is white in the model of the soccer field:

C(p) =
{

1 : if point M(d(x, r), φi) is white
0 : else.

(5)

For all white pixels {pn = (ri,n, φi,n) | n ∈ [1 . . .N ]},
which are below an artificial horizon given by d(x, rn) <
dmax this check has to be performed, resulting in the fitness
function:

f(x) =
∑N

n=0 ri,n∑N
n=0(ri,n · C(pn))

− δ. (6)

Weighting C with ri,n is necessary, because close white
points are typically overrepresented in a reference image.
This fitness function is to be minimized and converges
to negative fitness values. The additional constant δ has
been introduced to give suitable selection pressure for the
particle filter approach and remained in the fitness function
ever since. However, it has no negative effect on the other
optimization algorithms. For the experiments presented in
this paper a value of δ = 8 was chosen.
Although there are up to 50,000 white points in a given
reference image, not all these points need to be tested. This
is exploited using lazy evaluation [5], which reduces the
execution time, but also introduces noise into the fitness
function. A lazy evaluation of L = 10% results in randomly
chosing only 5, 000 white points for testing. This subsam-
pling extremely reduces the computational load. Throughout
this paper, the amount of lazy evaluation is given as L where
it is applied. Please note, that although the optimization is
recorded over the number of fitness evaluations, an individual
evaluated using lazy evaluation requires only a fraction of the
time for a full fitness evaluation.

III. THE OPTIMIZATION ALGORITHMS

To solve the given real-world optimization problem we
applied three different optimization algorithms: a genera-
tional genetic algorithm (GA) [7], an evolution strategy (ES)
[12] and a particle filter approach (PF) [2]. The GA was
a generational real-valued GA using a real-valued vector as
genotype and applying non-isotropic self-adaption mutation
[12] and a discrete real-valued one-point crossover with
pm = 1.0 and pc = 0.5. The GA used an elite group size
of one and tournament selection for parent selection with a
tournament group size of 4.
The ES applied the same mutation and crossover operators
and parameters, but was based on a (μ, λ)-strategy using
greedy best selection for environmental selection, i.e. down
selecting from λ to μ, and random parent selection. Due to
the comma-selection the ES had no elite population.
The PF approach we applied, used mutation only and a
particle wheel selection method to select the parents. This
particle wheel selection method resembles the probabilistic
roulette-wheel selection, but uses as many equidistant point-
ers as individuals that are to be selected. This way random

fluctuations in the composition of the selected individuals are
reduced, but its selection pressure depends on the range of
the fitness values, thus the additional constant in Equ. 6.
The non-isotropic self-adaption mutation operator uses one
parameter σ to control the mutation steps size:

σ′ = σ · eτ ·N(0,1) (7a)

x′
i = xi + σ′ · Ni(0, 1). (7b)

For the following experiments we used a value of τ =
0.15 and due to the implementation given in JavaEvA [13]
this mutation operator acted on a normalized search space.
Because σ is subject to mutation and indirect selection, it is
able to self-adapt to the local properties of the search space.
Still, the initial value σinit is an important parameter, since
a small value for σinit may enhance fast convergence, while
a larger value for σinit enables the optimizer to escape local
optima in the initial phase of the optimization process.

A. The Lazy Particle Mutation Operator

A novel mutation operator is introduced in this paper,
which combines features of the self-adaptive mutation
operators of real-valued ES and the search strategy of
particle filters. This lazy particle mutation operator works as
follows: Instead of generating just one solution alternative x ′,
it generates p solution alternatives x′i (particles) according
to Equ. 7 and evaluates these alternatives taking the full
advantage of lazy evaluation. Then the lazy particle mutation
operator choses the best mutant x′∗ as true mutation, which
is then allowed to enter the traditional evolutionary cycle.
The lazy particle mutation operator is in the following
referred to as (l, p)-mutation, l giving the amount of local
lazy evaluation for the particles and p giving the number of
particles used. This lazy particle mutation operator could
also be interpreted as using a local model of the search
space, which relates the lazy particle mutation operator
to model-assisted evolutionary algorithms [8]. The local
model built for the lazy particle mutation operator could be
considered a simple nearest neighbor model based on the
lazily evaluated particles, which is thus quite unreliable due
to noise. Building a more sophisticated model of the search
space is an interesting alternative, which might counter
the effect of noise. However, the time constraints of this
real-world optimization problem prevented any extension in
that direction.

IV. HARDWARE AND FIELD SETTINGS USED FOR THE

EXPERIMENTS

Three types of robots were used for the following experi-
ments, two generations of robots of our Attempto Tübingen
Robot Soccer Team and one robot of the Mostly Harmless
RoboCup team. All robots are equipped with an omni-
directional camera system consisting of a perspective camera
pointing upwards to a convex mirror. Robot I is from our
previous RoboCup team and has a standard 25fps camera
with a resolution of 768× 576 pixels and 5bit resolution per
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Fig. 3. GA, ES and PF on the camera to world calibration problem using either random initialization or initialization based on previous parameters.

color channel. Robot II of our new team is equipped with a
50fps, 580× 580 pixel camera with 8bit resolution per color
channel. Robot III is a robot of the Mostly Harmless team and
is equipped with a camera comparable to that of robot II but
has a different mirror. In addition to the three different robots
and camera systems, we also tested the algorithm on different
RoboCup fields. The first one (field I) is a training field of
the Mostly Harmless team of size 6×5m2, which is not large
enough to fulfill the requirements of current RoboCup fields.
For the second and third setting, images from the RoboCup
World Cup 2004 at Lisbon (field II) and from the RoboCup
German Open 2005 at Paderborn (field III) with a field size
of 12 × 8m2 were used.

V. EXPERIMENTAL RESULTS

The performance of the algorithm is demonstrated using
an exemplary image taken by robot I on field II, which was
to be mapped onto the standard RoboCup tournament field.
The final solution, however, is shown to be applicable to
several hardware and field configurations.
Preliminary experiments indicated that the two parallel lines
of the penalty area and the goal line introduced a very
deceptive local optimum. Especially, if the initial slope of the
mapping function in Equ. 3 is too high, the goal line is often
mapped onto the penalty base line, introducing a deceptive
local optimum. Therefore, the penalty base line was initially
not included in the fitness function, but was introduced after
about 2/3 of the fitness evaluations, which causes a small
step in the fitness plots.
For the given optimization problem the range of the decision
variables was: x0 = [20; 25], x1 = [−10;−2], x2 =
[60; 100], x3 = [1; 25], x4 = [30; 70], x5 = [−1; 1], x6 =
[0.05; 0.3], x7 = [−0.02; 0.02], and x8 = [−0.02; 0.02].
To give statistically sound results for each algorithm setting,
the results were averaged over 100 multi-runs and 2,500
fitness evaluations, if not mentioned otherwise. Additionally,
for some experimental results not only the mean fitness,
but also the standard deviation, the extreme values of the

fitness values and the 95%-confidence interval of the mean
are given.

A. Initial Results

In an initial set of experiments using only 20 multi-runs for
12,500 fitness evaluations we compared the GA and the PF
approach with a population size of 50 to a (2, 50)-ES using
σinit = 0.02 on the camera to world calibration problem. Fig.
3 compares the performance of the three algorithms without
and with problem specific initialization based on the most
recent parameters of the mapping function. This initialization
is based on the assumption that the change in the parameters
due to transport or repairs of the robot are likely to be minor.
This is because neither the curvature of the mirror nor will
the overall distance between the camera and the mirror will
change dramatically for these events.
Indeed the results given in Fig. 3 confirm this assumption.
The arbitrary initialization performs worse and is unable to
equal the performance of the most recent parameter setting.
Using the most recent parameter setting as initial solution
on the other hand enables the optimization algorithms to
improve the given initial solution significantly and reliably.
Experiments also illustrated the practical need for recali-
bration of the camera to world mapping after transport or
repair. However, the best solutions obtained by the randomly
initialized populations are significantly better than the ones
obtained using the most recent parameters as initial values.
Thus, the optimization problem is likely to be multi-modal.
And because we decided to keep the problem specific initial-
ization, we needed to make the optimization algorithm less
prone to premature convergence.
Therefore, the first parameter we investigated was the pop-
ulation size or the ES parameter λ, respectively. But since
the previous experiments proved to be too time consuming
for the given application, we introduced L = 10% for lazy
evaluation at this point. A more detailed discussion of the
effect of lazy evaluation is given in Sec. V-B. Fig. 4 shows
that the population size is an important parameter and too



Fig. 4. Population size for GA, ES and PF using σinit = 0.02, L = 10%.
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Fig. 5. Effect of μ on the (μ, 400)-ES using σinit = 0.2, L = 10%.

Fig. 6. Impact of lazy evaluation L on the (5, 400)-ES using the non-
isotropic mutation with σinit = 0.2.

Fig. 7. Comparing the non-isotropic to the non-isotropic lazy particle
mutation using (5, 400)-ES, σinit = 0.2, and L = 10%.

small population sizes lead to premature convergence, while
too large population sizes reduce the speed of convergence.
Based on these experiments, we have chosen the (μ, λ)-ES
and λ = 400 for the following experiments.
The results indicate that the optimization problem at hand is
truly multi-modal, thus we evaluated the effect of μ on the
(μ, 400)-ES and also raised σinit = 0.2 to enable the ES to
escape local optima in the initial optimization phase. Fig. 5
shows that the ES with increased σinit performs significantly
better and that μ > 2 is sufficient to reduce the chance of
premature convergence significantly. Therefore, we decided
to use a (5, 400)-ES and σinit = 0.2 from now on.

B. The Effect of Lazy Evaluation

Since the optimization problem allows lazy evaluation and
the time constraint is important, we decided to evaluate the
effect of lazy evaluation on the camera to world calibration
problem based on the (5, 400)-ES. Fig. 6 shows that lazy
evaluation is able to increase the speed of convergence

significantly. Using L < 5% enables the ES to converge
to sub-zero fitness values within only 500 fitness evaluation
equivalents. Unfortunately, for L < 5% the optimization
algorithms is also subject to limited convergence due to the
noise introduced by lazy evaluation.
Therefore, we are faced with the dilemma of having a reliable
calibration algorithm, which is too slow for a practical appli-
cation, or having a fast but unreliable calibration algorithm.
We were able to address this dilemma by introducing the
novel lazy particle mutation operator.

C. The New Mutation Operator

Although there is a clear positive effect of global lazy
evaluation, there is also a severe limitation. Lazy evaluation
introduces noise to the fitness function, which can limit the
ability of the ES to converge to the true optimum. Thus,
instead of increasing the global lazy evaluation L to values
smaller than 10%, we applied the new lazy particle mutation
operator.
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Fig. 8. Grid search on the parameters l and p using a (2, 100)-ES, σinit =
0.2, and L = 10%. Optimal parameters are p > 32 and l = 0.125% or
p = 16 and l = 2%.

Fig. 9. Comparing the standard ES to an ES with static and dynamic lazy
particle mutation using σinit = 0.2, and L = 10%.

Due to its local sampling technique based on a high
amount of lazy evaluation l � 10%, it is able to search more
efficiently and escape local optima, because of the multiple
mutation candidates evaluated. At the same time the resulting
mutant is only subject to a limited amount of noise, because
the global lazy evaluation L for the true fitness function
evaluation is larger than the local lazy evaluation factor l
for evaluating the particles.
See Fig. 7 for an initial experimental result using a (5, 400)-
ES with σinit = 0.2, and L = 10% comparing the standard
mutation to the (0.5%, 8)-lazy particle mutation operator.
The lazy particle mutation operator converges significantly
faster in the initial optimization phase, is less prone to
premature convergence to local optima and converges to
better solutions in the long run.
Even within the first two generations the ES using the lazy
particle mutation operator outperforms the standard mutation.
Please note, that the fitness plot starts after the first generation
has been evaluated and mutated and the next generation has
been selected. Thus, the different start values in Fig. 7 for
the ES with and without lazy particle evaluation result from
the logging mechanism in JavaEvA and not from different
initial populations.
The more efficient lazy particle mutation operator and the
fact that this mutation operator is less prone to premature
convergence allowed us to apply a more greedy (2, 100)-ES,
which has proven to be infeasible for the standard mutation
operator, see Fig. 4 and Fig. 5.
The new parameters l and p introduced by the new lazy
particle mutation operator are now subject to a detailed grid
search. For this experiment a (2, 100)-ES is used with 2,500
fitness evaluations using σinit = 0.2 and L = 10%, while
varying l from 0.125% to 2.0% and p from 2 to 128.
Fig. 8 illustrates that the performance of the lazy particle
mutation operator decreases with decreasing number of par-
ticles regardless of the amount of lazy evaluation applied

and proves thus the general concept of the lazy particle
mutation operator. This experiment also shows that too many
particles with reduced lazy evaluation cause the optimization
algorithms to become too slow to finish successfully within
2,500 fitness evaluations. Additionally, Fig. 8 shows that
there are two configurations where the lazy particle mutation
operator is successful:

• Higher lazy evaluation l < 0.5% and many particles.
• Lower lazy evaluation l ≥ 0.5% using fewer particles.

Both parameters seem to be correlated and point to two
different effects of the lazy particle mutation operator.
First, a high number of particles and much lazy evaluation
allows the lazy evaluation operator to increase the initial
convergence rate and to reduce the chances of premature
convergence to a local optimum in the initial optimization
phase. At the same time it can impair the final convergence
phase due to the noise that affects the mutants generated.
Secondly, a medium number of particles with less lazy eval-
uation still improves the initial convergences phase to some
extent, but at the same time converges more successfully to
the optimum in the final optimization phase.
In this final phase of convergence, i.e. when the optimization
has escaped all local optima and has reached the basin of
attraction of the global optimum, a localized search with
less noise is more suited to identify the correct parameters
than a global noisy search strategy. This effect has also been
described by Fernàndez et al. [3]. In their paper they reduced
the population size of a GA gradually to move from a global
search to a local search to save computational resources.
Due to the given time constraints, we applied the same
strategy to gradually move from global search to local search
during the optimization process. But instead of changing
the population size, we moved from higher lazy evaluation
l < 0.5% and many particles to lower lazy evaluation
and no particles. For this experiment the number of fitness
evaluations was further reduced to 1,000 evaluations per



Fig. 10. Example image of robot II on field III (left) and the correctly transformed image (right) after automatic calibration performed within 10-20
seconds using a C++ implementation of the proposed optimization algorithm on an Athlon XP 2400+.

Fig. 11. Example image of robot III on field I (left) and the correctly transformed image (right) after automatic calibration performed within 10-20
seconds using a C++ implementation of the proposed optimization algorithm on an Athlon XP 2400+.

optimization run, to reflect the real-world time constraint for
the given application. We compared the standard (5, 400)-ES
to a (2, 100)-ES using either static (0.5%, 32)-lazy particle
mutation or dynamic (0.5%−1.0%, 64−1)-lazy particle mu-
tation. The dynamic lazy particle mutation operator changed
the parameters l and p linearly each generation to move from
the initial values ls = 0.5% and ps = 64 to the final values
lf = 1.0% and pf = 1. The final values of the dynamic
lazy particle mutation actually give the standard mutation
operator, because there is only one particle. All algorithms
used σinit = 0.2, and L = 10%.
Fig. 9 shows that both the static and the dynamic lazy particle
mutation ES approaches outperform the standard ES in the
initial optimization phase. Both approaches using the lazy
particle mutation converge faster and are at the same time
less prone to premature convergence. However, the standard
ES is able to equal the performance of the static lazy particle
mutation ES in the final phase of the optimization process,
because the static lazy particle mutation operators introduces
too much noise to allow an efficient local search in the final
optimization phase. This is not the case for the dynamic lazy
particle mutation operator. Here the final convergence phase
is not impaired due to noise, therefore it is able to converge
smoothly to very good solutions. Fig. 10 and Fig. 11 show

the results of the algorithm when applied to different types
of robot hardware.

VI. CONCLUSIONS

Because of the practical need for an on-site automatic
camera to world calibration algorithm for RoboCup
tournaments, we have evaluated the application of
evolutionary algorithms. Unfortunately, the traditional
evolutionary approaches proved to be to slow, unreliable and
too time consuming for the given real-world parameterization
problem. Even utilizing lazy evaluation the performance
of the standard approaches was not sufficient. Therefore,
we have developed a novel mutation operator called the
lazy particle mutation, which allows us to meet the time
constraints.
This new mutation operator utilizes lazy evaluation and the
idea of multiple sample points from particle filters to find the
most suitable mutation candidate as resulting mutant. The
(l, p)-lazy particle mutation operator generates p mutation
candidates, evaluating each candidate with l% of lazy
evaluation and choosing the best mutation candidate as final
mutant. The lazy evaluation of multiple mutation candidates
gives a very simple model of the local search space and thus
resembles concepts developed in the field of model-assisted
EA approaches. However, the simple strategy of the lazy



particle mutation operator can be applied to any type of
problem allowing lazy evaluation even if it does not allow
model building, e.g. in case of automated programming
or combinatorial problem instances. Additionally, the lazy
particle mutation strategy proposed in this paper can be
applied to virtually any random mutation operator regardless
of the data type used.
Applying the lazy particle mutation operator enabled us
to solve the given problem more efficiently. On the one
hand due to the increased speed of convergence in the
initial optimization phase and on the other hand due to the
reduced chance of premature convergence. Still, the lazy
particle mutation impaired the final optimization phase, due
to the noise introduced on the mutants. A grid search on
the two parameters l and p confirmed this interpretation.
Using the lazy particle mutation with dynamic parameters
resolves this problem. It allowed us to reduce the number of
required fitness evaluations further and enabled the practical
application on RoboCup tournaments. This resulted in a
very fast and reliable automatic camera to world calibration
algorithm by means of evolutionary algorithms based on the
lazy particle mutation operator.
Future research will analyze the lazy particle mutation
operator in more detail on artificial benchmark functions,
regarding whether or not the results presented here can
be generalized to other types of optimization problems,
including uni-modal optimization problems. On these
problem instances the effect of the alternative selection
methods for the particles of the mutation operator including
the utilization of local model building should be investigated,
which was unfortunately not possible for the given
optimization problem. Additionally, the new mutation
operator should be compared to model-assisted evolutionary
approaches on expensive optimization problems that allow
lazy evaluation, since the similarity between the two
approaches is high.

REFERENCES

[1] G. Adorni, M. Mordonini, S. Cagnoni, and A. Sgorbissa. Omnidi-
rectional stereo systems for robot navigation. In 2003 Conference on
Computer Vision and Pattern Recognition Workshop, volume 7, pages
79–89, 2003.

[2] A. Doucet, N. de Freitas, and N. Gordon, editors. Sequential Monte
Carlo methods in Practice. Springer-Verlag, 2001.
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