
Comparing Evolutionary Algorithms on the Problem of
Network Inference

Christian Spieth
Centre for Bioinformatics

Tübingen (ZBIT)
72076 Tübingen, Germany

spieth@informatik.uni-
tuebingen.de

Rene Worzischek
Centre for Bioinformatics

Tübingen (ZBIT)
72076 Tübingen, Germany

renewor@web.de

Felix Streichert
Centre for Bioinformatics

Tübingen (ZBIT)
72076 Tübingen, Germany

streiche@informatik.uni-
tuebingen.de

ABSTRACT
In this paper, we address the problem of finding gene regula-
tory networks from experimental DNA microarray data. We
focus on the evaluation of the performance of different evo-
lutionary algorithms on the inference problem. These algo-
rithms are used to evolve an underlying quantitative math-
ematical model. The dynamics of the regulatory system
are modeled with two commonly used approaches, namely
linear weight matrices and S-systems and a novel formu-
lation, namely H-systems. Due to the complexity of the
inference problem, some researchers suggested evolutionary
algorithms for this purpose. However, in many publications
only one algorithm is used without any comparison to other
optimization methods. Thus, we introduce a framework to
systematically apply evolutionary algorithms and different
types of mutation and crossover operators to the inference
problem for further comparative analysis.

Categories and Subject Descriptors
I.2 [Computing Methodologies]: ARTIFICIAL INTEL-
LIGENCE—Miscellaneous; J.3 [Computer Applications]:
LIFE AND MEDICAL SCIENCES—Biology and genetics

General Terms
ALGORITHMS, PERFORMANCE

Keywords
Evolutionary Computation, Inference, Systems Biology

1. INTRODUCTION
Systems biology has become one of the major research

areas in biology over the past few years. Due to tremen-
dous progress in experimental methods like DNA microar-
rays, several thousand expression levels of genes in an organ-
ism can be measured in parallel under specific environmen-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

tal conditions. This enables researchers to examine intra-
cellular processes on a systemic level. The inference of gene
regulatory networks from experimental data is one of the
main unsolved problems in the post-genomic area. A gene
regulatory network (GRN) is an abstract model representing
dependencies between genes using a directed graph. In this
graph, each node is a gene or component of the regulatory
system and each edge represents a regulatory impact from
one component to the other (e.g. activation or suppression
of the transcription and translation of the dependent gene).

Several publications addressing the problem of inferring
gene regulatory networks can be found in the literature. De
Jong gives a good overview about related work in [1]. A ma-
jor part of the work done in this field is using deterministic
mathematical models to simulate regulatory networks. One
kind of those deterministic models are linear models like the
weighted matrix model [16, 17]. These models have only a
small number of system parameters compared to S-systems
but are often not flexible enough to model biological sys-
tems in detail, since they model the dependencies linearly.
S-systems, on the other hand, model dynamic systems in
a nonlinear manner. They consist of a set of differential
equations describing the changes in expression over time.
However, they show a significant higher number of system
parameters. S-systems have been recently examined in [5,
6]. Most applications of deterministic models use evolution-
ary algorithms (EA) to determine the correct parameters of
the mathematical model. EAs have proven to be successful
in finding parameters of mathematical models representing
GRNs.

So far, the authors commonly describe only the algorithm
of their choice on the problem of identifying the unknown
parameters of the model. Some publications show the results
of the proposed method only in comparison to one standard
algorithm, thus lacking the possibility of impartially evalu-
ating the performance of other approaches. Therefore, we
designed a framework to systematically compare optimiza-
tion algorithms on a set of artificial benchmark problems,
which is accessible through the JCell project website1 [13].

The remainder of this paper is structured as follows. Sec-
tion 2 describes the mathematical models used in this pub-
lication. Section 3 gives the results of eight commonly used
algorithms on the inference problem and section 4 shows the
performance of three fine-tuned methods. The conclusions
and an outlook are given in section 5.

1http://www.jcell.de

2. MATHEMATICAL MODELING
The genetic dependencies of a cell can be abstracted by

a directed graph with N nodes representing N genes. Each
gene gi produces a certain amount of mRNA xi when ex-
pressed and changes the concentration of the mRNA level
over time: ~x(t + 1) = h(~x(t)) , ~x(t) = (x1, · · · , xn). Here,
function h represents the changes of expression levels from
one state to the next. To model this function, several ap-
proaches can be found in the literature. We decided to use
the two most popular deterministic models, namely linear
weight matrices, H-systems, and S-systems. These models
are described in detail in the following sections.

2.1 Linear Weight Matrices
Linear weight matrices (WM) have been originally intro-

duced in [16]. In this approach, the regulative interactions
between the genes are represented by a weight matrix, W,
where each row of W represents all the regulatory inputs
for a specific gene. The regulatory effect of gene gj on gene
gi at time t is simply the expression level of gj multiplied
by its regulatory influence on gi, wij . The total regulatory
input to gi is derived by summing across all the genes in the
system and in the following referred to as ri(t):

ri(t) =
X

j

wijxj(t) (1)

Here, a positive value for wij indicates that gene gj is stim-
ulating the expression of gene gi. Similarly, a negative value
indicates repression, while a value of zero indicates that gene
gj does not influence the transcription of gene gi. By model-
ing regulatory interactions with a weight matrix, we can use
mathematical matrix approaches found in the field of neural
networks for subsequent analyses of the resultant models.
With the regulatory state of each gene, we are now able to
model the response of each gene to the given input. The
impact of ri(t) on gene gi is calculated using a so called
”squashing” function (Eqn. 2).

xi(t + 1) =
mi

1 + e−(αiri(t)+βi)
(2)

where ri(t) is the mentioned regulatory state of gene gi, and
αi and βi are gene specific constants that define the shape of
the squashing function for gene gi. The resulting expression
level is only a relative value between 0 and 1, with 0 rep-
resenting complete repression and 1 representing maximal
expression. Thus, these relative levels have to be converted
into the real expression space. In addition, the genes can
have different levels of maximal expression. Hence, we mul-
tiply the calculated relative gene expression level xi by the
maximal expression level for each gene mi, to get the final
expression level for gi xi(t + 1) as shown in equation (2).

2.2 S-systems
Another, more flexible type of model, are S-systems (SS).

They employ a general formalism, which allow for capturing
the nonlinearity and general dynamics of the gene regula-
tion. S-systems are a type of power-law formalism, which
have been suggested by [11] and can be described by a set
of nonlinear differential equations:

dxi(t)

dt
= αi

NY
j=1

xj(t)
Gi,j − βi

NY
j=1

xj(t)
Hi,j (3)

where Gi,j and Hi,j are kinetic exponents, αi and βi are
positive rate constants and N is the number of genes in the
system. The equations in (3) can be seen as divided into two
components: an excitatory and an inhibitory component.
The kinetic exponents Gi,j and Hi,j determine the structure
of the regulatory network. In the case Gi,j > 0, gene gj

induces the synthesis of gene gi. If Gi,j < 0, gene gj inhibits
the synthesis of gene gi. Analogously, a positive (negative)
value of Hi,j indicates that gene gj induces (suppresses) the
degradation of the mRNA level of gene gi.

2.3 H-systems
H-systems are another type of a set of parameterized dif-

ferential equations. They originate from the idea to enhance
weight matrices with an additional term to ensures nonlin-
earity in the model. They have been suggested by Hadeler
and Spieth [3] and have the form of:

dxi(t)

dt
= ci +

X

k

bikxk(t) + xi(t)
X

k

aikxk(t) (4)

Although H-systems have the same order of complexity O(N2)
as S-systems, they have a significant advantage. For S-
systems, the equilibrium positions are too fixed, which be-
comes obvious even for the one-dimensional case ẋ = xα −
xβ . Furthermore, H-systems can be clearly motivated by di-
viding the equations into a constant rate and a linear term
as in case of the weight matrices and extending this with a
nonlinear term.

3. STRAIGHT-FORWARD APPROACH
The most straight-forward approach to the problem of

mathematically modelling dynamic systems by means of evo-
lutionary algorithms is to choose an appropriate type of
model and a suited EA together with the fitness functions
described below. Thus, this section gives an overview of
the performance of classic algorithms in combination with
the different models on the problem of identifying unknown,
nonlinear dynamic systems.

Several classic optimization algorithms, which represent
the basic algorithms for parameter optimization, were used
to fit a model to the given experimental data:

• Monte-Carlo search (MC),

• (multi-start) hill climber (MS-HC),

• binary genetic algorithm (binGA),

• real-valued genetic algorithm (realGA),

• standard evolution strategy (stdES),

• evolution strategy with CMA mutation (cmaES),

• differential evolution (DE), and

• particle swarm optimization (PSO).

All algorithms applied fitness function (5) to determine
the quality of a candidate solution and all use the parameter
settings that were described as the default parameters by the
authors of the corresponding method if not otherwise stated.

3.1 Fitness
For evaluating the quality or fitness of the inferred models,

i.e. the similarity of the time dynamics between the exper-
imental and the simulated data, the following equation can
be used, referred to as the relative squared error or relative
standard error (RSE):

fRSE =

NX
i=1

TX

k=1

(�
x̂(tk)i − x(tk)i

x(tk)i

�2
)

(5)

Here, N is the total number of components of the system, T
is the number of sampling points taken from the experimen-
tal time series and x̂ and x distinguish between estimated
data of the simulated model and data sampled in the exper-
iment. This is the most straight-forward way of comparing
the system’s output to the output of the simulated model.

In the current implementation, a Runge-Kutta method of
fourth order is used to integrate the differential equation
systems to simulate the mathematical model. The overall
optimization problem is then to minimize the fitness values
of objective function fRSE . This fitness function has already
been used by several publications on this problem and was
thus selected to evaluate the model quality.

3.2 Search Space Properties
To better understand the properties of the search space,

the benchmark problems were first examined by two simple
optimization algorithms. As a first method, the performance
of a straight-forward Monte-Carlo search (MC) was exam-
ined on the inference problem. Monte-Carlo methods are the
most simple, random methods for parameter optimization
and can be used to evaluate the performance of randomly
choosing solutions from the solution space. The second al-
gorithm to explore the search was a standard hill climb-
ing method (HC). Hill climbers represent a rather primitive
technique as well, but they are useful in simple and low di-
mensional uni-modal solution spaces. The HC algorithm of
this comparison was implemented with a real-value variable
encoding and a fixed mutation step size of 0.2.

Further on, the hill climber was evaluated in various differ-
ent multi-start environments: 1, 10, 25, 50, 100, and 250. To
gain a sound statistic, 20 multi-runs were performed for both
algorithm types, i.e. each algorithm was repeated 20 times
independently to obtain results that are statistically signif-
icant. Further on, each algorithm terminated after 100,000
fitness evaluations and the best-of-run solutions were aver-
aged over the multi-runs, if not mentioned otherwise.

Figure 1 gives the results of the Monte-Carlo search and
the different multi-start hill climbing methods for the test
cases with increasing dimensions (5 and 10 components).
The figures in the left columns give the fitness courses of each
algorithm including the courses of the random Monte-Carlo
search averaged over the 20 multi-runs. The column on the
right shows the mean fitness values and the corresponding
standard deviations of the six multi-start environments also
averaged over the 20 multi-runs. Here, the MC results are
not given to focus on the performance of the multi-start hill
climber.

The HC algorithms perform very similar on the bench-
mark systems. As can be seen from the fitness courses, the
trend for each algorithm is the same for all test systems.
The multi-start hill climber with only a small number of
multi-starts find the worst solutions in comparison to the

other multi-start algorithms. However, those environments
with the highest number of multi-starts drop in their per-
formance. Beside the Monte-Carlo search, each hill climber
was able to find very good solutions with respect to the
fitness function on the five-dimensional test case. All al-
gorithms suffer from the increase in the dimensionality of
the benchmark systems and therefore, the quality of their
results decreased in the small- and medium-sized bench-
marks. The 25-HC was able to find satisfying results in
the five-dimensional example, whereas all algorithms fail to
find good solutions in the medium-sized benchmark (N = 10
components).

The experiments of the multi-start hill climber clearly
show that the search space is highly multi-modal. The al-
gorithms with increased numbers of allowed multi-starts are
yielding increased levels of model quality, in particular with
the best performance of the 50-start hill climber in the two-
dimensional example and the 25-start HC in the others. Fur-
ther increasing of the multi-starts implies a decrease of the
quality. This can be explained by the properties of multi-
start environments: on the one hand, the simple one-start
HC converges prematurely to local optima, while the multi-
start algorithms are better able to cope with this issue. On
the other hand, the higher the number of multi-starts is, the
lower is the number of evaluations per hill climbing run, i.e.
is the overall number of fitness evaluations divided by the
number of concurrent multi-starts. Thus, the high multi-
start HCs are not able to fully converge to an optimum suf-
fering from the lack of evaluations.

3.3 Classical Optimization Algorithms
To further investigate the inference problem, several stan-

dard evolutionary algorithms were used to find suitable model
parameters. As already mentioned, six EAs were selected
to evolve the kinetic parameters of the benchmark systems.
The settings of the algorithms are described below.

The standard evolution strategy (stdES) with global mu-
tation (pm = 0.8), discrete one-point crossover (pc = 0.2)
used a (µ = 5, λ = 25) population scheme. The more so-
phisticated (µ = 5, λ = 25)-ES with covariance matrix adap-
tation (cmaES) evolved solutions only relying on mutation
(pm = 1.0) without crossover. The binary genetic algorithm
(binGA) used one-point mutation (pm = 0.1) and one-point
crossover (pc = 0.7), the real-valued GA (realGA) global
mutation (pm = 0.1) and UNDX crossover (pc = 0.8). Both
worked on a population of 250 individuals and selected from
them with tournament selection with a group size of eight in-
dividuals. For the differential evolution (DE), the extended
method was used with a population size of 250 individu-
als, F = 0.8, λDE = 0.4, and pc = 0.4. And finally, the
particle swarm optimizer (PSO) optimized the model pa-
rameters with 250 particles using a star topology of range
2, φ1 = φ2 = 0.6, an inertia weight w = 0.8, and an initial
velocity vector of ~vi = 0.2 ∀ i.

Beside these settings, the evolution strategies used an ex-
tension, where the initial population is significantly larger
than the standard λ-sized population. In the current imple-
mentation, 250 individuals were created to form the initial
population to be better comparable to the other algorithm
with much larger populations. This extension is crucial,
because it increases the chance of finding stable S-systems
in the beginning. The evolution strategies then decrease the
size of the population by the standard best selection method

20000 40000 60000 80000 100000
1

10

100
fitn

es
s

evaluations

 MC
 1-HC
 10-HC
 25-HC
 50-HC
 100-HC
 250-HC

1-HC 10-HC 25-HC 50-HC 100-HC 250-HC
0

2

4

6

8

10

12

14

16

18

20

fitn
es

s

algorithm

Figure 1: Performance of a standard Monte-Carlo search (MC) and the different multi-start hill climbing
methods (x-HC). Given are the fitness courses of the five–dimensional systems.

0 20000 40000 60000 80000 100000
0,01

0,1

1

10

100

fitn
es

s

evaluations

 MC
 stdES
 cmaES
 binGA
 realGA
 DE
 PSO

stdES cmaES binGA realGA DE PSO
0,01

0,1

1

10

fitn
es

s

evaluations

0 20000 40000 60000 80000 100000
1

10

100

fitn
es

s

evaluations

 MC
 stdES
 cmaES
 binGA
 realGA
 DE
 PSO

stdES cmaES binGA realGA DE PSO
0,1

1

10

fitn
es

s

evaluations

Figure 2: Performance of standard evolutionary algorithms: evolution strategy with global mutation (stdES)
and covariance matrix adaptation (cmaES), genetic algorithm with binary (binGA) and real-value (realGA)
representation, differential evolution (DE), and particle swarm optimization (PSO). Given are the fitness
courses of the five- (upper row) and ten-dimensional systems.

0 20000 40000 60000 80000 100000

0,1

1

10

fitn
es

s

evaluations

 1/5 success
 global
local
 correlated
CMA

1/5 success global local correlated CMA
-1

0

1

2

3

4

fitn
es

s

mutation operator

Figure 3: Impact of the mutation operators. Shown is the performance of an ES on the inference of the
five-dimensional benchmark systems averaged over 20 multi-runs.

5 25 50 125 250 500
1

5

10

25

50

125 0,04000

1,432

2,824

4,216

5,608

7,000

0,0 0,2 0,4 0,6 0,8 1,0
0,0

0,2

0,4

0,6

0,8

1,0

pc

p m

0

0,8000

5,600

11,20

19,20

32,00

Figure 4: Impact of the µ-λ ratio and the optimal ratio of pm and pc for the best performing mutation type.
Shown is the performance of an ES on the inference of the five-dimensional benchmark systems.

and continue with the number of individuals given above.
Figure 2 gives the results of the different evolutionary al-

gorithms for the test cases with increasing dimensions. The
figures in the left columns give the fitness courses of each al-
gorithm averaged over the 20 multi-runs. The column on the
right shows the mean best fitness values and the correspond-
ing standard deviations of the six EAs. The standard ES
was not able to find good solutions in the test cases. How-
ever, the ES using CMA performed best in each benchmark
reflecting the potential of evolution strategies on real-value
optimization problems. The binary GA performed hardly
better than the random Monte-Carlo search especially in
the higher dimensional examples. Whereas the real-valued
GA achieved much better results and found good models
more reliable. Furthermore, the binGA started with worse
fitness values than the realGA, due to the binary representa-
tion in which high values are more likely because of the uni-
form random initialization of high and low bits. The most
competitive alternative EA approach to the cmaES was dif-
ferential evolution, performing second best in all test cases.
And finally, the PSO implementation performed rather well
but also seemed to converge prematurely.

4. OPTIMIZED ALGORITHMS
The results of the previous section showed that standard

EAs are able to find good solutions with respect to the given
fitness function. Especially, the ES, the real-valued GA, and
the DE performed well and reliably found good solutions.
These three EA approaches were selected to be the reference
algorithms for the next sections. For this, the algorithm
settings are tuned in the following to represent the best
suited standard algorithms. The reference algorithms are
tuned using only the five-dimensional systems (see JCellDB
for details). For this purpose, the different setups of al-
gorithm parameters were evaluated on the inference of the
five-dimensional data sets. As in the test cases before, the
experiments were repeated 20 times for each setup to gain
sound statistics and the resulting fitness values were calcu-
lated from the averaged best-of-run values.

4.1 Optimized Evolution Strategy
The first reference algorithm to be tuned was an evolu-

tion strategy. The results of the preceding section indicate
that an ES with an appropriate mutation operator is well

suited for the inference problem. Therefore, the impact of
the population size, several mutation operators, and the op-
timal ratio of pm and pc for the best performing mutation
type were evaluated to find an optimal set of algorithm set-
tings for a reference evolution strategy.
Mutation Operators The results of the plain standard
algorithms suggested a strong impact of the type of mutation
on the performance of the ES. Thus, five mutation operators
were compared to find an operator for the optimizer that
results in the best solutions: 1/5 success rule [10], global
mutation and local mutation [12], correlated mutation, and
covariance matrix adaptation (CMA) [4].

Further on, crossover was omitted for all test cases to
study only the impact of the mutation. The graphs of fig-
ure 3 give the results of the inference runs averaged over
20 multi-runs. All operators failed to converge to good solu-
tions, only CMA was able to improve the fitness significantly.
This suggests that the decision variables of the problem are
correlated. And although correlated mutation does not per-
form significantly better than the other operators, more so-
phisticated operators that make use of correlation analysis
seem better suited for inferring regulatory systems.
Mutation versus Crossover For the preceding evaluation
of the mutation operators, no crossover was used. Therefore,
additional experiments were performed to study the optimal
ratio of mutation and crossover probability, namely pm and
pc, respectively. This was done in a grid search evaluating
different combinations of pm and pc for the CMA mutation
operator and discrete one-point crossover. Figure 4 shows
the results of the optimization runs and clearly, the crossover
event disturbs the self-adaption of the mutation operator.
The best setting was reached for a mutation rate of pm = 1
and no crossover at all.
Population Size To examine the influence of the popu-
lation size of the evolution strategy, different combinations
of µ and λ were used to infer the inference problem given
by the five-dimensional data sets. In particular, pairs of
µ = 1, 5, 10, 25, 50, 125 and λ = 5, 25, 50, 125, 250, 500 were
tested in a grid search test scenario. Obviously, combina-
tions where µ exceeds λ were disregarded.
For variation, the ES used the CMA operator that per-
formed best in the previous experiments without crossover.
The rightmost plot in figure 4 illustrates the general trend
of the µ/λ ratio. An increased λ shows a positive effect on
the performance of the ES. However, the best performance

0 20000 40000 60000 80000 100000
0,1

1

10

fitn
es

s

evaluations

 arithmetic uniform one-point
 SPX BLX-alpha UNDX

arithmetic uniform one-point SPX BLX-a UNDX
0,1

1

10

fitn
es

s

crossover operator

Figure 5: Impact of the crossover operators. Shown is the performance of a GA on the inference of the
five-dimensional benchmark systems averaged over 20 multi-runs.

50 100 250 500 1000
0,0

0,5

1,0

1,5

2,0

2,5

fitn
es

s

population size
0,0 0,2 0,4 0,6 0,8 1,0

0,0

0,2

0,4

0,6

0,8

1,0

pc

p m

0

0,6250

6,250

13,75

21,25

25,00

Figure 6: Impact of the population size and the optimal ratio of pm and pc for the best performing crossover
type. Shown is the performance of a GA on the inference of the five-dimensional benchmark systems.

was achieved with a specific ratio of the two parameters: the
(µ = 10, λ = 50)-ES yielded the overall best results.

Subsumed, a (µ = 10, λ = 50)-ES with CMA (pm = 1)
and no crossover performed best and was thus selected to
represent the optimized ES referred to as optES in the fol-
lowing.

4.2 Optimized Genetic Algorithm
The second reference algorithm to be adjusted was a real-

valued genetic algorithm, which also performed very well in
the preliminary experiments. As in case of the optimized
evolution strategy, the GA was evaluated with respect to
the population size, crossover operators, and the optimal
ratio of pm and pc for the best performing type of crossover.
Population Size The first experiments examined the im-
pact of the population size on the performance of a genetic
algorithm. For this purpose, five real-valued GAs using pop-
ulations with 50, 100, 250, 500, and 1000 individuals were
evaluated on the inference problem. The left box-plot in fig-
ure 6 shows the best-of-run fitness values averaged over 20
multi-runs. The graph shows a similar effect of the popula-
tion size as in the case of the multi-start hill climber. Too
small populations lead to worse fitness values in the initial
generation together with an overall bad performance on the
modeling problem. This results from an insufficient initial
sampling and thus from a high probability of finding only
unsuitable solutions in the beginning. Further on, the small
population size hinders the GA that mainly relies on search

space exploration, from covering the whole search space in
an optimal way. On the other hand, too large population
sizes reduce the performance of the GA although starting
with good initial fitness values due to the smaller number of
generations.
Crossover Operators To select the best performing cross-
over operator for a GA, several types were evaluated: arith-
metic crossover [8], discrete uniform crossover [9], discrete
one-point crossover [8], simplex uniform crossover (SPX)
[15], BLX-α [2], and uni-modal normally distributed crossover
(UNDX) [7].

UNDX and SPX used three individuals for crossover, the
others only two, as suggested by the authors of the corre-
sponding implementations, together with global mutation.
Crossover was performed with a probability of pc = 0.8 and
mutation occurred with pm = 0.2. The results given in the
plots of figure 5 clearly show that the more sophisticated
crossover operators – SPX, BLX-α, and UNDX – are useful
for the algorithm to find good solutions. UNDX outper-
formed all the other operators and is thus used for further
analysis to tune the reference GA.
Mutation versus Crossover Finally, the impact of the
ratio of global mutation and UNDX crossover was valuated
with a grid search of possible pm/pc combinations. As can
be concluded from the right contour plot in figure 6, the
GA performs worst for pm = pc = 0. Further on, the
quality of the results increases with increasing mutation
and crossover probabilities up to optimal combinations of

50 100 250 500 1000
0.0

0.5

1.0

1.5
fitn

es
s

population size
0,0 0,2 0,4 0,6 0,8 1,0

0,0

0,2

0,4

0,6

0,8

1,0

DE

F

0

0,5500

4,400

9,900

15,40

20,90
22,00

Figure 7: Impact of the population size and the optimal ratio of the adaptation weights F and λDE. Shown
is the performance of an ES on the inference of the five-dimensional benchmark systems.

pm = 0.3,pc = 0.8 and the mirrored combination pm = 0.8,
pc = 0.3. Interestingly, the performance of the GA drops
again significantly beyond these probabilities. This is most
probably due to interferences of the self-adaptation mech-
anisms of both operators. Overall, the GA performs best
with the first mentioned ratio of pm = 0.3 and pc = 0.8.

Thus, the optimal setup for a GA was a real-valued GA
with a population size of 250 individuals, global mutation
(pm = 0.3) and UNDX crossover (pc = 0.8). This optimized
genetic algorithm is referred to as optGA in the following.

4.3 Optimized Differential Evolution
The last optimization method to fine-tune was the differ-

ential evolution algorithm, which performed second best in
the preliminary experiments. For the evaluation of the DE,
only different population sizes and the impact of the adap-
tation weights F and λDE were considered, because they are
known to be the most sensitive parameters of the DE.
Population Size As in case of the GA, the population
was varied in size between 50 and 100 individuals (|P | =
50, 100, 250, 500, 1000). The box plot in figure 7 on the left
shows the averaged results of 20 independent inference runs.
And similar to the results of the population size analysis for
the GA, the best performance was achieved for 250 individ-
uals. And as in the case of the GA, too small populations
suffered from premature convergence due to a suboptimal
coverage of the search space. Too large populations, on the
other hand, were not able to converge to good solutions be-
cause the resulting number of fitness evaluations is too small
and thus the number of generations is insufficient.
Adaptation Weights Two parameters of the DE are very
sensitive with respect to the performance of the algorithm:
the adaptation weights λDE and F . The crossover proba-
bility pc showed only minor effects on the performance in
preliminary experiments and was thus not further exam-
ined. To evaluate their impact and to find an optimal set-
ting, a grid search for both parameters was performed, vary-
ing them between 0 and 1. The results of the grid search
are shown in the right plot of figure 7. Clearly, an opti-
mal combination of λDE and F can be discerned, namely
λDE = F = 0.7. This also correlates with the default para-
meter settings of λDE = F = 0.6 suggested by the develop-
ers of the DE.

Overall, the best setup for the optimized DE optDE was
a combination of the adaptation weights λDE = F = 0.7, a

crossover probability of pc = 0.9 together with a population
of 250 individuals.

Figure 8 shows the overall comparison of the best stan-
dard optimization methods (cmaES, realGA, and DE) to
the optimized versions. As can be concluded from the fig-
ure, all optimized versions perform significantly better than
the standard approaches. However, the individual increase
in performance is varying. In case of the ES and the DE,
only small performance increases can be seen, due to the mi-
nor changes of the optimized versions. However, tuning the
optimized GA resulted in large increase in the performance
compared to the standard real-valued GA.

5. CONCLUSIONS
In this paper, we introduced the framework JCell that was

developed to allow users to evaluate different algorithms on
a set of well-defined benchmark systems to obtain compa-
rable results. Several optimization algorithms together with
a variety of mathematical models are implemented to study
the performance on the inference problem.

Further on, we systematically examined the performance
of standard evolutionary algorithms and the impact of mu-
tation and crossover on the problem of inferring gene regu-
latory networks from microarray data. The comprehensive
study was performed on an Opteron cluster with 16 dualcore
CPUs with 2,2GHz and 2GB RAM per node. The overall
computation time amounted approximately 400h.

Additionally, we fine-tuned the three most promising al-
gorithms, namely an evolution strategy with CMA, a real-
valued genetic algorithm with UNDX, and differential evolu-
tions, to examine their best performance. The experiments
in this paper showed that although some evolutionary mech-
anisms like the real-valued GA with UNDX crossover and
differential evolution are able to cope with the complex and
highly multi-modal search space, only the CMA mutation
operator solved this type of optimization efficiently and at
the same time reliable. Even with additional fine-tuning of
the corresponding algorithm settings for the realGA and the
DE, no alternative approach was able to equal the perfor-
mance of the ES with CMA with respect to the RSE. A
conclusion of this paper is that to choose a suitable model
and an appropriate optimization method is crucial for the
inference, and the results illustrated that evolutionary algo-
rithms are well suited for the problem of network inference.

0 20000 40000 60000 80000 100000
1

10

fitn
es

s

evaluations

 cmaES
 realGA
 DE
 optES
 optGA
 optDE

cmaES optES realGA optGA DE optDE
0

1

2

3

4

5

6

7

fitn
es

s

evaluation

Figure 8: Comparison of the standard evolutionary methods and the optimized algorithms on the ten-
dimensional benchmark systems.

In a related publication [14], we present a comprehensive
study of mathematical formulations, namely weight matri-
ces, H-systems, and S-systems for modeling dynamic sys-
tems of different mathematical properties and size.

6. ACKNOWLEDGMENTS
This work was supported by the National Genome Re-

search Network (NGFN-II) in Germany under contract num-
ber 0313323.

7. ADDITIONAL AUTHORS
Additional authors: Jochen Supper (Centre for Bioin-

formatics Tübingen, Nora Speer (Centre for Bioinformat-
ics Tübingen, and Andreas Zell (Centre for Bioinformatics
Tübingen).

8. REFERENCES
[1] H. de Jong. Modeling and simulation of genetic

regulatory systems: A literature review. Journal of
Computational Biology, 9(1):67–103, January 2002.

[2] L. Eshelman and J. Schaffer. Crossover’s niche. In
Proceedings of the International Conference on
Genetic Algorithms, pages 9–14, 1993.

[3] K. Hadeler. Gedanken zur Parameteridentifikation.
Personal Communication, 2003.

[4] N. Hansen and A. Ostermeier. Adapting arbitrary
normal mutation distributions in evolution strategies:
the covariance matrix adaptation. In Proceedings of
the IEEE Congress on Evolutionary Computation,
pages 312–317, 1996.

[5] S. Kikuchi, D. Tominaga, M. Arita, K. Takahashi, and
M. Tomita. Dynamic modeling of genetic networks
using genetic algorithm and S-system. Bioinformatics,
19(5):643–650, 2003.

[6] S. Kimura, K. Ide, A. Kashihara, M. Kano,
M. Hatakeyama, R. Masui, N. Nakagawa,
S. Yokoyama, S. Kuramitsu, and A. Konagaya.
Inference of S-system models of genetic networks using
a cooperative coevolutionary algorithm.
Bioinformatics, 21(7):1154–1163, 2005.

[7] H. Kita, I. Ono, and S. Kobayashi. Multi-parental
extension of the unimodal normal distribution
crossover for real-coded genetic algorithms. In

Proceedings of the IEEE Congress on Evolutionary
Computation, volume 1, pages 1581–1588, 1999.

[8] Z. Michalewicz. Genetic Algorithms + Data Structures
= Evolutionary Programs. Springer, 1992.

[9] H. Mühlenbein and D. Schlierkamp-Voosen. Predictive
models for the breeder genetic algorithm I:
Continuous parameter optimization. Evolutionary
Computation, 1(1):25–49, 1993.

[10] I. Rechenberg. Evolutionsstrategie - Optimierung
technischer Systeme nach Prinzipien der biologischen
Evolution. Frommann-Holzboog, 1973.

[11] M. A. Savageau. 20 years of S-systems. In Canonical
Nonlinear Modeling. S-systems Approach to
Understand Complexity, pages 1–44, 1991.

[12] H.-P. Schwefel. Numerical optimization of computer
models. John Wiley & Sons, 1981.

[13] C. Spieth. JCell : A java framework for inferring
genetic networks. Technical Report WSI-2005-07,
Centre for Bioinformatics Tübingen, University of
Tübingen, 2005.

[14] C. Spieth, N. Hassis, F. Streichert, J. Supper,
N. Speer, K. Beyreuther, and A. Zell. Comparing
mathematical models on the problem of network
inference. In Proceedings of the Genetic and
Evolutionary Computation Conference, 2006.

[15] S. Tsutsui, M. Yamamura, and T. Higuchi.
Multi-parent recombination with simplex crossover in
real coded genetic algorithms. In Proceedings of the
Genetic and Evolutionary Computation Conference,
volume 1, pages 657–664, 1999.

[16] D. Weaver, C. Workman, and G. Stormo. Modeling
regulatory networks with weight matrices. In
Proceedings of the Pacific Symposium on
Biocomputing, volume 4, pages 112–123, 1999.

[17] M. K. S. Yeung, J. Tegner, and J. J. Collins. Reverse
engineering gene networks using singular value
decomposition and robust regression. In Proceedings of
the National Academy of Science, volume 99, pages
6163–6168, 2002.

