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Abstract. This paper focuses on the problem of tracking and predicting
the location and velocity of a rolling ball in the RoboCup environment,
when the ball is pushed consecutively by a middle-size omnidirectional
robot to follow a given path around obstacles. A robust algorithm based
on the H∞ filter is presented to accurately estimate the ball’s real-time
location and velocity. The performance of this tracking strategy was also
evaluated by real-world experiments and comparisons with the Kalman
filter.

1 Introduction

In many mobile robots applications, the robots are required not only to adapt
themselves to the external situation, but also have the ability to interact with the
environment. Estimating and predicting the motions of moving objects are the
foundation for the interaction tasks. For example, when robots play the football,
it is very important to detect and predict the ball’s position and velocity, so that
the robot can catch the ball, push it through obstacles, and shoot it in the goal.
In this paper we focus on tracking and predicting the location and velocity of
a rolling ball in the RoboCup domain with a middle-size omnidirectional robot,
under the condition that the ball is consecutively pushed by the robot.

Kalman filters ([1], [2], [3], [9]) have been used in many ball tracking problems.
They provide efficient and convenient minimum-mean-square-error solutions for
the state estimation problem, considering that both the process and the measure-
ment noises of the target system are assumed as Gaussian with known statistical
properties ([8]). Besides that, multiple model filters based on Kalman filters re-
veal much better performance than the single model filter in some applications.
As one of the multiple model filters, the interacting multiple model (IMM) al-
gorithm, used for the object tracking in the RoboCup ([5]), utilizes a Kalman
filter for each mode of the target movement. However, in practical situations,
the uncertainties of the target system and the measurements normally do not
satisfy the Gaussian assumption, and the noise statistics is usually not available.

To avoid thinking about these uncertainties, a method to build a predictive
model of the ball’s movement is used in the estimation of the ball’s position and
velocity ([7]). It models a free rolling ball’s movement as the linear movement



and estimates the model parameters using ridge regression. By comparing the
observed and predicted ball’s positions, the method can also recognize the change
points of the ball’s movement. Due to the requirement of a buffer to store the
observations of the ball’s movement and the estimation of model parameters,
the memory occupancy and computational complexity of this method are highly
increased.

In this paper, we present a robust algorithm based on the H∞ filter for an
omnidirectional robot to track a rolling ball in the RoboCup domain. The H∞

filter does not require priori knowledge of the noise statistics, only assuming
that the noise signals have finite energy. Unlike the Kalman filter providing the
minimum variance of the estimation error, the H∞ filter provides the minimal
effect of the worst noise on the estimation error. Experiments with a real om-
nidirectional robot show that this approach is efficient and yields highly robust
estimations of the ball’s location and velocity.

2 Problem Formulation

The ball tracking problems in the RoboCup domain are challenged by the in-
teractions between the robots and the ball. These frequent interactions usually
result in a highly non-linear movement of the ball, and it is very difficult to
precisely estimate the uncertainty distribution of the interactions. Moreover, the
measurement accuracy of the ball’s position is also limited by the sensors and
the corresponding signal processing algorithms. This paper focuses on tracking
a rolling ball when it is consecutively pushed by an omnidirectional robot to
follow a given path. Considering the uncertainty of the interactions between the
robot and the ball, we utilize a new approach based on the H∞ filter to estimate
the ball’s location and velocity.

The discrete representation of the ball’s dynamics is described by the follow-
ing equations:

ṗk+1 = ṗk + p̈kT (1)

pk+1 = pk + ṗkT +
1

2
p̈kT 2 , (2)

where p is the position of the ball, ṗ and p̈ are respectively the velocity and
acceleration of the ball. T is the sampling interval and k is the index of the
sampling interval. We define a state vector consisting of the position and velocity
as xk = [pk, ṗk]

T
. Knowing the measurement value is the ball’s position, we build

the system model of the ball as follows:

xk+1 =

[

1 T
0 1

]

xk +

[

T 2/2
T

]

uk (3)

yk =
[

1 0
]

xk , (4)

where u denotes the system input and is equal to the acceleration p̈ which is
completely determined by the friction of the ground and the pushing operation



from the robot. But in the practical situation, the previous equation (3) can
not give the precise state values because of the noise due to the rugged carpet
ground and other unfortunate realities, and the precise output values can not be
obtained from the equation (4), since measurement noise decreases the reliability
of the measurement data. So a more precise mode is given as

xk+1 =

[

1 T
0 1

]

xk +

[

T 2/2
T

]

uk + wk (5)

yk =
[

1 0
]

xk + vk , (6)

where w is called process noise and v is called measurement noise.
As we do not know exactly the friction of the ground, the moment when

the robot collides the ball, and the corresponding effect of the collision on the
ball’s movement, the system input u is not available. But we can consider u
as additional process noise and unify u with the process noise w. Then a more
realistic system model is

xk+1 =

[

1 T
0 1

]

xk +

[

T 2/2
T

]

wk (7)

yk =
[

1 0
]

xk + vk . (8)

3 Robust H∞ Filtering

As mentioned earlier, the Kalman filter requires the priori knowledge of statis-
tical properties of the system and measurement noises, which are really hard to
obtain practically. The ball filter with predictive model, described in [7], could
bring a higher computational cost and memory occupancy, so this filter is not
very efficient for the fast tracking problem. As a robust filter strategy, the mini-
max H∞ strategy has the same efficient computation as that of the Kalman
filter, and does not depend on the known noise statistics, but on the assumption
of a finite disturbance energy. Consider the following linear system:

xk+1 = Akxk + Bkwk (9)

yk = Ckxk + vk , (10)

where xk ∈ <n, wk ∈ <m, yk ∈ <p, vk ∈ <p. Ak, Bk and Ck are matrices with
appropriate dimension, (Ak, Bk) is controllable and (Ck, Ak) is detectable. Unlike
the Kalman filter, which is interested in the estimation of the system state xk,
the H∞ filter concerns the linear combination of xk

zk = Lkxk . (11)

The output matrix Lk is selected by the user according to the different applica-
tions. In our problem, we care about the ball’s location and velocity, which just
constitute the system state, so here Lk is specified as an identity matrix. The



H∞ filter computes the estimated state ẑk based on the measurement Yk , where
Yk = {yk, 0 ≤ k ≤ N − 1} , and evaluates the estimation error by a performance
measure, which can be regarded as an energy gain:

J =

N−1
∑

k=0

‖zk − ẑk‖
2
Qk

‖x0 − x̂0‖
2
p
−1

0

+
N−1
∑

k=0

(

‖wk‖
2
W

−1

k

+ ‖vk‖
2
V

−1

k

)

(12)

where N is the size of the measurement history, Qk, p0, Wk, Vk are the weight-
ing matrices for the estimation error, the initial conditions, the process noise
and the measurement noise. Moreover, Qk ≥ 0, p−1

0 > 0, Wk > 0, Vk > 0 and

((x0 − x̂0) , wk, vk) 6= 0 . The notation ‖xk‖
2
Qk

is defined as ‖xk‖
2
Qk

= xT
k Qkxk.

The denominator of J can be considered as the energy of the unknown dis-
turbances, and the numerator is the energy of the estimation error. The H∞

filter aims to provide an uniformly small estimation error ek = zk − ẑk for any
wk, vk ∈ l2 and x0 ∈ Rn , such that the energy gain J is bounded by a prescribed
value:

sup J < 1/γ (13)

where sup denotes the supremum and 1/γ is the noise attenuation level. This
condition keeps the robustness of the H∞ filter, because the estimation energy
gain is limited by 1/γ no matter what the bounded energy disturbances are.

To solve this optimal estimation ẑ due to the bounded energy gain J , the
H∞ filter can be interpreted as a minimax problem ([10])

min
ẑk

max
(wk,vk,x0)

J = −
1

2γ
‖x0 − x̂0‖

2
p
−1

0

+

1

2

N−1
∑

k=0

[

‖zk − ẑk‖
2
Qk

−
1

γ

(

‖wk‖
2
W

−1

k

+ ‖vk‖
2
V

−1

k

)

]

(14)

where the estimation value ẑk plays against the bounded energy disturbances wk

and vk. Many strategies have been proposed for solving this minimax problem
([4]). We adopt a linear quadratic game approach ([10]), which does not require
checking the positive definiteness and inertia of the Riccati difference equations
for every step, but is implemented through recursive updating the filter gain Hk,
the solution Pk of the Riccati difference equation, and the state estimation x̂k .
The updating equations are given as follows:

Q̄k = LT
k QkLk (15)

Sk =
(

I − γQ̄kPk + CT
k V −1

k CkPk

)

−1
(16)

Pk+1 = AkPkSkAT
k + BkWkBT

k (17)

Hk = AkPkSkCT
k V −1

k (18)

x̂k+1 = Akx̂k + Hk (yk − Ckx̂k) , (19)



Fig. 1: The omnidirectional
robot equipped with a dig-
ital color camera and a hy-
perbolic mirror on the top

Fig. 2: Coordinate systems:
[Xw, Yw] is the world coordi-
nate system, [Xm, Ym] is the
robot coordinate system

where P0 = p0 and Pk > 0 . I is the identity matrix.

Apparently, these recursive equations have a similar form as the classic
Kalman filter. Although we need not to know the statistics of noises wk and
vk in the H∞ filter, we should tune the weight matrices Qk, p0, Wk, Vk carefully,
because these values determine the estimation error in the performance criterion
(14). The weight matrices Wk, Vk can be chosen according to the experience
about the noise. For example, if we know that the noises w is smaller than v,
Wk should be smaller than Vk. p0 is based on the initial estimation error. If we
are highly confident about our initial estimation Ẑ0, p0 should be small. Sim-
ilarly, if we care more about the precise estimations of some elements in the
state, or some elements having bigger magnitude in their physical definition, the
corresponding elements in the matrix Qk can be set larger than others. As the
performance criterion, γ can not be very large, because otherwise some eigen-
values of the matrix P may have magnitudes more than one. These eigenvalues
prevent a proper derivation of the H∞ filter equations, so that the H∞ filter
problem has no solution.

4 Experiments

The ball’s observation values come from our omnidirectional view system and
object detection process. Our omniderectional view system consists of a AVT
Marlin F-046C color camera with a resolution of 780×580, which outputs signals
up 50 times per second. In order to achieve a complete surrounding map of the
robot, the camera is assembled pointing up towards a hyperbolic mirror which
is mounted on the top of our omnidirectional robot, as shown in Fig.1. After
obtaining the image from the camera, the other two processes, color calibration
and distance calibration, map the colors to different classes based on the colors
of objects and landmarks in the RoboCup domain, and the pixels in the image to
the real world coordinates, respectively. At last, a fast object detection algorithm
is used to get the ball’s real world position, as described in [6].



While the camera image from the robot always displays the ball’s relative
position to the robot’s position and orientation, the ball’s relative position and
velocity with respect to the robot coordinate system can be estimated directly
by using the ball’s observation values. When the ball’s absolute position and
velocity is required, the ball’s observation values can be transformed into the
world coordinate system, which is fixed in the robot playing field, by utilizing
the robot’s observation values. To prove the feasibility and the robustness of the
H∞ filter in estimating the ball’s position and velocity with noisy observation
values, we use the robot’s odometer-based observation values in the experiments.
The world coordinate system and the robot coordinate system are described in
Fig.2.

All experiments were made in our robot laboratory having a half-field of
the RoboCup-Middle size league. The H∞ filter described in section 3 has been
applied to tracking a rolling ball in the RoboCup domain, when the ball is
pushed by a mobile robot to follow a linear path and a sinusoidal path with the
constant desired translation velocity 0.3m/s and 0.5m/s respectively. The ball
did not slide away from the robot during the whole pushing process because of
the consecutive collisions with the robot. At every sampling time, the H∞ filter
estimated the ball’s absolute position and velocity with respect to the world
coordinate system, and the ball’s relative position and velocity with respect to
the robot coordinate frame. The noise attenuation level and weight matrices for
estimating the x and y components were chosen as follows:

γx = 2.0, P x
0 =

[

30 0.004
30 2

]

, Qx
k =

[

0.01 0
0 0.01

]

, W x
k = 1, V x

k = 10 ;

γy = 1.5, P y
0 =

[

10 0.05
30 0.8

]

, Qy
k =

[

0.1 0
0 0.1

]

, W y
k = 10, V y

k = 1 .

To evaluate the performance of the H∞ filter, a Kalman filter with assumed
noise variance was also used to estimated the ball’s position and velocity with
the same observation values. The initial estimate error covariance matrices Po

and the probability distributions of process noise and measurement noise are
chosen as follows:

px
0 =

[

0.01 0.0001
0.003 0.005

]

, p(wx) ∼ N(0, 0.01), p(vx) ∼ N(0, 0.0001) ;

py
0 =

[

0.01 0.0001
0.01 0.005

]

, p(wy) ∼ N(0, 1), p(vy) ∼ N(0, 0.0001) .

From the results shown in figures 3-8, we can see the H∞ filter eliminated the
high frequency components of the measurement and estimated the ball’s position
values sufficiently. Figures 5-8 show that the estimated positions from the H∞

filter are slightly better than those from the Kalman filter. Figures 9-10 illustrate
that the ball’s velocity is effectively estimated and the H∞ filter is better than
the Kalman filter, while the estimated x-velocities from the H∞ filter approach
to the ideal robot’s x-velocity 0.3m/s with less time and are more smooth than
those from the Kalman filter.
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Fig. 3: Absolute positions of robot
and ball along the linear path
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Fig. 4: Absolute positions of robot
and ball along the sinusoidal path
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Fig. 5: Relative x-positions of ball
along the linear path
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Fig. 6: Relative y-positions of ball
along the linear path
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Fig. 7: Relative x-positions of ball
along the sinusoidal path
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Fig. 8: Relative y-positions of ball
along the sinusoidal path
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Fig. 9: Absolute x-velocities of ball
along the linear path

0 2 4 6 8 10
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Time (s)

A
bs

ol
ut

e 
y−

ve
lo

ci
ty

 o
f b

al
l(m

/s
)

 

 

estimated velocity from H infinity filter
estimated velocity from Kalman filter

Fig. 10: Absolute y-velocities of ball
along the linear path



5 Conclusion

In this paper we introduce a robust H∞ filter, which does not require a priori
knowledge about the statistical properties of the system and measurement noise,
but only depends on the assumption of finite noise power. The recursive equa-
tions of the H∞ filter are very similar to those of the Kalman filter, so the H∞

has relatively low computation cost in the implementation and adapts to the
real time estimation problem. With the real-world experiments, where the ball
was following the given paths pushed consecutively by an omnidirectional robot,
the performance of the H∞ filter was evaluated by comparing the estimation
values with those from the Kalman filter. The results of the estimated ball’s po-
sition and velocity show that the H∞ filter eliminates the high frequency noise
components of the measurements and estimates the ball’s position and velocity
robustly in the pushing process. Moreover, the H∞ filter in this application is
shown to be superior to a Kalman filter, which requires manual tuning of the
noise parameters.
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