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Abstract: This paper focuses on the control problem of a mobile robot pushing a ball. In 
order to drive a rolling ball along a given path, the robot should provide the ball with 
appropriate force by consecutive pushing operations. A new control algorithm combining 
a linear feedback control with a normal proportional feedback control is proposed, which 
steers a reference point to follow the given path and the ball to move around this point 
simultaneously. In the end, the simulation and real-world experiments address the 
performance and robustness of this control algorithm. Copyright@2002 IFAC 
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1. INTRODUCTION 
  
Moving an object from one position to another is one 
of the basic tasks of a robot. Normally equipped with 
some flexible manipulators, the robot could grip the 
object, pick it up and place it at the ideal position. 
But when the object is too large, too heavy or 
complex to be gripped, as one kind of nonprehensile 
manipulation, pushing could play a great roll in these 
complex tasks. Here we studied this pushing task, 
that a mobile robot pushes a rolling ball and the ball 
can follow a given path without sliding away from 
the robot. 
  
Mason (1986) first presented research results on 
pushing a solid object by a manipulator. He analyzed 
the mechanics of quasi-static pushing operations, and 
gave algorithms to determine the rotation direction 
(clockwise, counter clockwise) of a pushed object, 
when the pressure distribution is unknown. Peshkin, 
et al. (1988a, b) extended this pushing seminal by 
attempting to solve the motion of the pushed object 
completely. With these research results, the pushing 
operation has been utilized in many applications.  
 
Akella and Mason (1992) described a planner which 
is guaranteed to construct a sequence of pushing 
actions to move any polygonal object from any initial 
configuration to any final configuration. Lynch 
(1996) studied the problem of transferring a part 
from one state to another using nonprehensile 
manipulation, which includes the quasistatic 
nonprehensile manipulation and the dynamic 
nonprehensile manipulation. Agarwal, et al. (1997) 
considered the path-planning problem for a robot 

pushing a unit disk with point contact in an 
obstacleless environment. Besides these open-loop 
designs of pushing operation series, many researchers 
have studied the feedback control of the object 
pushed by robots. Takagi and Okawa (1991) took the 
rule-based control scheme to control a mobile robot 
pushing a box, based on their analysis of the moving 
equations of the robot and box. Okawa and 
Yokoyama (1992) resolved the same problem with 
the goal seeking strategy for robot’s motor control. 
Lynch, et al. (1992) developed a control system to 
translate and orient objects using tactile feedback 
with the derived motion equations of the pushed 
objects. 
 
In this paper we also pursue the motion control 
problem of the pushed object. We control a mobile 
robot to push a rolling ball, such that the ball follows 
a given path with high velocity and little derivation. 
Meanwhile, the ball should not slide away from the 
robot. Actually the push process consists of several 
consecutive impacts. Between any two adjacent 
impacts, only the friction between the ball and the 
support plane acts on the ball, which means the ball 
is not controllable for the robot and possibility moves 
away from the given path. To resolve this problem, 
we induce a reference point as the path following 
control object. Under the feedback control of robot, 
the reference point follows the given path, and 
simultaneously the ball moves around this point. 
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2. PROBLEM FORMULATION 
 
The mobile robot used for this task is an 
omnidirectional robot. An omnidirectional robot has 
three degrees of freedom on the plane, two 
orthogonal translations and one rotation. This 
characteristics allows to control the translation and 
rotation of the omnidirectional robot independently 
and simultaneously. Fig. 1 shows the kinematics 
diagram of the omnidirectional robot.  
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Fig. 1. Kinematics diagram of omnidirectional robot 

 
where [ ],w wX Y  is the world frame. [ ],m mX Y  is the 
robot frame, which locates at the robot’s mass centre. 
θ  is the rotational angle between the world frame 
and the robot frame, and it denotes the robot heading 
direction. In the robot frame, the kinematics of the 
omnidirectional robot is given by the following 
equations 

      cosm
rx v θ=                             (1) 

 sinm
ry v θ=                              (2) 

θ ω=                                     (3) 
where ,m m

r rx y are the robot translation velocities with 
respect to the robot frame. v  and ω  are respectively 
the robot’s translation velocity and  rotation velocity. 
Transforming the coordinate from the robot frame to 
the world frame, the robot’s absolute velocities are 
given by 
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where ,r rx y are the robot’s translation velocities with 
respect to the world frame. 
 
As the pushed object, the rolling ball moves like the 
unicycle mobile robot (de Wit et al. 1996). The 
kinematics of the ball can be described by the 
following equations 

b bθ ω=                                       (5) 
cosb bx v bθ=                              (6) 

sinb by v bθ=                              (7) 
where ,b bx y are the ball’s absolute translation 

velocities. ,b bθ θ are the ball’s translation direction 
and rotation velocity, respectively. Equations (5)-(7) 
denote that two variables v  and b bω  are enough to 
control the ball’s movement completely.  
 
2.1 Path Following 
 
The path following problem is illustrated in Fig. 2. P 
denotes the given path. Point B is the centre of the 
ball, and point Q is the orthogonal project of B on the 
path P. tx  and nx  are the tangent and normal unit 
vectors at Q, respectively.  is the signed distance 
between the ball’s centre and the path P. 

l
s  is the 

signed distance along the path P between any point 
on path P to point Q. rθ  is the angle between axis tx  
and axis wX . bθ  denotes the ball’s moving direction. 

The orientation error is defined as b r bθ θ= −θ . 

B

wY

wXO

bv
nx

tx

l P

bθ

rθ

by

bx

Q

s

 
Fig. 2. Illustration of path following problem 

 
With this given path, the path following problem 
consists of finding feedback control values of v and b

bω  such that the deviation distance l  and orientation 

error b̂θ  tend to zero. 
 
Using the previous definitions, the path following 
problem can be parameterized as 
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sinbl v bθ=                                     (9) 
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where is the path curvature at point Q. c
 
 2.2 Ball Holding 
 
Holding ball means that the robot should guarantee 
that its front consecutively contacts the ball during 
the whole pushing process, even if the given path has 
a strong turning angle. As shown in fig. 1, our mobile 
robot has a slightly convex shaped front, which 
provides for some lateral stability for the pushing 



operation, i.e. a contact that occurs on the left side of 
the pusher should result in a restoring impulse that 
moves the object to the right side. This structure 
helps the robot not only to hold the ball with some 
appropriate force, but also to provide a small 
centripetal force for the ball following the given path.  
 

3. PUSHING CONTROL 
 
Fig.3 shows the ideal situation in the pushing 
process. When the robot pushes the ball, the ball 
follows the given path with the required velocity, and 
is always located at the front of the robot. We divide 
our task into two parts: control the reference point E 
following the given path; control the ball around the 
reference point E during the whole pushing process.  
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Fig. 3. Ideal positions of robot, ball 
 
 
3.1 Linear Feedback Control 
 
Given the ideal path P and the
translation velocity , the path fo
could be resolved by only finding a
law

bv

bω such that the deviation
orientation error tend to zero. 
 
By inducing a control variable u  
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equation (10) becomes  
                            b uθ =

In the neighbourhood of the origin
linearization of (9) gives 

(l

               l vb bθ=               
This system is controllable and s
using a linear state feedback control

    1 2b bv l k v bu k θ= − −  
where , as discussed 
1996). For a constant , this contr
classical linear time-invariant 
controller. Then the closed-loop 
output l  is 

1 20, 0k k> >
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   2
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This is a typical second-order 
characteristics is directly determine

frequency and damping coefficient.  After we select a 
big enough natural frequency to balance the steady 
error and response velocity, and the optimal damping 
coefficient 2 / 2

1 2,k k
, we obtain the controller 

parameters by 
   2

2 bk v a⋅ =                          (16) 

  k v2
1 2b aξ⋅ =                            (17) 

where is the natural frequency and a ξ  is the 
damping coefficient. 
 
3.2 Robot Motion Control 
 
According to the kinematics model (4) of the 
omnidirectional robot, three variables ( , , )m m

r rx y ω  
can be used to control the robot movement 
completely. The reference point E is the ideal 
position of the ball’s centre, which is the point 

in the robot frame and can be considered as a 
fix point of the robot itself. is the distance between 
the centre of robot and the point E. The absolute 
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cose rx x d θ= +                          (18) 
sine ry y d θ= +                          (19) 

sine rx x dω θ= −                        (20) 
 cose ry y dω θ= +                       (21) 

where ex , andey ,e ex y are the positions and the  
translation velocities of point E with respect to the 
world frame. For the point E following the given 
path, we need to provide the point E with the rotation 
velocity bω  calculated from the linear feedback 
control algorithm and the given required translation 
velocity  by controlling the robot. Considering the 
characteristics of our omnidirectional robot, which 
can translate and rotate simultaneously, control the 
robot to rotate around the point E besides its 
translation movement, as given by the following 
equations                  

bv

                              r
m bx v=                       (22) 
r
my d bω= − ⋅                            (23) 

bθ ω=                                   (24) 
where  is the ball’s required translation velocity. 
Substituting these equations into equations (4) and 
(20)-(21), we obtain the absolute velocities of point E 

bv

                             cose bx v θ=                           (25) 
sine by v θ=                            (26) 

Equations (25) and (26) denote that E has the ideal 
velocity . The absolute moving direction bv eθ  of 
point E is given by 

tan tane
e

e

y
x

θ θ= =                          (27) 

Apparently point E moves along the robot’s heading 
direction. So the control actions (12) – (24) can also 
provide the point E with rotation velocity bω . 



Unfortunately this moving direction eθ  may result in 
the robot losing contact of the ball when it turns, 
which is highly non-desirable.  
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Until now, only two variables bω  and v  are used to 
control the robot, which means there is one degree of 
freedom left, which could be used to control the 
robot not losing the ball during the path following 
process. We add another variable 

b

∆  into the robot 
control actions 

2 2r
m bx v d ω= − ⋅∆                     (28) 

(r
m ry d ω ω= − ⋅ + ∆                      (29) 

rθ ω=                                         (30) 
Similarly we calculate the absolute translation 
velocity of point E by substituting (28) – (30) into (4) 
and (20)-(21) 

              cos sr
e m ex x dθ ω= ⋅ + ⋅∆              (31) eθ

esin cr
e m ey x dθ ω= ⋅ − ⋅∆              (32) θ

2 2
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The translation velocity  is equal to the ideal one 
, and  is not relative to the control value 

ev

bv ev ω∆  
and rω . The moving direction and rotation velocity 
of point E can be obtained from the following 
equations 
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In order to satisfy the requirement of the rotation 
velocity of E, the rotation velocity of robot rω should 
be  
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From the equations (34) and (35), We can see that the 
third control variable ω∆ determines the angle 
deviation between eθ andθ and the corresponding 
rotation velocities. We define a feedback controller 
for the control value ω∆  as follows 

                           (37) 2
3

m
bk v c k yω∆ = ⋅ ⋅ + ⋅ b

where  and k  are scale parameters, c is the path 
curvature, is the ball’s relative y-position in the 
robot frame. The first part of equation (37) describes 
the relationship between the variable 

3k 4
m
by

ω∆  and the 
centripetal acceleration, which is not only 
proportional to the centripetal acceleration in 
magnitude, but also has the same sign of the 
curvature. The second part is a proportional 
controller with the ball’s relative y-position as the 
input. The goal of this simple linear controller is to 
stabilize the ball’s relative y-position to zero. This 
variable ω∆ produces an angle derivation between 
the absolute moving direction of point E and the 
heading direction of the robot. This angle derivation 

and the robot’s convex front together make the robot 
capable of holding the rolling ball. 
 

4. EXPERIMENTS 
 
We applied this control algorithm to both simulated 
and real-world environments. After we tested the 
control method in the simulator environment, the 
effectiveness of this control system was evaluated in 
the real-world environment. 
 
4.1 Simulation Experiments 
 
In our simulator, the movements of the robot and the 
ball have been calculated from their kinematics 
equations. The pushing process is considered as a 
consecutive high frequency and low magnitude 
compact process. We utilize the basic collision 
equations, which describe the collisions of two rigid 
bodies, and the Poisson’s Hypothesis to calculate the 
motion of the two objects before and after the 
collision. This method was introduced by Yu Wang 
(1993). The difficulty in this collision simulation is 
the determination of the collision moment exactly. 
As a normal method, we detect whether the robot and 
the ball overlap by some degree due to the limited 
time, if they have, the simulation calculates back n 
time steps within the last cycle such as the overlap 
disappears. Since the simulation cycle is enough 
short, the accuracy of the collision detection is 
satisfiable. The parameters of our simulator such as 
the friction coefficient, restitution coefficient are 
adopted as the experience values. The masses and the 
moment of inertia of robot and ball are adopted as the 
real values.  
 
In the simulation, the ball is tested with sinusoidal 
paths and constant required translation velocities. 
The simulation results are illustrated in fig. 4,5,6,7, 
where the normal position error denotes the ball’s 
relative y-coordinate in the robot frame, and the 
velocity error presents the difference between the 
ball’s real translation velocity and the required one. 
These results show us the following control method 
could fast and stable steer the ball converge to the 
given path, meanwhile the ball doesn’t slide away 
from the robot, because the normal position error is 
always less than the maximum values m.  17.0±
 
4.2 Real-world Experiments 
 
In this section we applied the following control 
strategy to the real omnidirectional robot in the real 
Robocup playing field. From the omnidirectional 
vision system of our robot, we can receive the real-
time location information of our robot and the ball in 
real time. We also controlled the robot to push the 
ball following some sinusoidal paths with the 
constant desired translation velocities.  Although   the 
measurement noise and environment disturbance 
were induced,  the experiment results,  illustrated   in 



fig. 8,9,10,11, demonstrate the control method has 
good performance and robustness.  Because  of  the 
limitation of the experiment environment, the robot 

only moved about 5m along the x-direction in these 
experiments. 

 
 

Fig. 4. Simulated following along the 
       Path xy sin= with 0.5 m/s  =bv

 
           Fig. 5. Simulated following error along 
                 the Path with 0.5 m/s xy sin= =bv

Fig. 6. Simulated following along the   
             path xy sin5.0= with v 0.6 m/s  =b

 
           Fig. 7. Simulated following error along 
                 the path withxy sin5.0= =bv 0.6 m/s 

Fig. 8. Real-world following along the   
     path xy sin= with v 0.5 m/s =b

 
          Fig. 9. Real-world following error along  
                 the path with 0.5 m/s xy sin= =bv

 Fig. 10. Real-world following along the              
         path xy sin5.0= with =bv 0.6 m/s 

 
          Fig. 11. Real-world following error along  
                the path withxy sin5.0= =bv 0.6 m/s 



5. CONCLUSIONS AND FUTURE WORK 
 
In this paper a new path following control method 
was presented. This approach resolves the control 
problem of the consecutive mobile robot pushing 
operation by inducing a reference point as the ball’s 
ideal centre. This reference point is also regarded as a 
fixed point of the robot itself. The linear feedback 
control method is used to steer the reference point to 
follow the given path, and the ball is steered to move 
around the reference point by the proportional control 
method. 
 
The simulation and real-world experiments utilized 
sinusoidal curves with different magnitudes as the 
ideal paths, and a constant required translation 
velocity of the ball. The results show that this path 
following control method can control the 
omnidirectional robot to apply appropriate pushing 
operations such that the ball follows the given path 
stably and robustly up to velocities of 0.6 m/s for a 
sinusoidal curve. 
 
The desired ball’s translation velocity is determined 
not only by the feedback error, but also by the 
curvature characteristics of the smooth desired path. 
A constant   translation velocity cannot suit any 
desired paths. Future work includes steering the ball 
to follow the desired path with different velocities, 
especially with lower velocities at high curvature 
strongly bent points and higher velocity along 
straight segments. 
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