
A Novel Approach to Efficient Monte-Carlo

Localization in RoboCup

Patrick Heinemann, Jürgen Haase, and Andreas Zell

Wilhelm-Schickard-Institute, Department of Computer Architecture,
University of Tübingen, Sand 1, 72076 Tübingen, Germany

{heinemann, jhaase, zell}@informatik.uni-tuebingen.de

Abstract. Recently, efficient self-localization methods have been devel-
oped, among which probabilistic Monte-Carlo localization (MCL) is one
of the most popular. However, standard MCL algorithms need at least
100 samples to compute an acceptable position estimation. This paper
presents a novel approach to MCL that uses an adaptive number of
samples that drops down to a single sample if the pose estimation is
sufficiently accurate. Experiments show that the method remains in this
efficient single sample tracking mode for more than 90% of the cycles.

1 Introduction

Self-localization has been a major research task in mobile robotics for several
years. Especially in the Middle-Size-League of RoboCup where robots are ex-
pected to carry out cooperative tasks, it is crucial to know the robot’s position
in a common global coordinate system. Many different approaches to the lo-
calization task in RoboCup environments have been investigated over the last
years. Nearly all of these methods are based on the relative distance and angle
of features to the robot in two-dimensional field coordinates.

When walls still surrounded the RoboCup field, some teams used line seg-
ments extracted from the distance data of a laser range finder for a very fast
localization ([4]). Today, the idea of extracting lines from distance data found its
way into several other approaches, now using distances to field markings gener-
ated by camera systems. Iocchi et al. [6] as well as Marques et al. [7], and Jong
et al. [1] presented algorithms where the lines are extracted using the Hough
Transform. Instead of matching the lines to a model, Utz et al. [11] computed
a distance to the model lines at given positions, to exploit the advantages of
Monte-Carlo localization (MCL) [3]. Although it is obvious to extract lines as
landmarks in a mostly polygonal environment like RoboCup, algorithms were
developed, that were able to handle the raw distance data from the sensors.
Probabilistic approaches like Markov localization use sensor data to assess given
position estimates. As this is much easier than generating a position hypothesis
through feature extraction and model matching, all algorithms based on raw dis-
tance data used Markov localization or more precise MCL, which became one of
the most popular localization methods. Enderle et al. [2] presented an approach



using the distance to walls extracted from camera images, while Hundelshausen
et al. [12], Röfer et al. [9, 10] and Menegatti et al. [8] used the distance to the
field markings. These algorithms mainly differ in the efficiency of the assessment
of position estimates and the number of samples needed for the localization.

The self-localization algorithm presented in this paper is based on line points
of the field’s line markings. The fitness evaluation of different position estimates
is based on a two-dimensional look-up table containing the distance to the next
marking line for every position on the field [12, 9, 10]. To maintain a high accuracy
a local search is used to iteratively improve the position estimation, as presented
by Hundelshausen et al. [12]. In contrast to Hundelshausen et al., however, who
use their ideas only for dead-reckoning after an initial global localization, we
combine the advantages of MCL with the iterative improvement of the position
estimation. This algorithm uses an adaptive number of samples that is reduced
to a single sample, if the position estimation of the previous cycle was sufficiently
accurate. Experiments show that our algorithm remains in this efficient single
sample tracking mode for more than 90% of the cycles. Nevertheless, it is still
able to cope with the kidnapped robot problem.

The remainder of this paper is organized as follows: Section 2 is a detailed
description of the proposed algorithm. Results concerning efficiency and accuracy
of the algorithm are presented in section 3 and section 4 concludes the paper
with an outlook on the future work.

2 Improved Monte-Carlo Localization

The major steps of the proposed algorithm are shown in Fig. 1 compared to a
typical Monte-Carlo localization algorithm.

2.1 Initialization

When the algorithm starts the maximum number of samples Nmax is generated
and randomly distributed over the state space, which in RoboCup consists of
the whole playable area of the field. If there is previous knowledge of the robot’s
pose, this knowledge can be represented by a different non-random initialization.

2.2 Application of the motion model

In the motion model the odometry information from the robot is incorporated.
First, the samples of the set S are translated and rotated according to the
observed motion a. Then a random gaussian noise is added proportional to the
motion. In the tracking mode, i.e. only a single sample is used, this step only
consists of translating and rotating the pose of the single sample.

2.3 Evaluation of the sensor model

The proposed algorithm uses the marking lines on a RoboCup soccer field as
features for the self-localization. Several pixels in an omnidirectional camera



Initialization of N

samples

max

randomly distributed

Calculation of the
weighted mean of the

best n samples as pose

Evaluation of the sensor
model and computation

of new weights

Iterative improvement of
the pose estimation

Calculation of the
number of samples N

for the next cycle

Moving the sample
according to motion a

Evaluation of the sensor
model

Tracking Mode

If N=1If N>1

Application of the
motion model

Resampling of N samples
based on the weights

Application of the
motion model

Initialization of N

samples

max

randomly distributed

Calculation of the
weighted mean of the

best n samples as pose

Evaluation of the sensor
model and computation

of new weights

Resampling of N samples
based on the weights

Fig. 1. The major steps of a typical Monte-Carlo localization algorithm (left) and our
improved Monte-Carlo localization algorithm (right).

image are identified as marking line points as shown by Heinemann et al. [5].
These pixels transformed into robot centered coordinates (xj , yj) serve as input
for the sensor model introduced in this section.

For an efficient evaluation of the sensor model Röfer et al. [9, 10] and Hun-
delshausen et al. [12] presented an idea of transforming the line points to the
pose li = (xi, yi, θi) of the sample si, such that the coordinate system of the line
points is located at position (xi, yi) and oriented according to θi. Denoting the
new location of the line points as (xi,j , yi,j) and the vector from these points to
their nearest model line in a model of the field as

fi,j = (xm,j − xi,j , ym,j − yi,j), (1)

an overall distance DL,i per sample can be calculated by summing over the
squared distances to the model as

DL,i =
1

j

∑

j

‖fi,j‖
2
. (2)

As these distances only depend on the position on the field they can be precom-
puted on a discrete grid and easily stored in a two-dimensional look-up table
(distance matrix ). In contrast to the original methods the proposed algorithm
uses the squared distances to let line points with a higher distance to the next
model line have an even greater influence than line points that are almost per-
fectly matched. As DL,i is only based on the symmetric marking lines on a
RoboCup soccer field, it would be the same for at least two poses in each cycle.



Thus, to resolve the symmetry the angle to the two differently coloured goals
was introduced as an extra feature. From the omnidirectional image the angles
φ̂1,i and φ̂2,i to the two goals are extracted. Comparing these angles with the
expected angles at the pose of a sample φ1,i and φ2,i results in a goal distance

DG,i =
(∥∥∥φ̂1 − φ1,i

∥∥∥ +
∥∥∥φ̂2 − φ2,i

∥∥∥
)2

, (3)

where ‖·‖ is the absolute value of the smaller angle difference accounting for
the 2π period of angles. Again this distance is squared to let higher angular
differences have a greater influence. The total distance value is computed as

Di = (1 − λ)DL,i + λDG,i, (4)

with λ ∈ [0, 1] representing the balance of the two distance terms, and finally,
the weights are updated as

wi,t = α
1

Di

, (5)

with α such that
∑
i

wi = 1. In the tracking mode the distances are only computed

for the calculation of the number of samples used in the next step Nt+1.

2.4 Iterative improvement of the pose estimation

A preliminary pose estimation is calculated as weighted mean over all samples

p̂ = (x, y, θ) =
∑

n

wnln, (6)

and is used as starting pose for the iterative improvement. In the tracking mode
p̂ is the pose of the single sample.

In addition to the distance matrix Hundelshausen et al. [12] proposed a dead-
reckoning approach for self-localization. By applying forces exerted on the trans-
formed line points by the model lines an estimated position (x, y) is iteratively
improved in both directions. Using the same forces a torque is computed which
iteratively improves the orientation θ. Again, these forces can be precomputed
and stored in a look-up table (force matrix ). Here we use the force matrix to
improve the pose estimation p̂ from the MCL in a number of iterations k. It
contains the two-dimensional vectors fi,j from equation (1) that can be inter-
preted as a force exerted by the nearest model line proportional to the distance.
A mean force acting on the pose estimation p̂ can be computed as

F =
1

j

∑

j

fi,j . (7)

A fraction of this force can be added to the pose estimation p̂ in each iteration to
improve it regarding the position. In contrast to Hundelshausen et al. we com-
pute a mean torque according to the estimated pose to improve the orientation



estimation. It is computed over all line points as

M =
1

j

∑

j

(xi,j , yi,j) × fi,j . (8)

Thus, in each iteration k a new pose estimation p̂k = (xk, yk, θk) is generated by

(xk, yk) = (xk−1, yk−1) + µF (9)

θk = θk−1 + νM , (10)

starting with the preliminary estimation

(x0, y0, θ0) = p̂. (11)

The iterations can be seen as a local search that minimizes F and M and thus
stabilizes the pose estimation by removing the noise from the weighted mean
when Nt > 1 and reducing the tracking errors when Nt = 1. The search contin-
ues until a maximum number of iterations kmax is reached or the improvement
between the iterations was too low. The final pose estimation p is the pose
resulting from the last iteration. Please note that apart from inserting the im-
proved pose estimation p into the sample set St+1 the stochastic process of the
Monte-Carlo Localization is not influenced by the iterative improvement.

2.5 Calculation of the number of samples

The number of samples needed for the next cycle is calculated depending on the
distance D of the final pose estimation p according to equation (4) as

Nt+1 =






Nmax : if ξD ≥ Nmax
ξD : if 1 < ξD < Nmax

1 : if ξD ≤ 1
, (12)

where ξ is a factor that controls how fast the number of samples n is reduced.

2.6 Resampling

If Nt > 1 the cycle ends with an importance resampling from the set of samples
S with probability wi,t for resampling an old sample si,t. The sampling continues
until the number of samples Nt+1 for the next cycle was reached. To represent
the improved pose information p in the sample set, this pose is inserted as new
sample into the sample set St+1 for the next cycle.

3 Results

This section presents results obtained by two experiments made in our robot lab
on a half field of 7m width and 4m length. Throughout this section positions



Nmax λ ξ µ ν kmax

200 0.1 2500 0.001 0.0003 20

Table 1. Parameter set used for the experiments

and orientations are given in meters and radians, respectively. In all experiments
presented in this section we used the parameters given in table 1. The maximum
number of samples Nmax used was chosen such that it is comparable to a stan-
dard MCL approach with a fixed number of samples.

In a first experiment we compared the localization algorithm with a fixed
number of samples N = 200, N = 100, N = 50 and the proposed method. As a
database for the comparison we located the robot at a pose p1 = (1.04, 1.07, 2.1)
and stored the detected line points of 98 images from the omnidirectional camera
system. Afterwards, the robot was relocated to pose p2 = (1.64, 2.68, 0.0) where
the line points from another 98 images were stored. The line points were used as
input to 196 cycles of the localization algorithm without any odometry informa-
tion, resulting in a kidnapped robot problem. Fig. 2 shows the estimation error
of the algorithms. Independent of N the algorithms compute a very good pose
estimation after at most 15 cycles, where the number of samples in the adaptive
method drops to N = 1 in only 6 cycles. From cycle 20 to 90 the estimation
error and the number of samples stay at the same level. In cycle 99 where the
relocation of the robot happened the proposed algorithm immediately generates
N = Nmax samples, reacting to the high estimation error. Apart from the al-
gorithm with N = 50 samples all methods regenerate a good pose estimation
after at most 10 cycles, whereas the number of samples in the adaptive method
returns to N = 1 after 8 cycles, thus using only a single sample in 92.87% of the
cycles. A fixed number of N = 50 samples without the iterative improvement is
not able to handle the kidnapped robot problem in this case, as the estimation
error does not recover after the relocation in cycle 98. Although the other three
algorithms show comparable results concerning the estimation error, the pro-
posed algorithm performes much better if the computation time is considered.
Table 2 lists the mean computation time and estimation error.

0 5 10 15
0

1

2

3

4

5

cycle

es
ti

m
at

io
n

 e
rr

o
r 

[m
]

 

 

N adaptive
N=50
N=100
N=200

90 95 100 105 110 115 120
0

1

2

3

4

5

cycle

es
ti

m
at

io
n

 e
rr

o
r 

[m
]

 

 

N adaptive
N=50
N=100
N=200

Fig. 2. Comparison of our algorithm to MCL with fixed numbers of samples.



N adaptive N = 50 N = 100 N = 200

mean time 1.7632ms 3.6426ms 6.8223ms 14.2508ms
mean error 0.1936m 2.2515m 0.2075m 0.2057m

Table 2. Results of 196 cycles using different numbers of particles N .

With the second experiment we show that the method is also able to correctly
track the pose of a moving robot. As a ground truth we used a laser scanner to
record the true position of the robot. The robot was then manually controlled
around the field. In the first run the mean speed was at 1 m/s, in the second
run we raised the speed to 2 m/s. To show that the algorithm works for both
differential drive and omnidirectional systems we first controlled the robot like a
differential drive and then the orientation was nearly fix in the second run. Fig. 3

1
2

3

1
2

3

4
5

6

44

Fig. 3. This figure compares the position estimates of the proposed algorithm (dashed
grey line) to the ground truth (solid black line). The algorithm needs up to 6 cycles
to find the initial pose and then correctly tracks the robot. In the second run, the
algorithm fails to track the position once, but relocalizes only a few cycles later.

(left) shows the results of the first run. In the beginning the weighted mean over
the rndomly distributed samples results in a pose near the center of the field.
After 3 cycles the starting pose of the robot is correctly estimated. Throughout
the rest of the 212 cycles the estimated pose follows the path on the field with
a mean accuracy of 9.89cm, using only a single sample in 97.17% of the cycles.
The mean computation time for a cycle of the algorithm in this experiment was
1.5731ms on an Athlon XP 1800+ system. In the second run (Fig. 3, right)
the algorithm needed 6 cycles to correctly estimate the starting position. The
estimated position then follows the real position until the robot changes its
direction very quickly two times in a row. Here the algorithm temporarily looses
the track of the robot and distributes a higher number of samples (cycle 44).
Thus, the mean accuracy without the initialization cycles was 23.97cm and the
mean computation time increased to 4.32ms as only 90.64% of the cycles used
the tracking mode.



4 Conclusion and Future Work

This paper presents an efficient combination of global Monte-Carlo localization
with an adaptive number of samples and local position tracking. With a fast
estimation of the samples’ fitness and a local search for iterative improvement of
the estimated pose the number of samples was reduced to a single sample result-
ing in a smooth transition between global localization and local pose tracking.
We showed that the algorithm was able to handle the kidnapped robot problem
and to track a moving robot. In all experiments the mean cycle time of the al-
gorithm was leaving enough time for other important tasks like object detection
and planning to be done in real-time.

References

1. F. de Jong, J. Caarls, R. Bartelds, and P. Jonker. A Two-Tiered Approach to
Self-Localization. In RoboCup 2001: Robot Soccer World Cup V, volume 2377 of
LNCS, pages 405–410. Springer, 2002.

2. S. Enderle, M. Ritter, D. Fox, S. Sablatnög, G. Kraetzschmar, and G. Palm. Vision-
based Localization in RoboCup Environments. In RoboCup 2000: Robot Soccer
World Cup IV, volume 2019 of LNCS, pages 291–296. Springer, 2001.

3. D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte Carlo Localization: Efficient
Position Estimation for Mobile Robots. In Proceedings of the National Conference
on Artificial Intelligence, pages 343–349, 1999.

4. J. Gutmann, T. Weigel, and B. Nebel. Fast, Accurate, and Robust Self-Localization
in Polygonal Environments. In Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS ’99), 1999.

5. P. Heinemann, T. Rückstieß, and A. Zell. Fast and Accurate Environment Mod-
elling using Omnidirectional Vision. In Dynamic Perception 2004. Infix, 2004.

6. L. Iocchi and D. Nardi. Self-Localization in the RoboCup Environment. In
RoboCup-99: Robot Soccer World Cup III, volume 1856 of LNCS, pages 318–330.
Springer, 2000.

7. C. Marques and P. Lima. A Localization Method for a Soccer Robot Using a
Vision-Based Omni-Directional Sensor. In Proceedings of EuRoboCup Workshop
2000, 2000.

8. E. Menegatti, A. Pretto, and E. Pagello. A New Omnidirectional Vision Sensor
for Monte-Carlo Localization. In RoboCup 2004: Robot Soccer World Cup VIII,
volume 3276 of LNCS, pages 97–109. Springer, 2005.

9. T. Röfer and M. Jüngel. Vision-Based Fast and Reactive Monte-Carlo Localiza-
tion. In Proceedings of the 2003 IEEE International Conference on Robotics &
Automation, pages 856–861, 2003.

10. T. Röfer and M. Jüngel. Fast and Robust Edge-Based Localization in the Sony
Four-Legged Robot League. In RoboCup-2003: Robot Soccer World Cup VII, vol-
ume 3020 of LNCS, pages 262–273. Springer, 2004.

11. H. Utz, A. Neubeck, G. Mayer, and G. Kraetzschmar. Improving Vision-Based
Self-localization. In RoboCup 2002: Robot Soccer World Cup VI, volume 2752 of
LNCS, pages 25–40. Springer, 2003.

12. F. von Hundelshausen, M. Schreiber, F. Wiesel, A. Liers, and R. Rojas. MATRIX:
A force field pattern matching method for mobile robots. Technical Report B-08-
03, Free University of Berlin, 2003.


