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ABSTRACT
In this paper we address the problem of finding gene reg-
ulatory networks from experimental DNA microarray data.
We focus on the evaluation of the performance of differ-
ent mathematical models on the inference problem. They
are used to model the underlying dynamic system of arti-
ficial regulatory networks. The dynamics of the artificial
systems represent different basic types of behavior, dimen-
sionality and mathematical properties. They are all created
with three commonly used approaches, namely linear weight
matrices, H-systems, and S-systems. Due to the complexity
of the inference problem, some researchers suggested evo-
lutionary algorithms for this purpose. However, in many
publications only one algorithm is used without any com-
parison to other optimization methods. Thus, we introduce
a framework to systematically apply evolutionary algorithms
for further comparative analysis.

Categories and Subject Descriptors
I.2 [Computing Methodologies]: ARTIFICIAL INTEL-
LIGENCE—Miscellaneous; J.3 [Computer Applications]:
LIFE AND MEDICAL SCIENCES—Biology and genetics

General Terms
ALGORITHMS, PERFORMANCE

Keywords
Evolutionary Computation, Inference, Systems Biology

1. INTRODUCTION
Gene regulatory networks (GRNs) represent the depen-

dencies of the different actors in a cell operating at the ge-
netic level. They dynamically determine the level of gene ex-
pression for each gene in the genome by controlling whether
a gene will be transcribed into RNA or not. A simple GRN
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consists of one or more input signalling pathways, several
target genes, and the RNA and proteins produced from
those target genes. In addition, such networks often in-
clude dynamic feedback loops that provide further network
regulation activities and output. In order to understand the
underlying structures of activities and interactions of intra-
cellular processes one has to understand the dependencies of
gene products and their impact on the expression of other
genes. Therefore, finding a GRN for a specific biological
process explains this process from a logical point of view,
thus explaining many diseases. Therefore, the model recon-
struction of gene regulatory networks has become one of the
major topics in bioinformatics. However, the huge number
of system components requires a large amount of experimen-
tal data to infer genome-wide networks. Recently, DNA mi-
croarrays have become one of the major tools in the research
area of microbiology. This technology enables researchers to
monitor the activities of thousands of genes in parallel and
can therefore be used as a powerful tool to understand the
regulatory mechanisms of gene expression in a cell. With
this technique, cells can be studied under several conditions
such as medical treatment or different environmental influ-
ences.

Microarray experiments often result in time series of mea-
sured values indicating the activation level of each tested
gene in a genome. These data series can then be used to ex-
amine the reactions of the cell to external stimuli. A model
would enable biologists to predict the reactions of intracel-
lular signalling processes. To re-engineer or infer the reg-
ulatory processes computationally from these experimental
data sets, one has to find a model that is able to produce
the same time series data as the experiments. The idea is
then that the model reflects the true system dependencies,
i.e. the dependencies of the components of the regulatory
system.

Several publications addressing the problem of inferring
gene regulatory networks can be found in the literature. De
Jong gives a good overview about related work in [1]. A ma-
jor part of the work done in this field is using deterministic
mathematical models to simulate regulatory networks. One
kind of those deterministic models are linear models like the
weighted matrix model [11, 12]. These models have only a
small number of system parameters compared to S-systems
but are often not flexible enough to model biological sys-
tems in detail, since they model the dependencies linearly.
S-systems, on the other hand, model dynamic systems in
a nonlinear manner. They consist of a set of differential



equations describing the changes in expression over time.
However, they show a significant higher number of system
parameters. S-systems have been recently examined in [4,
5]. Most applications of deterministic models use evolution-
ary algorithms (EA) to determine the correct parameters of
the mathematical model. EAs have proven to be successful
in finding parameters of mathematical models representing
GRNs.

In this publication, different mathematical models and
identification and optimization algorithms are applied to
model a nonlinear dynamic system from experimental data.
The main focus is the application of standard algorithms and
extensions to find models of a high quality with respect to
the similarity of the dynamic behavior of the experimental
data. For this, standard algorithms taken from the literature
are compared on the problem of inferring a set of artificial
benchmark problems.

1.1 Regulatory Systems
The goal of this paper is to compare different models and

inference algorithms on the problem of system modeling.
For a comparison, a set of experimental data has to be es-
tablished to measure the performance of each model and
algorithm. The main focus of the research for this publica-
tion was the identification of biological processes and within
the collaboration with biological and medical research in-
stitutes, several data sets have been collected. However,
the structure of these biological processes and their kinetics
are yet totally unknown. This raises the problem of ver-
ification, because the inferred model cannot be validated
against a true system known in biology. Therefore, beside
the biological data sets, artificial data was used for evalua-
tion of the algorithms. This artificial data has the advantage
that structure, parameters and mathematical properties are
known and thus models found during the optimization can
be directly compared.

For the evaluation of the algorithms and methods to infer
dynamic systems, a set of benchmark systems was created.
The benchmark systems differ in size and the underlying
mathematical model that was used for simulation. All of
the systems were initialized randomly and represent three
classes of size: 2-dimensional, 5-dimensional, and 10-
dimensional. The three dimensions represent small and
medium-sized systems and the results of all dimensions can
be used to evaluate the scalability of each algorithm.

The main focus while generating the artificial data sets
was on creating sparsely connected structures to have resem-
blance to biological systems which are sparse themselves by
the very nature of genetic regulation. The maximum con-
nectivity of the five-dimensional systems is 3, i.e. each com-
ponent depends on at most 3 other components. The maxi-
mum connectivity of the ten-dimensional systems is 5 and in
the two-dimensional systems, the components are depend-
ing on 2 genes. The distribution of interactions followed the
scale-free-network approach, where the majority of the com-
ponents show low connectivity, whereas some components,
so called hubs, are connected with a maximum number of
others.

Beside the distinctive feature size, four types of different
dynamic properties were defined to cover a large part of
possible system behaviors: converging, oscillating, dis-
continuous, and diverging dynamics. These four classes
represent the basic types of dynamic behavior of real-world

systems and thus they can be used to evaluate the perfor-
mance of the examined algorithms and methods on these
basic properties. Due to the diversity of the benchmark set
differentiated comparison experiments are possible and de-
tailed conclusions can be drawn from them.

For the actual comparison experiments, an instance of
each behavior class was selected from each size, forming
three groups with four elements each and the three men-
tioned examples taken from the literature, thus a total num-
ber of 39 data sets. In the following, the performance of the
algorithms using different models is averaged within each
dimension group, resulting in an average performance de-
pending on the size of the target system. This simplifies the
evaluation and shows the scalability of the proposed meth-
ods. Interesting details to selected systems are discussed in
the corresponding section. The general details and the time
dynamics of the model that are used in the following can
be found with further information about the systems in the
database, which is accessible through the JCell project web-
site1 [8]. Figure 5 gives an example for the discontinuous
benchmark dynamics for each model type that was used in
this publication.

1.2 Models
Model building is central to the understanding of real-

world phenomena. In modeling, researchers such as engi-
neers, biologists and social scientists mimic their observa-
tions in a formal way. But to understand an unknown sys-
tem without being overwhelmed by the amount of data that
can be collected by modern experimental techniques, mod-
els have to abstract reality. Those models are the result of
structural and dynamical assumptions about the unknown
underlying process. The key for obtaining a good model is to
find a trade off between simplifying the original system and
loosing essential regulatory mechanisms and dependencies.
In most real-world applications, where dynamic systems are
to be modeled, no structural information of the mathemat-
ical equations that represent the system is available. Thus,
generic models have to be used to approach the modeling
problem. These parameterized models can be inferred by
means of parameter optimization. Here, the main task is
to adjust the parameters of the model in such a way that
the simulated dynamics of the model fits the experimental
data of the unknown system. Several algorithms exists that
have proven to be very successful for parameter optimiza-
tion, however, it cannot be guaranteed that a model is found
that sufficiently explains the unknown dynamic processes.
This is commonly a problem, where an adequate number of
experiments is not available, for example in cases where the
experiments are very expensive or time consuming.

In the literature, several mathematical models can be found
that address the problem of analyzing dynamic systems. In
general, the models used to simulate regulatory systems are
divided into three major classes, discrete, continuous, and
probabilistic models. The first two model classes are also re-
ferred to as deterministic models whereas the latter model
type is stochastic. Deterministic models assume that every
event or action is causally determined by an unbroken chain
of prior occurrences. In stochastic models, the dependencies
between the components of a system are modeled by prob-
abilistic transition values. The main focus of this work are
deterministic models.

1http://www.jcell.de



The following sections describe some of the mathematical
models that can be used to model dynamic relationships.
Common to the mentioned model types is that they have
been evaluated in this publication. But the list of models is
by far not complete.

1.3 Linear Weight Matrices
Linear weight matrices (WM) have been originally intro-

duced in [11]. In this approach, the regulative interactions
between the genes are represented by a weight matrix, W,
where each row of W represents all the regulatory inputs for
a specific gene. The regulatory effect of gene gj on gene gi

at time t is simply the expression level of gj , xj , multiplied
by its regulatory influence on gi, wij . The total regulatory
input to gi is derived by summing across all the genes in the
system and in the following referred to as ri(t):

ri(t) =
�

j

wijxj(t) (1)

Here, a positive value for wij indicates that gene gj is stim-
ulating the expression of gene gi, xi. Similarly, a negative
value indicates repression, while a value of zero indicates
that gene gj does not influence the transcription of gene gi.
By modeling regulatory interactions with a weight matrix,
we can use mathematical matrix approaches found in the
field of neural networks for subsequent analyses of the resul-
tant models. With the regulatory state of each gene, we are
now able to model the response of each gene to the given
input. The impact of ri(t) on gene gi is calculated using a
so called ”squashing” function (Eqn. 2).

xi(t + 1) =
mi

1 + e−(αiri(t)+βi)
(2)

where ri(t) is the mentioned regulatory state of gene gi, and
αi and βi are gene specific constants that define the shape of
the squashing function for gene gi. The resulting expression
level is only a relative value between 0 and 1, with 0 rep-
resenting complete repression and 1 representing maximal
expression. Thus, these relative levels have to be converted
into the real expression space. In addition, the genes can
have different levels of maximal expression. Hence, we mul-
tiply the calculated relative gene expression level xi by the
maximal expression level for each gene mi, to get the final
expression level for gi xi(t + 1) as shown in equation (2).

1.4 S-systems
Another, more flexible type of model, are S-systems (SS).

They employ a general formalism, which allow for capturing
the nonlinearity and general dynamics of the gene regula-
tion. S-systems are a type of power-law formalism, which
have been suggested by [7] and can be described by a set of
nonlinear differential equations:

dxi(t)

dt
= αi

N�
j=1

xj(t)
Gi,j − βi

N�
j=1

xj(t)
Hi,j (3)

where Gi,j and Hi,j are kinetic exponents, αi and βi are
positive rate constants and N is the number of genes in the
system. The equations in (3) can be seen as divided into two
components: an excitatory and an inhibitory component.
The kinetic exponents Gi,j and Hi,j determine the structure
of the regulatory network. In the case Gi,j > 0, gene gj

induces the synthesis of gene gi. If Gi,j < 0, gene gj inhibits

the synthesis of gene gi. Analogously, a positive (negative)
value of Hi,j indicates that gene gj induces (suppresses) the
degradation of the mRNA level of gene gi.

1.5 H-systems
H-systems are another type of a set of parameterized dif-

ferential equations. They originate from the idea to enhance
weight matrices with an additional term to ensures nonlin-
earity in the model. They have been suggested by Hadeler
and Spieth [2] and have the form of:

dxi(t)

dt
= ci +

�
k

bikxk(t) + xi(t)
�

k

aikxk(t) (4)

Although H-systems have the same order of complexity O(N2)
as S-systems, they have a significant advantage. For S-
systems, the equilibrium positions are too fixed, which be-
comes obvious even for the one-dimensional case ẋ = xα −
xβ . Furthermore, H-systems can be clearly motivated by di-
viding the equations into a constant rate and a linear term
as in case of the weight matrices and extending this with a
nonlinear term.

1.6 Model Quality
For evaluating the quality or fitness of the inferred models,

i.e. the similarity of the time dynamics between the exper-
imental and the simulated data, the following equation can
be used, referred to as the standard squared error (SSE):

fSSE =
N�

i=1

T�
k=1

(x̂(tk)i − x(tk)i)
2 (5)

Here, N is the total number of components of the system,
T is the number of sampling points taken from the exper-
imental time series and x̂ and x distinguish between esti-
mated data of the simulated model and data sampled in the
experiment. This is the most straight-forward way of com-
paring the system’s output to the output of the simulated
model. However, in this publication, the relative squared er-
ror or relative standard error (RSE) was used, to adapt the
error to the maximum amplitude of the system’s dynamics:

fRSE =
N�

i=1

T�
k=1

��
x̂(tk)i − x(tk)i

x(tk)i

�2
�

(6)

In the current implementation, a Runge-Kutta method
of fourth order is used to integrate the differential equation
systems to simulate the mathematical model [6]. The overall
optimization problem is then to minimize the fitness values
of objective function fRSE . This fitness function has already
been used by several publications on this problem and was
thus selected to evaluate the model quality.

2. COMPARISON OF MODELS
The first step to infer a dynamical system is the appro-

priate choice of mathematical model that is used to repre-
sent the underlying dependencies. This publication gives an
overview of the performance of those models on the inference
problem.

To examine the behavior of the different model types, the
benchmark systems described above were used to evaluate,
whether the models are able to model time dynamics cre-
ated not only with the identical type of model but also with



Figure 1: Performance of the standard optimization
algorithms on weight matrices.

different types. The following comparison results are sepa-
rately evaluated for the different levels of dimensionality. In
the first test case, the models were used to redisplay the dy-
namic systems created with the same type of mathematical
formula. In the second test case, each type was evaluated
to represent the dissimilar models.

For the evaluation of the different model types, four stan-
dard algorithms were chosen to form a set of representative
optimization methods:

• Monte-Carlo search (MC): standard real-value encod-
ing Monte-Carlo search.

• Hill climbing (HC): single-start hill climber with real-
value variable encoding and a fixed mutation step size
of 0.2.

• Evolution strategy (ES): (µ,λ)-ES with µ = 5 parents
and λ = 10 offspring, global mutation (pm = 0.8), dis-
crete uniform crossover (pc = 0.2), and best selection.

• Genetic Algorithm (GA): binary representation with
a population size of 250, one-point crossover (pc =
0.8), invert-bit mutation (pm = 0.2), and tournament
selection with a tournament group size of tgroup = 8.

Beside these settings, the evolution strategies used an ex-
tension, where the initial population is significantly larger
than the standard λ-sized population. In the current imple-
mentation, 250 individuals were created to form the initial
population to be better comparable to the other algorithm
with much larger populations. This extension is crucial,
because it increases the chance of finding stable models in
the primordial population. The evolution strategies then
decrease the size of the population by the standard best se-
lection method and continue with the number of individuals
as given above.

For these preliminary comparison experiments, each algo-
rithm used the default settings suggested in the literature.
These standard algorithms may not perform as best as they
can, but they are sufficient for a comparison of the different

Figure 2: Performance of the standard optimization
algorithms on H-systems.

model types. Further on, the algorithms terminated after
50,000 fitness evaluations and each experiment was repeated
20 times to gain a sound statistical interpretation.

The fitness values listed in the following are averaged over
the experiments of one dimensionality group. The dimension
groups consist of the four behavior classes of one level of
dimension. For evaluating the different groups, the best-of-
run results of each experiment of the multi-runs was used to
gain the averaged resulting fitness value.

2.1 Identical Mapping
The first test case aims to evaluate the inference perfor-

mance of the three major model types, namely weight ma-
trices, H-systems, and S-systems. For this test case, the
benchmark data was divided into three different sets, group-
ing the data according to the type of model that was used
to create them. The groups consisted of the corresponding
data sets of each model class. Thus, each group contained
12 data sets of three dimensions and four basic behaviors.
The different test groups were then inferred with the same
type of model that was used to generate the data.

Figures 1 - 3 give the averaged results of the standard op-
timization algorithms on the inference problem. As can be
seen, the Monte-Carlo search and the hill climber did not
perform as well as the GA or the ES. This obviously results
from the multi-modal nature of the search space, where the
MC failed to converge and the single-start HC almost al-
ways converged prematurely to local optima. Both, ES and
GA, found satisfying solutions to the inference problem with
respect to the given fitness function. Furthermore, the ES
converged to slightly better results than the GA, possibly
due to the ability to search greedily for a very good solu-
tion.

Overall, the different mathematical approaches seem able
to model the time dynamics of data sets that were created
with the same type of model. However, the algorithms faced
some problems to find good solutions to the weight matrix
data sets. Even the optimization with more sophisticated
ES and GA yielded only solutions with a moderate level of



Figure 3: Performance of the standard optimization
algorithms on S-systems.

quality. Both other model types, namely the H-system and
S-system, were more effective while inferring the dynamic
systems, with a slight advantage for the S-systems, which
yielded better fitness values; both outperformed the weight
matrices in this test scenario especially in combination with
the two evolutionary algorithms.

2.2 Cross-Model Mapping
The second test case is more important than the proof of

modeling ability described in the identical mapping section.
This test scenario aims to evaluate the performance of the
three model types to infer data sets that were created with
different models, i.e. infer dynamics with different mathe-
matical properties. Thus, this test case evaluates the ability
to generalize.

For the actual comparison experiments, the four men-
tioned algorithms were used to infer the data sets that do
not correspond to the current model type. Again, the best-
of-run results were averaged over the four basic behavior
classes and the three alternative models for each dimension.
And for statistical reasons, 20 multi-runs were performed.
As the Monte-Carlo search (MC) and the hill climber (HC)
always yielded significantly worse results than the evolution
strategy (ES) or the genetic algorithm (GA), only the ES
and the GA results are displayed in the results.

Figure 4 shows the matrix of results of the cross-model
experiments. Each row corresponds to the inference model
type, i.e. the model type that was used to infer the data
sets. Each column refers to the target model, i.e. the type
of model that was used to create the data sets. The main
diagonal contains the results of the identical mapping.

The most obvious conclusion that can be drawn from the
plots is that S-systems perform best in cross-model envi-
ronments. They are flexible enough to model time dynam-
ics that were simulated with a different type of underlying
mathematical formulation and thus with different mathe-
matical properties. Further on, H-systems are also able to
model the time dynamics of other model types but not as
well as S-systems. And finally, weight matrices are perform-

ing worst in this test case. Due to their quasi-linear nature,
they fail to catch the highly non-linear dynamics especially
in the oscillating benchmarks.

2.3 Conclusions
In this paper, we introduced the framework JCell that was

developed to allow users to evaluate different algorithms on
a set of well-defined benchmark systems to obtain compara-
ble results. Several optimization algorithms together with a
variety of mathematical models are implemented to study
the performance on the inference problem. We system-
atically examined the performance of standard evolution-
ary algorithms on the problem of inferring gene regulatory
networks from microarray data with different mathemati-
cal formulations. The comprehensive study was performed
on an Opteron cluster with 16 dualcore CPUs with 2,2GHz
and 2GB RAM per node. The overall computation time
amounted approximately 320h.

Three observations can be made from the results of the
previous test cases, namely the identical mapping and the
cross-model test:

1. The results of the Monte-Carlo search showed that the
problem is not trivial and cannot be solved by ran-
domly choosing a solution.

2. The solutions space of the inference problem is highly
multi-modal. The hill climber was not able to find
good solutions with respect to the given optimization
target; probably, it prematurely converged to local op-
tima. The genetic algorithm and the evolution strat-
egy on the other hand solved the optimization problem
comparably well, resulting in models that fit the time
course dynamics of the test data sets well.

3. All model types were able to infer data sets that were
simulated with the same model type except for the
weight matrices, which resulted in models that showed
lower levels of quality than the other two model types.
This is most probably to the highly non-linear dynam-
ics of the benchmark systems, which can hardly be
represented with a linear model. The evolutionary al-
gorithms (ES and GA) found almost always very good
solutions for both models, S-systems and H-systems.
S-systems performed best in the identical mapping test
case, closely followed by the H-systems.

4. The cross-model validation experiment showed clearly,
that the parameter optimization algorithms using weight
matrices as the underlying mathematical model failed
to find good solutions with respect to the fitness func-
tion. Whereas EAs using H-systems and S-systems
almost always found good solutions. S-systems were
again slightly superior to H-systems.

An important conclusion that can be drawn from these
three observations is that due to their generic nature, S-
systems and H-systems are well suited to model the dynamic
behavior of systems with different mathematical properties.
It can be deduced that they are a type of model that is most
likely better suited to represent biological and biochemical
systems than any other model type that was examined, such
as weight matrices.
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Figure 4: Matrix of the cross-model mapping experiments. The columns correspond to the target model,
i.e. the type of model that was used to create the data sets, whereas the rows, corresponds to the inference
model type, i.e. the model type that was used to infer the data sets.

Figure 5: Examples of the discontinuous dynamics of the three mathematical models, weight matrix, H-
system, and S-system, from left to right.



However, the problem of ambiguity still remains. Multi-
ple sets of model parameters fit the given data with very
good confidence, but with totally different system struc-
tures. Without any additional data, this problem can only
be addressed by incorporating biological knowledge as de-
scribed for example in [3, 9].

In a related publication [10], we present a comprehensive
study of evolutionary algorithms and carefully tuning differ-
ent evolutionary algorithms, namely Monte-Carlo search,(multi-
start) hill climber (MS-HC), binary genetic algorithm (binGA),
real-valued genetic algorithm (realGA), standard evolution
strategy (stdES), evolution strategy with CMA mutation
(cmaES), differential evolution (DE), and particle swarm
optimization on the problem of inferring S-systems of dif-
ferent mathematical properties and size.
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