
A Combined Monte-Carlo Localization and
Tracking Algorithm for RoboCup

Patrick Heinemann∗, Juergen Haase∗ and Andreas Zell∗
∗ Wilhelm-Schickard-Institute

Department of Computer Architecture
University of Tübingen

Email: {heinemann, jhaase, zell}@informatik.uni-tuebingen.de

Abstract— Self-localization is a major research task in mobile
robotics for several years. Efficient self-localization methods
have been developed, among which probabilistic Monte-Carlo
localization (MCL) is one of the most popular. It enables robots
to localize themselves in real-time and to recover from localization
errors. However, even those versions of MCL using an adaptive
number of samples need at least a minimum in the order of 100
samples to compute an acceptable position estimation. This paper
presents a novel approach to MCL based on images from an
omnidirectional camera system. The approach uses an adaptive
number of samples that drops down to a single sample if the
pose estimation is sufficiently accurate. We show that the method
enters this efficient tracking mode after a few cycles and remains
there using only a single sample for more than 90% of the cycles.
Nevertheless, it is still able to cope with the kidnapped robot
problem.

I. INTRODUCTION

Self-localization has been a major research task in mobile
robotics for several years. Especially in the Middle-Size-
League of RoboCup [8] where robots are expected to carry out
cooperative tasks, it is crucial to know the robot’s position in a
common global coordinate system. Many different approaches
to the localization task in RoboCup environments have been
investigated over the last years. Nearly all of these methods
are based on the relative distance and angle of features to the
robot in two-dimensional field coordinates.

Back in 1999, when walls still surrounded the RoboCup
field, the CS-Freiburg and the Attempto Tübingen team used
line segments extracted from the distance data of a laser range
finder for a very fast localization ([5],[11]). However, as soon
as the walls were removed, these sensors became useless
for self-localization. Nevertheless, the idea of extracting lines
from distance data found its way into several other approaches,
now using distances to field markings generated by camera
systems. Iocchi et al. [7] presented an algorithm where the
lines are extracted using the Hough Transform as well as
Marques et al. [9], and Jong et al. [1]. Instead of matching
the lines to a model, Utz et al. [14] computed a distance to
the model lines at given positions, to exploit the advantages
of Monte-Carlo localization (MCL) [4].

Although it is obvious to use lines as landmarks in a mostly
polygonal environment like RoboCup, the line extraction of
most of these algorithms is too slow to process the full 25fps
of typical PAL camera systems, which would be neccessary

to compete in such a highly dynamic environment. Therefore,
algorithms were developed, that were able to handle the raw
distance data from the sensors, without the need for generating
a position hypothesis. Probabilistic approaches like Markov
localization use sensor data only to assess given position
estimates. As this is much easier than generating a position
hypothesis out of some features, all algorithms based on
raw distance data used Markov localization or more precise
MCL, which became one of the most popular localization
methods. Enderle et al. [2] presented an approach using the
distance to walls extracted from perspective camera images.
Hundelshausen et al. [15], Röfer et al. [12], [13] and Menegatti
et al. [10] instead used the distance to the field markings.
These versions of MCL mainly differ in the efficiency of the
assessment of position estimates and the number of samples
needed for an accurate localization.

The self-localization algorithm presented in this paper is
based on line points of the field’s line markings. They result
from preprocessing images of an omnidirectional camera [6].
The fitness evaluation of different position estimates is based
on a two-dimensional look-up table containing the distance to
the next marking line for every position on the field [15], [12],
[13]. To maintain a high accuracy the idea of comparing the
line points to their nearest marking line in the model resulting
in a distance measure is extended to forces and a torque exerted
by the model lines trying to match the line points correctly.
With these forces the estimated position can be iteratively
improved, as presented by Hundelshausen et al. [15]. In
contrast to Hundelshausen et al., however, who use their ideas
only for dead-reckoning after an initial global localization,
we present an algorithm that combines the advantages of
Monte-Carlo localization with the iterative improvement of
the position estimation using forces. This algorithm uses an
adaptive number of samples that is reduced to a single sample,
if the position estimation of the previous cycle was sufficiently
accurate. We show that our algorithm remains in this efficient
tracking mode for more than 90% of the cycles. Nevertheless,
it is still able to cope with the kidnapped robot problem.

The remainder of this paper is organized as follows: Section
II briefly presents the basics of probabilistic Monte-Carlo lo-
calization. Section III is a detailed description of the proposed
algorithm . Finally, results concerning efficiency and accuracy
of the algorithm are presented in section IV and section V



concludes the paper with an outlook on the future work.

II. MONTE-CARLO LOCALIZATION

As Monte-Carlo localization is based on Markov Localiza-
tion, both methods are briefly introduced in this section.

In Markov Localization [3] the robot’s belief for being
located at a distinct pose l = (x, y, θ), where (x, y) is a
position and θ is an orientation in the reference coordinate
system, is expressed as a continuous probability function
Bel(l) over all possible poses, called belief function. This
function can model multi-modal distributions and is thus able
to represent more than one pose hypothesis. If new information
about the current pose is available, the belief function is
updated as follows:

Bel(l) =
∫

P (l|l′, a)Bel(l′)dl′, (1)

if the robot made a movement a and

Bel(l) = αP (s|l)Bel(l), (2)

if the robot made a new sensor reading s. Here P (l|l′, a)
models the conditional probability of being at pose l given
that the robot made the movement a and was at pose l′ before,
called motion model. P (s|l) models the conditional probability
for receiving a sensor measurement s given that the robot is
located at pose l, called sensor model. α is a normalization
factor ensuring ∫

Bel(l)dl = 1. (3)

There are several grid-based methods for approximating the
continuous belief function but they are computationally ex-
pensive and the accuracy of the pose estimation depends on
the a priori defined resolution of the grid [3].

Monte-Carlo Localization (MCL) [4] is an efficient sample-
based approximation of the belief function using a sam-
pling/importance resampling (SIR) approach that assigns the
majority of samples to poses of high probability. Given a set
of samples

S = {si|si = ((xi, yi, θi), wi)} , (4)

where each sample si contains a pose information (xi, yi, θi)
and a weight wi, the update for a motion a is an importance
resampling according to the motion model. A sample is chosen
with a probability equal to wi and the new sample is generated
by drawing a random sample from P (l|l′, a). For a new sensor
measurement the weights of all samples are updated according
to the sensor model

w′
i ∝ P (s|l) (5)

and normalized
wi = αw′

i (6)

with α such that
∑
i

wi = 1. Finally, the pose estimation is

calculated as the weighted mean over the best n samples.
The advantage of the sample-based approximation is that
through the importance resampling only samples with a high

probability of representing the correct pose are used as input
for the next steps. Thus, only few samples are needed to
approximate the belief function at the local maxima with a
high accuracy and major parts of the belief function with a
low probability are not sampled at all, saving computational
resources. The number of samples used for the approximation
of the belief function can be chosen as a fixed number or can
be adapted according to the quality of the pose estimation after
each cycle to save even more resources.

III. IMPROVED MONTE-CARLO LOCALIZATION

The major steps of the proposed algorithm are shown in Fig.
1 compared to a typical Monte-Carlo localization algorithm.

Initialization of N

samples

max

randomly distributed

Calculation of the
weighted mean of the

best n samples as pose

Evaluation of the sensor
model and computation

of new weights

Iterative improvement of
the pose estimation

Calculation of the
number of samples N

for the next cycle

Moving the sample
according to motion a

Evaluation of the sensor
model

Tracking Mode

If N=1If N>1

Application of the
motion model

Resampling of N samples
based on the weights

Application of the
motion model

Initialization of N

samples

max

randomly distributed

Calculation of the
weighted mean of the

best n samples as pose

Evaluation of the sensor
model and computation

of new weights

Resampling of N samples
based on the weights

Fig. 1. The major steps of a typical Monte-Carlo localization algorithm (left)
and our improved Monte-Carlo localization algorithm (right).

A. Initialization

When the algorithm starts there is no previous knowledge of
the robot’s pose, therefore the maximum number of samples
Nmax is generated and randomly distributed over the state
space, which in RoboCup consists of the soccer field plus
small parts beyond the touch and goal lines that are used to
manoeuvre. If there is previous knowledge of the pose, e.g. if
the robot always starts at the same position, this knowledge
can be represented by a different non-random initialization.

B. Application of the motion model

In each cycle of the control system a robot usually gets new
information of its motion from internal odometry sensors and
new data from the external sensors. The odometry information
is incorporated in the motion model. First, the samples of
the set S are translated and rotated according to the observed
motion a. Then a random gaussian noise is added proportional
to the motion. In the tracking mode, i.e. only a single sample
is used, this step only consists of translating and rotating the
pose of the sample.



C. Evaluation of the sensor model

The proposed algorithm uses the marking lines on a
RoboCup soccer field as features for the self-localization. Sev-
eral pixels in an omnidirectional camera image are identified
as marking line points if a sequence of green-white-green
segments is detected as shown by Heinemann et al. [6]. These
pixels transformed into robot centered coordinates (xj , yj)
serve as input for the sensor model introduced in this section.

For a fast and efficient evaluation of the sensor model
P (s|l) Röfer et al. [12], [13] and Hundelshausen et al. [15]
presented an idea of transforming the line points to the pose
li = (xi, yi, θi) of the sample si, such that the base coordinate
system of the line points is located at position (xi, yi) and
oriented according to θi as shown in Fig. 3. Denoting the new
location of the line points as (xi,j , yi,j) and the vector from
these points to their nearest model line in an a priori known
model of the field as

fi,j = (xm,j − xi,j , ym,j − yi,j), (7)

an overall distance DL,i per sample can be calculated by
summing over the squared distances to the model as

DL,i =
1
j

∑
j

‖fi,j‖2. (8)

As these distances only depend on the position on the field
they can be precomputed on a discrete grid (here a resolution
of 5cm was used) and easily stored in a two-dimensional look-
up table (distance matrix), which is shown in Fig. 2 as a
height map. In contrast to the original methods the proposed
algorithm uses the squared distances to let line points with a
higher distance to the next model line have an even greater
influence than line points that are almost perfectly matched.
As DL,i is only based on the symmetric marking lines on a
RoboCup soccer field, it would be the same for at least two
poses in each cycle. Thus, to resolve the symmetry the angle to
the two differently coloured goals was introduced as an extra
feature. From the colour segmentation of the omnidirectional
image the angles φ̂1,i and φ̂2,i to the two goals are extracted.
Comparing these angles with the expected angles to the goal
at the pose of a sample φ1,i and φ2,i results in a goal distance

DG,i =
(∥∥∥φ̂1 − φ1,i

∥∥∥ +
∥∥∥φ̂2 − φ2,i

∥∥∥)2

, (9)

where ‖·‖ is the absolute value of the smaller angle difference
accounting for the 2π period of angles. Again this distance
is squared to let higher angular differences have a greater
influence. The total distance value is computed by a linear
combination as

Di = (1 − λ)DL,i + λDG,i, (10)

with λ ∈ [0, 1] representing the balance of the two distance
terms, and finally, the weights are updated as

wi,t = α
1
Di

, (11)

Fig. 2. The distance matrix. The height map visualizes the squared distance
of each position on the field to the next field marking line.

with α being the normalization factor from equation (6). In
the tracking mode the distances are only computed for the
calculation of the number of samples used in the next step
Nt+1.

D. Iterative improvement of the pose estimation

The weighted mean over n samples is calculated as the
preliminary pose estimation

p̂ = (x, y, θ) =
∑

n

wnln, (12)

which is used as starting pose for the iterative improvement.
In the tracking mode p̂ is the pose of the single sample.

In addition to the distance matrix Hundelshausen et al. [15]
proposed a dead-reckoning approach for self-localization. By
applying forces exerted by the model lines on the transformed
line points an estimated position (x, y) is iteratively improved
in both directions. Using the same forces a torque according
to the origin of the robot frame is computed which iteratively
improves the orientation θ. Again, these forces can be pre-
computed and stored in a look-up table (force matrix). Here
we adopted this idea and use a force matrix precomputed
on a regular grid with 5cm resolution to improve the pose
estimation p̂ in a number of iterations k. It contains the
two-dimensional vectors fi,j from equation (7) that can be
interpreted as a force which is exerted onto a line point by the
nearest model line proportional to the distance to the model
line. A mean force acting on the pose estimation p̂ can be
computed as

F =
1
j

∑
j

fi,j . (13)

A fraction of this force can be added to the pose estimation p̂ in
each iteration to improve it regarding the position. In contrast
to Hundelshausen et al. we compute a mean torque according
to the estimated pose to improve the orientation estimation. It
is computed over all line points as

M =
1
j

∑
j

(xi,j , yi,j) × fi,j . (14)



Thus, in each iteration k a new pose estimation p̂k =
(xk, yk, θk) is generated by

(xk, yk) = (xk−1, yk−1) + µF (15)

θk = θk−1 + νM , (16)

starting with the preliminary estimation

(x0, y0, θ0) = p̂. (17)

The iterations can be seen as steps of a controller that
minimizes F and M . Therefore, if the control parameters µ
and ν are set too high, the pose estimation oscillates around the
optimum or diverges. We continue to iterate until a maximum
number of iterations kmax is reached or the improvement
between the iterations was too low. The final pose estimation p
is the pose resulting from the last iteration. It is important to
note that apart from inserting the improved pose estimation
p into the sample set St+1 the stochastic process of the
Monte-Carlo Localization is not influenced by the iterative
improvement at all. The iterative improvement can be seen
as a local search for a minimum in the belief function which
stabilizes the pose estimation by removing the noise from the
weighted mean when Nt > 1 and reducing the tracking errors
when Nt = 1.

E. Calculation of the number of samples

The number of samples needed for the next cycle is calcu-
lated depending on the distance D of the final pose estimation
p according to equation (10) as

Nt+1 =




Nmax : if ξD ≥ Nmax
ξD : if 1 < ξD < Nmax

1 : if ξD ≤ 1
, (18)

where ξ is a factor that controls how fast the number of
samples n is reduced to a single sample.

F. Resampling

If Nt > 1 the cycle ends with an importance resampling
from the set of samples S with probability wi,t for resampling
an old sample si,t. The sampling continues until the number of
samples Nt+1 for the next cycle was reached. In this step it is
possible to insert a number of r randomly distributed samples
to ensure a faster recovery if a localization error should occur.
To represent the improved pose information p in the sample
set, this pose is inserted as new sample into the sample set
St+1 for the next cycle.

IV. RESULTS

This section presents results obtained by three experiments
made in our robot lab on a field of 7m width and 4m length.
As this is very small compared to a real RoboCup soccer field
with up to 16m width and 12m length, we have only the
field markings for one half of the field. Thus, our experiments
are all situated on the side with the blue goal. Throughout
this section positions and orientations are given in meters
and radians, respectively. In all experiments presented in this
section we used the parameters given in table I. The mean was

n Nmax r λ ξ µ ν kmax

N 200 0 0.1 2500 0.001 0.0003 20

TABLE I

PARAMETER SET USED FOR THE EXPERIMENTS

computed over all samples, i.e. n = N to avoid a sorting of the
samples, which would lower the efficiency of the algorithm.
The maximum number of samples Nmax used was chosen
such that it is comparable to the number of samples used in
a standard MCL approach with a fixed number of samples.
As the two distance measures DL and DG are of different
units it is very hard to derive a good value for λ from the
algorithm itself. Preliminary experiments showed, however,
that the chosen value is a good compromise between a stable
pose estimation by relying upon the distance to the lines and
underestimating the orientation of the robot. The value of ξ
results in a fast reduction of the number of samples to only one
sample while leaving enough samples to recover from errors
when the fitness of the pose estimation is low. The control
parameters µ and ν were empirically estimated to prevent
the estimation from oscillating around a minimum while still
converging as fast as possible.

In the first experiment the influence of the iterative
improvement is analysed. The left side of Fig. 3 shows
the line points extracted from a typical camera image
taken by the robot at a predefined pose (3.16, 1.37,−0.52)
and transformed to the preliminary pose estimation p̂ =
(3.17297, 2.11676,−0.43336). This estimation was generated
by several cycles of the improved MCL. Using the iterative
improvement the distance DL and the estimation error con-
tinually drop in each iteration. The final pose estimation p =
(3.15078, 1.36494,−0.479711) after the maximum number of
iterations is shown on the right. These results show that the
iterative improvement can highly refine the pose estimation in
situations where the weighted mean is a good approximation of
the pose and lead to a fast reduction of the number of samples
used. Furthermore, the distance measure DL is well suited as
a means for evaluating the pose estimation error. Although it is
possible that the iterations do not improve the pose estimation
in situations where the preliminary estimation is completely
wrong, this does not reduce the accurracy of the algorithm as
the iterations are stopped if the change in distance was low or
even negative.

In a second experiment we compared the localization algo-
rithm with a fixed number of samples N = 200, N = 100,
N = 50 and the proposed method with adaptive number of
samples including the iterative improvement. Our algorithm
shows comparable results in terms of estimation accuracy
while using only a fraction of the computational resources
of a MCL with fixed number of samples. As a database
for the comparison we located the robot at a pose p1 =
(1.04, 1.07, 2.1) and stored the detected line points of 98
images from the omnidirectional camera system. Afterwards,



Fig. 3. Line points extracted from the omnidirectional camera system transformed to the preliminary pose estimation p̂ visualized as black circle (left). The
same line points transformed to the final pose estimation p (right).

0 5 10 15
0

1

2

3

4

5

cycle

es
ti

m
at

io
n

 e
rr

o
r 

[m
]

 

 

N adaptive
N=50
N=100
N=200

90 95 100 105 110 115 120
0

1

2

3

4

5

cycle

es
ti

m
at

io
n

 e
rr

o
r 

[m
]

 

 

N adaptive
N=50
N=100
N=200

Fig. 4. Comparison of our algorithm to MCL with fixed numbers of samples.

the robot was relocated to pose p2 = (1.64, 2.68, 0.0) where
the line points from another 98 images were stored. The line
points were used as input to 196 cycles of the localization
algorithm without any odometry information, resulting in a
kidnapped robot problem. Fig. 4 shows the estimation error of

N adaptive N = 50 N = 100 N = 200
mean time 1.7632ms 3.6426ms 6.8223ms 14.2508ms
mean error 0.1936m 2.2515m 0.2075m 0.2057m

TABLE II

RESULTS OF 196 CYCLES USING DIFFERENT NUMBERS OF PARTICLES N .

the algorithm with different numbers of samples. Independent
of N the algorithm computes a very good pose estimation
after at most 15 cycles. The number of samples in the adaptive
method drops from N = Nmax = 200 to N = 1 in 6 cycles.
From cycle no. 20 to no. 90 the estimation error and the
number of samples stay at the same level. In cycle 99 where
the relocation of the robot happened the algorithm immediately
generates N = Nmax samples again, reacting to the high
estimation error. Apart from the algorithm with N = 50
samples all methods generate a good pose estimation after at
most 10 cycles again, whereas the number of samples in the
adaptive method returns to N = 1 after 8 cycles, thus using
only a single sample in 92.87% of the cycles. A fixed number
of N = 50 samples without the iterative improvement is not
able to handle the kidnapped robot problem in this case, as the

estimation error does not recover after the relocation in cycle
98. Although our algorithm finds a good pose estimation a few
cycles earlier than the ones with a fixed number of samples
N = 100 and N = 200 it performes much better than the
others if the computation time is considered. Table II lists the
mean computation time and the mean estimation error.

With the third experiment we show that the method is also
able to correctly track the pose of a moving robot. As a
ground truth for the experiment we placed a laser scanner at
pose (-1.3,3.0,0.0), extracted the object data from the scan and
recorded the position of the object. In order to get comparable
position data the clock of the host computer running the laser
scanner software was synchronized with the clock of the robot
running the localization algorithm, and both programs stored a
time stamp with their data. As the programs themselves were
not synchronized, the laser measurements were interpolated to
the time stamps of the localization cycles. The robot was then
manually controlled around the field in two different speeds.
In the first run the mean speed was at 1 m/s, in the second
run we raised the speed to 2 m/s. To show that the algorithm
works for both differential drive and omnidirectional systems
we first controlled the robot like a differential drive robot with
constantly changing orientation in the first run and then the
orientation was nearly fix while the direction of movement
constantly changed in the second run. Fig. 5 (left) shows the
results of the localization algorithm for the first run. In the
beginning the samples are initialized randomly on the field
and thus, the weighted mean over all samples results in a



1
2

3

1
2

3

4
5

6

44

Fig. 5. This figure compares the position estimates of the proposed algorithm (dashed grey line) to the ground truth (solid black line) from a laser scanner.
The robot was controlled at two different speeds of approx. 1 m/s (left) and 2 m/s (right). The algorithm needs up to 6 cycles to find the initial pose and then
correctly tracks the robot around the field. Only with 2 m/s the algorithm fails to track the robot’s position once, but relocalizes again only a few cycles later.

pose near the center of the field. After 3 cycles the starting
pose of the robot is correctly estimated. Throughout the rest
of the 212 cycles the estimated pose follows the path on the
field with a mean accuracy of 9.89cm, compared to the laser
measurements, using only a single sample in 97.17% of the
cycles. The mean computation time for a cycle of the algorithm
in this experiment was 1.5731ms on an Athlon XP 1800+
system. In the second run (cf. rigth part of Fig. 5) the algorithm
needed 6 cycles to correctly estimate the starting position.
The estimated position then follows the real position along the
penalty area until the robot changes its direction very quickly
two times in a row. Here the algorithm looses the track of the
robot and needs to reinitialize with a higher number of samples
(cycle 44). Thus, the mean accuracy without the initialization
cycles was 23.97cm and the mean computation time increased
to 4.32ms as only 90.64% of the cycles used the tracking mode
with only one sample. Nevertheless, this experiment shows the
smooth transition between the local tracking mode and the
global localization.

V. CONCLUSION AND FUTURE WORK

This paper presented an efficient combination of global
Monte-Carlo localization with an adaptive number of samples
and local position tracking. The algorithm used a look-up table
for a fast estimation of the samples’ fitness and a local search
for iterative improvement of the estimated pose. With this
improvement it was possible to reduce the number of samples
down to a single sample resulting in a smooth transition be-
tween global localization and local pose tracking. We showed
that the algorithm was able to handle the kidnapped robot
problem and to track a moving robot. In all experiments the
mean cycle time of the algorithm was leaving enough time for
other important tasks like object detection and planning to be
done in real-time.

The future work on this algorithm will include the ap-
plication of the localization algorithm to other domains like
office buildings. We expect that the combination of global
localization and local optimization of the pose estimation is
suitable for those environments, too.

REFERENCES

[1] F. de Jong, J. Caarls, R. Bartelds, and P. Jonker. A Two-Tiered Approach
to Self-Localization. In RoboCup 2001: Robot Soccer World Cup V,
volume 2377 of LNCS, pages 405–410. Springer, 2002.

[2] S. Enderle, M. Ritter, D. Fox, S. Sablatnög, G. Kraetzschmar, and
G. Palm. Vision-based Localization in RoboCup Environments. In
RoboCup 2000: Robot Soccer World Cup IV, volume 2019 of LNCS,
pages 291–296. Springer, 2001.

[3] D. Fox. Markov Localization: A Probabilistic Framework for Mobile
Robot Localization and Navigation. PhD thesis, University of Bonn,
Germany, 1998.

[4] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte Carlo Localization:
Efficient Position Estimation for Mobile Robots. In Proceedings of the
National Conference on Artificial Intelligence, pages 343–349, 1999.

[5] J. Gutmann, T. Weigel, and B. Nebel. Fast, Accurate, and Robust
Self-Localization in Polygonal Environments. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS ’99), 1999.

[6] P. Heinemann, T. Rückstieß, and A. Zell. Fast and Accurate Environment
Modelling using Omnidirectional Vision. In Dynamic Perception 2004.
Infix, 2004.

[7] L. Iocchi and D. Nardi. Self-Localization in the RoboCup Environment.
In RoboCup-99: Robot Soccer World Cup III, volume 1856 of LNCS,
pages 318–330. Springer, 2000.

[8] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa. RoboCup:
The Robot World Cup Initiative. In AGENTS ’97: Proceedings of the
first international conference on Autonomous agents, pages 340–347.
ACM Press, 1997.

[9] C. Marques and P. Lima. A Localization Method for a Soccer Robot
Using a Vision-Based Omni-Directional Sensor. In Proceedings of
EuRoboCup Workshop 2000, 2000.

[10] E. Menegatti, A. Pretto, and E. Pagello. A New Omnidirectional Vision
Sensor for Monte-Carlo Localization. In RoboCup 2004: Robot Soccer
World Cup VIII, volume 3276 of LNCS, pages 97–109. Springer, 2005.

[11] M. Plagge, R. Günther, J. Ihlenburg, D. Jung, and A. Zell. The Attempto
RoboCup Robot Team. In RoboCup-99: Robot Soccer World Cup III,
volume 1856 of LNCS, pages 424–433. Springer, 2000.

[12] T. Röfer and M. Jüngel. Vision-Based Fast and Reactive Monte-Carlo
Localization. In Proceedings of the 2003 IEEE International Conference
on Robotics & Automation, pages 856–861, 2003.

[13] T. Röfer and M. Jüngel. Fast and Robust Edge-Based Localization in
the Sony Four-Legged Robot League. In RoboCup-2003: Robot Soccer
World Cup VII, volume 3020 of LNCS, pages 262–273. Springer, 2004.

[14] H. Utz, A. Neubeck, G. Mayer, and G. Kraetzschmar. Improving Vision-
Based Self-localization. In RoboCup 2002: Robot Soccer World Cup VI,
volume 2752 of LNCS, pages 25–40. Springer, 2003.

[15] F. von Hundelshausen, M. Schreiber, F. Wiesel, A. Liers, and R. Rojas.
MATRIX: A force field pattern matching method for mobile robots.
Technical Report B-08-03, Free University of Berlin, 2003.


