
Vibration-based Terrain Classification Using
Support Vector Machines

Christian Weiss, Holger Fröhlich and Andreas Zell
Department of Computer Science

University of Tübingen
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Abstract— In outdoor environments, there is a variety of
different types of ground surfaces. If some of them are slippery
or bumpy, for example, the ground surface itself is a possible
hazard for an autonomous mobile vehicle traversing the surface.
Therefore, it is beneficial if the vehicle is able to estimate, which
terrain it is currently traversing. Using this estimation, the vehicle
can adapt its driving style to the terrain. In this paper, we present
a method for terrain classification based on vibration induced
in the vehicle’s body. An accelerometer mounted on the vehicle
measures the vibration perpendicular to the ground surface. We
experimentally compare representations of the data based on the
Fast Fourier Transform (FFT) and on the Power Spectral Density
(PSD). Additionally, we suggest a simpler and more compact
representation based on features calculated from the raw data
vectors and a combination of this representation with the PSD.
We train and classify the data with a Support Vector Machine
(SVM). Experiments on a large real-world dataset containing
seven different terrain types evaluate our approach.

I. INTRODUCTION

In typical outdoor environments, the character of the ground
surface is often extremely diverse. In some regions, the surface
is flat and easy to traverse. In other regions, it may be bumpy
or slippery, and traversing this regions must be done carefully.
Thus, the ground surface itself is a hazard in outdoor environ-
ments. Such a hazard can be called a non-geometric hazard
[1]. For this reason it is beneficial for an autonomous mobile
vehicle to know what type of terrain it is currently traversing.
It then can adapt its driving style to the terrain to prevent
accidents. Therefore, methods for estimating the character of
the current or forthcoming terrain greatly contribute to the
safety of an autonomous vehicle.

A vehicle could estimate the character of the terrain di-
rectly by estimating terrain parameters like cohesion. Another
possibility is to group terrain into classes like gravel, asphalt
or sand. During a training phase, the vehicle collects example
data for each class and trains a classifier on the data. After that,
the classifier assigns any newly collected terrain data to one of
the classes. The vehicle can now adapt its driving commands
to the terrain, based on the classification result. For example, if
the vehicle detects asphalt, it can drive at high speed, because
asphalt is relatively easy and save to traverse. Other surfaces,
like gravel, are bumpy and loose. Thus, if the vehicle detects
that it currently traverses gravel, it should slow down until it
is back on a safer surface.

There is a variety of different data that can be used for
terrain classification. Most approaches use vision or ladar
sensors. In ladar-based methods, the focus is not on estimating
the type of the ground surface and detecting non-geometric
hazards, but on segmenting the ground surface from vegetation
and from obstacles like rocks or trunks [2]–[5]. Vision-based
approaches usually use visual features like color or texture
for terrain classification [5]–[7]. Some research has been done
on detecting non-geometric hazards using potentiometers and
force-torque sensors [8], [9]. These algorithms measure wheel-
sinkage and estimate soil cohesion and internal friction angles.

In the last few years, terrain classification based on vibration
data was investigated. Here, the focus is on the soil itself as
a hazard. The idea of vibration-based terrain classification is
based on the observation that traversing different terrain types
induces different vibration signals in the wheels or the body
of the vehicle. Therefore characteristic signals for each terrain
type can be learned and used for classification.

Vibration-based terrain classification was first suggested by
Iagnemma and Dubowsky [10]. Later research by Brooks and
Iagnemma [11] examined terrain classification for planetary
exploration. Their research focussed on terrain classification
with rover speeds below 5 cm/s. Brooks and Iagnemma reduce
the dimensionality of their data by Principal Component Anal-
ysis (PCA) and use Linear Discriminant Analysis (LDA) for
classification. Another approach was presented by Sadhukhan
and Moore [12], [13]. Their method bases on neural networks
and is intended for vehicles driving at speeds between about
0.2 and 1 m/s.

We propose an alternative approach based on classification
with a Support Vector Machine (SVM). Like Sadhukhan, we
focus on vehicles driving at relatively high speeds of up to
about 1 m/s. We use an accelerometer mounted on the body
of the vehicle to measure the vibration. In an offline training
phase, the SVM is trained on a set of vibration signals each
corresponding to one second of vehicle travel. Once the SVM
is trained, newly collected vibration signals can be classified
online. We present experimental results on a large real-world
dataset that contains seven different terrain types.

The rest of this paper is organized as follows: In Section
II, we describe our approach to terrain classification. Section
III presents our experimental results. Section IV concludes the
paper and suggests future work.

1-4244-0259-X/06/$20.00 ©2006 IEEE



0 10 20 30 40 50 60 70 80 90 100
−10

0

10

Entry in acceleration vector

A
cc

el
er

at
io

n 
(m

/s
2 )

Example raw acceleration vector for asphalt

0 10 20 30 40 50 60 70 80 90 100
−10

0

10

Entry in acceleration vector

A
cc

el
er

at
io

n 
(m

/s
2 )

Example raw acceleration vector for gras

0 10 20 30 40 50 60 70 80 90 100
−10

0

10

Entry in acceleration vector

A
cc

el
er

at
io

n 
(m

/s
2 )

Example raw acceleration vector for gravel

0 10 20 30 40 50 60 70 80 90 100
−10

0

10

Entry in acceleration vector

A
cc

el
er

at
io

n 
(m

/s
2 )

Example raw acceleration vector for paving

Fig. 1. Example 1×100 vectors of raw acceleration data for different terrain
types. Top to bottom: asphalt, grass, gravel, paving.

II. TERRAIN CLASSIFICATION METHOD

In this section, we first give an overview over our terrain
classification method. Then, we describe in detail the repre-
sentations of the data we use as training and test vectors.
Finally, we explain training and classification of the data using
a Support Vector Machine.

A. Method Overview

The task of our vibration-based terrain classification method
is to estimate which type of terrain the vehicle is currently
traversing. Examples of terrain types are indoor floor, asphalt,
grass, gravel, paving or clay. The estimation is based on
acceleration data, collected perpendicularly to the ground
plane by an accelerometer mounted on the body of the vehicle.
This vertical acceleration can be regarded as the vibration
which the terrain induces in the vehicle’s body.

Each terrain type creates a characteristic vibration signal
consisting of a series of acceleration values. We split the
acceleration data into short segments, where each segment
represents one second of vehicle travel. Figure 1 shows four
examples of such acceleration vectors. Asphalt produces a
high-frequency signal with low magnitude. The signal for
grass seems to have a dominating low frequency component
and a high magnitude. Gravel and paving both show a high
magnitude and a moderately high frequency.

In the next step, we transform the raw acceleration vectors
into a representation which reveals more information about the
data. We experimentally compare four different representations
which are described in Subsection II-B.

We use Support Vector Machines [14] to learn the char-
acteristic signals for each terrain type and to classify new
acceleration data based on the learned model. Training of the
SVM on the data is done offline, because it is computationally
intensive. New data is classified online, because this step is
fast. Subsection II-C presents the SVM training and classifi-
cation in more detail. Figure 2 shows a schematic overview
of our algorithm.

collect raw acceleration
data

split to vectors which
are 1 second long

feature extraction

SVM training

trained SVM

collect 1 second of
acceleration data

feature extraction

classification

predicted terrain
type

1. offline training 2. online classification

Fig. 2. Schematic overview of our terrain classification algorithm.

B. Feature Extraction

We convert the segments of raw acceleration data to one of
four representations. The first representation was suggested
by Brooks and Iagnemma [11]. They use Welch’s method
[15] to transform each vector to a power spectral density
(PSD). Additionally, they advise a log scaling of the PSD to
reduce the dominating effect of frequency components with
high magnitude. We will refer to this representation as log
PSD in the rest of this paper.

Sadhukhan [12] uses a 128-point Fast Fourier Transform
(FFT) of each acceleration vector. We will refer to this
representation as FFT in the rest of this paper.

We propose an alternative third representation, which is
simpler and more compact than the log PSD and the FFT.
It is based on eight features calculated from each vector of
raw acceleration data. We will refer to this representation as
the feature representation in the rest of this paper.

For each raw acceleration vector v = vi, i = 1 . . . n, where
n is the number of acceleration values per second, the entries
of the feature respresentation are the following:

1) The number n of sign changes in v when regarding
v as a one-dimensional signal. This feature is a rough
approximation of the main frequency contained in the
signal.

2) The number t of traverses over the mean of v when
regarding v as a one-dimensional signal. We introduce
this feature because for coarse surfaces, the mean often
is considerably different from 0. So perhaps even for
high-frequency signals, there could be only a small
number of sign changes.

3) The standard deviation σv of v. σv is higher for coarse
terrain types than for smoother ones.

4) The autocorrelation rk of v at lag k = 1 [16]. r1 is a
measure of the non-randomness in data. So the higher
r1 for a vector, the more dependent directly following



acceleration values are. r1 is calculated as follows:

r1 =
∑n−1

i=1 (vi − µ) (vi+1 − µ)
∑n

i=1 (vi − µ)2
, (1)

where µ denotes the mean of v.
5) The maximium max = max(vi), i = 1 . . . n of v. This

feature takes large values for terrain types that contain
big bumps.

6) The norm ‖v‖ =
√∑n

i=1 v2
i of v. ‖v‖ will take large

values if the accleration is constantly high in most entries
of v.

7) The minimum min = min(vi), i = 1 . . . n of v.
8) The mean µ of v. For coarse surfaces, the mean some-

times is noticeably below 0. For flater surfaces, the mean
is roughly 0.

Using these eight features calculated from the raw data, we
obtain training and test vectors of the form

vt = (n, t, σv, r1, max, ‖v‖, min, µ) . (2)

The dimension of the training vectors is more than five
times smaller for the feature representation than for the FFT
and the log PSD. Additionally, the transformation from raw
acceleration data to the feature representation is between 3.65
and 5 times faster than to the log PSD and the FFT. Using
unoptimized Matlab code on a 3 GHz Pentium 4 PC with 512
MB of RAM, the computation of one vector takes about 0.4
ms for the feature representation, about 1.46 ms for the log
PSD and about 2.0 ms for the FFT.

As a fourth representation we test a combination of the
feature representation and the log PSD. We compute both
representations from the raw acceleration vectors individually
and then simply concatenate the resulting vectors. We will
refer to this representation as the combined representation in
the rest of this paper.

As the final step of the feature extraction procedure we
normalize each feature to mean 0 and standard deviation 1.

C. SVM Classification

After feature extraction, we use an SVM to learn for each
terrain type a separation from all other terrain types (one-
versus-rest classificaton). Later on, an unseen test pattern will
be assigned to that class, for which the distance to the decision
boundary is largest.

SVMs belong to the family of kernel methods [17], which
are currently highly popular within the field of machine
learning. The idea is to construct a separating hyperplane
between two classes of points, such that the margin between
the hyperplane and the points closest to it becomes maximal.
Nonlinear classification can be achieved by first mapping the
original data to some high dimensional feature space in a
nonlinear fashion. This computation is usually done implicitly
by means of a kernel function, which defines a dot product
between points in feature space. It is also possible to allow
for a small number of training errors by means of a so-called
soft margin parameter C that regularizes the trade-off between
maximizing the margin and minimizing the training error.

Fig. 3. The experimental cart we used to collect the data. The accelerometer
is mounted on the middle of the wooden beam.

In our case we employ a Radial Basis Function (RBF)
k(x, y) = exp(−‖x−y‖2/2σ2) as kernel function. The width
σ of the RBF kernel together with the soft margin parameter
C are tuned via a systematic search on the grid log2 σ ∈
σ̂/4, ..., 4σ̂ and log2 C ∈ −2, ..., 14, where σ̂ is set such that
exp(−D/2σ̂2) = 0.1. Each candidate parameter vector (σ, C)
on the grid is evaluated by 5-fold cross-validation.

As SVM implementation we used the LIBSVM software
[18].

III. EXPERIMENTAL RESULTS

In the previous section, we presented four different repre-
sentations for training vectors. The experiments described in
this section compare the different representations and evaluate
their performance.

We used an Xsens MTi Attitude and Heading Reference
System (AHRS) to measure the acceleration perpendicularly
to the ground plane. We recorded the acceleration data at 100
Hz with a laptop computer. We mounted the Xsens MTi on a
cart (Fig. 3) which we moved around manually. The wheels
of the cart are made of relatively hard rubber.

In our experiments, we directly mounted the accelerometer
on the body of the cart. However, if one uses a vehicle
which has a suspension mechanism, the vibration in the body
of the vehicle is dampened or possibly absorbed. For such
a vehicle, it is better to mount the accelerometer directly
on the axis of a wheel or some other part which is not
affected by the suspension. Some soft wheels also dampen
the vibrations induced in the body of the vehicle. In these
cases, the distinctiveness of the vibration signals is likely to
decrease and with it the classification accuracy.

We collected data of six different terrain types around our
department. Additionally, we collected data when the vehicle
did not move to learn such a situation. This is especially useful
if the vehicle has no odometry (like our cart) or other sensors
which reliably measure the vehicle’s speed.

The seven terrain types are (the number of instances per
terrain type in our dataset is given in parentheses):

1) Indoor PVC floor (491).



Fig. 4. The terrain types we used in our experiments. 1: Indoor floor. 2:
Asphalt. 3: Gravel. 4: Grass. 5: Paving. 6: Boule court.

2) Asphalt (1199).
3) Gravel, consisting of rocks ranging from about 1 to 5

cm in diameter (235).
4) Grass. Not the grass itself is measured, but the soil the

grass grows on (602).
5) Paving (455).
6) Boule court, which is made of clay (290).
7) No motion (924).

Figure 4 shows examples of the different terrain types. The
number of training vectors per class reflects the availability
of the different terrain types in the area surrounding our
department as we traversed every place only once. Each
training vector corresponds to one second of vehicle travel.

The speed of the vehicle varied during movement, roughly
between 0.2 m/s and 1 m/s. Additionally, we not only moved
the vehicle in a straight line, but on a trajectory containing
curves. We collected the data on two different days one month
apart in October and November. In October, we had about
15◦C and the soil was dry. In November, we had about 7◦C
and the soil was wet.

For the experimental evaluation we used 10-fold cross-
validation, i.e. we randomly split the data into 10 parts and
systematically used each part once for testing and the rest
for training. Classification results were then averaged over
all 10 trainings/testings. Each training consisted of a feature
extraction and SVM parameter search purely on the current
training data, whereas in the testing phase the ready trained
model was asked to predict the class of previously unseen
terrain measurements.

In a first experiment, we classified only three terrain types:
gravel, grass and Boule court (clay). Figure 5 (left) shows
the total misclassification rate (total loss) for the three-class
experiment using the different data representations. Addition-
ally, Tab. I presents the classification results in more detail;
the rows also show the misclassification rates per class for
the different terrain types. The best performance was achieved
by the feature representation (total misclassification rate =
2.57%). The classification loss for the combined representation
was about 0.3% worse (total misclassification rate = 2.84%).
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Fig. 5. Total losses using the different data representations in two different
experiments. Left: three-class experiment. Right: seven-class experiment.

TABLE I

MISCLASSIFICATION RATES PER CLASS AND TOTAL CLASSIFICATION LOSS

(%) ± STANDARD ERROR FOR THREE DIFFERENT TERRAIN TYPES WITH

DIFFERENT REPRESENTATIONS

feature combined log PSD FFT
gravel 6.39 ± 1.73 7.19 ± 1.55 7.61 ± 1.50 8.50 ± 1.79
grass 1.00 ± 0.37 1.33 ± 0.54 1.49 ± 0.39 1.49 ± 0.30
boule court 2.76 ± 1.34 2.41 ± 1.36 3.45 ± 1.63 2.76 ± 1.13

total loss 2.57 ± 0.61 2.84 ± 0.67 3.28 ± 0.65 3.28 ± 0.53

Classification on the FFT and the log PSD resulted in total
misclassification rates of 3.28%. So the feature representation
outperformed the log PSD and the FFT by 0.71%. Combin-
ing the feature representation and the PSD did not improve
classification in this case.

To evaluate, whether the differences in the misclassifi-
cation rates are statistically significant, we performed two-
tailed paired t-tests. The t-tests determine the probability that
two misclassifcation rates come from distributions with equal
means. Each t-test returns a p-value which is the probability
that the two means are equal. Usually a significance level of
5% or 10% is chosen as a cutoff value for the p-value, below
which the hypothesis of the t-test that the two distributions
do not differ can be rejected. In practice, we created a 10-
dimensional vector which contained the classification results
on each test set during the 10-fold cross-validation procedure.
We then performed pairwise t-tests on the vectors for the
different representations.

The t-tests indicated that there is a significant improvement
of the feature representation and combined representation
compared to the log PSD at 10% significance level (p-values
= 5.37%, 9.43%). Between the log PSD and the FFT we could
not find any significant difference.

Table I shows that the class specific misclassification rate
for gravel using the feature representation was about 6.5%,
about 3% for the Boule court and about 1% for grass. The



TABLE II

MISCLASSIFICATION RATES PER CLASS AND TOTAL CLASSIFICATION LOSS

(%) ± STANDARD ERROR FOR SEVEN DIFFERENT TERRAIN TYPES WITH

DIFFERENT REPRESENTATIONS

combined feature log PSD FFT
no motion 0.11 ± 0.11 0.11 ± 0.11 0.11 ± 0.11 0.0 ± 0.0
indoor 5.70 ± 0.79 6.31 ± 1.07 5.91 ± 0.48 6.51 ± 0.90
asphalt 2.59 ± 0.47 3.17 ± 0.62 3.09 ± 0.39 4.76 ± 0.61
gravel 33.17 ± 3.25 32.74 ± 2.89 37.84 ± 2.69 30.92 ± 3.52
grass 1.82 ± 0.63 1.49 ± 0.63 1.99 ± 0.65 2.32 ± 0.66
paving 8.59 ± 1.30 10.14 ± 1.49 14.29 ± 1.43 17.62 ± 2.02
boule c. 5.86 ± 1.26 6.90 ± 1.15 7.93 ± 1.03 7.24 ± 1.49

total loss 4.89 ± 0.31 5.29 ± 0.22 6.10 ± 0.37 6.60 ± 0.33

reason for these differences is the unbalanced number of
training examples per class in our dataset. The number n of
training vectors for grass (ngrass = 602) is noticably larger
than for gravel (ngravel = 235) and for the Boule court
(nboule = 290). You could compensate for the differences in
the misclassification rates by selecting an equal number of
training patterns for each of the three classes. This is also
appropriate if the distribution of the classes in the test set is
unknown. As in our experiments both training and test data
were generated at the same area around our department, we
used the unbalanced training set corresponding to that area.

Training and classification was performed using Matlab
code on a 3 GHz Pentium 4 PC with 512 MB of RAM.
Training took about 1:54 minute for the feature representation,
about 4:13 minutes for the combined representation, about
4:32 minutes for the log PSD and about 6:42 minutes for
the FFT. Classification of a single test example took about
0.29 ms for the feature representation, about 0.33 ms for the
combined representation, about 0.35 ms for the log PSD and
about 0.43 ms for the FFT.

In a second experiment, we involved all seven terrain
types: no motion, indoor floor, asphalt, gravel, grass, paving
and the Boule court. The total misclassification rates were
4.89% for the combined representation, 5.31% for the feature
representation, 6.12% for the log PSD and 6.60% for the
FFT (Fig. 5 (right) and Tab. II). So the feature representation
outperformed the log PSD and the FFT by 0.81% and 1.31%,
respectively. This time, the results using the log PSD were
slightly better than using the FFT. In contrast to the the three-
class experiment, the combined representation now performed
best.

Pairwise t-tests showed that there is a strong significant
improvement of the feature representation compared to the
log PSD and the FFT at 10% significance level (p-values =
1.87%, 0.48%). Additionally, there is a very strong significant
improvement of the combined representation compared to the
log PSD and the FFT (p-values = 0.04%, 0.0007%). Again,
we could not find a significant difference between the log PSD
and the FFT.

A remarkable exception from the low error rates for the
other classes was the high misclassificaton rate for gravel,
which in all representations was above 30%. To get a clearer

TABLE IV

TOTAL CLASSIFICATION LOSS (%) ± STANDARD ERROR OF SEVEN-CLASS

CLASSIFICATION FOR THE DIFFERENT REPRESENTATIONS WITH AND

WITHOUT PCA.

combined feature log PSD FFT
without PCA 4.89 ± 0.31 5.29 ± 0.22 6.10 ± 0.37 6.60 ± 0.33
with PCA 6.22 ± 0.36 10.61 ± 2.83 7.58 ± 0.43 6.67 ± 0.33

understanding of the reasons for the highly different error
rates, we computed a ”confusion matrix” M, in which each
entry Mij indicates how often (in %) an unseen test example
belonging to class i was assigned to class j (Tab. III).

The confusion matrix revealed that classification worked
well in most cases. The most problematic terrain is gravel,
which was wrongly classified as paving for 27.68% of the
test vectors. Figure 1 shows that the signals for gravel and
paving are indeed very similar, so that it is relatively difficult
to distinguish between them. On the other hand, paving is only
misclassified as gravel for 4.18% of the test vectors. Some part
of this difference is due to the unbalanced number of training
examples for gravel and paving. The dataset contains almost
twice as many examples for paving (455) than for gravel (235).

Training on the seven-class dataset took about 19:22 min-
utes for the feature representation, about 28:46 minutes for the
combined representation, about 28:02 minutes for the log PSD
and about 95:31 minutes for the FFT. Classifying a single test
example took 0.29 ms for the feature representation, 0.43 ms
for the combined representation, 0.45 ms for the log PSD and
0.97 ms for the FFT.

In a final experiment we evaluated, whether a PCA prepro-
cessing of the training vectors as a denoising and dimension-
ality reduction technique can improve performance. We set
the number m of principal components such that the principal
components explained 95% of the variance in the data. For
the different representations this resulted in mfeature = 3,
mcombined = 2, mlogPSD = 2 and mFFT = 52. Despite the
reduced dimension of the training vectors, training remained
an offline step (between about 12 minutes for the combined
representation and about 20 minutes for the feature representa-
tion). Additionally, classification times (0.31 ms for the feature
representation, 0.40 ms for the combined representation, 1.17
ms for the log PSD and 0.37 ms for the FFT) were not reduced
significantly, if at all.

Table IV shows the effect of the use of PCA compared to our
previous results for the classification with seven terrain types.
According to the error rates, classification with PCA was
between 0.07% and 5.32% worse than classification without
PCA. Thus, contrary to our assumptions, PCA does not seem
to have a positive effect here. Pairwise t-tests between the
results with and without PCA showed that the differences are
significant at the 10% level for the feature representation, the
combined representation and the log PSD (p-values = 8.56%,
0.007% and 0.02%).



TABLE III

CONFUSION MATRIX FOR SEVEN-CLASS CLASSIFICATION ON THE COMBINED REPRESENTATION

no motion indoor asphalt gravel grass paving boule court
no motion 99.89 0.11 0 0.0 0.0 0.0 0.0
indoor 0.0 94.30 5.50 0.0 0.0 0.0 0.20
asphalt 0.0 1.33 97.41 0.0 0.0 0.92 0.33
gravel 0.0 0.0 0.0 66.83 4.20 27.68 1.29
grass 0.0 0.0 0.0 0.67 98.18 0.66 0.49
paving 0.0 0.22 2.42 4.18 0.0 91.41 1.77
boule court 0.0 0.0 2.07 0.0 1.72 2.07 94.14

IV. CONCLUSION

We presented a new approach to vibration-based terrain
classification, which is based on Support Vector Machines.
The vibration signals induced in the vehicle’s body by dif-
ferent terrain types are measured with an accelerometer. We
compared four different representations to which we transform
the raw acceleration data before classification. The first two
representations are a log-scaled Power Spectral Density and
a 128-point Fast Fourier Transform, which were previously
used for terrain classification by other researchers [11]–[13].
Additionally, we suggested a new third representation based on
simple features calculated from the raw acceleration vectors.
This feature representation is simpler, more compact and faster
to compute than the PSD and the FFT. As a fourth representa-
tion we tested a combination of the feature representation and
the PSD. For classificiation, our method uses a SVM which
is trained offline on the data. Once the SVM is trained, it
classifies newly collected data online.

We presented experiments on a large real-world dataset. It
contains data for indoor floor, asphalt, gravel, grass, paving,
a Boule court (consisting of clay) and situations in which
the vehicle did not move. Three-class classification on gravel,
grass and clay using our method showed very good results,
with a total misclassification rate of about 2.5%. The results for
classification on all seven terrain types were also very good;
here, the total misclassification rate was about 5%.

An experimental comparison between the four data repre-
sentations showed that the feature representation proposed in
this paper significantly improved the classification results com-
pared to the PSD and the FFT. In the seven-class experiment,
the total misclassification rate using the feature representation
was about 1% lower than for the PSD and the FFT. We
verified the statistical significance of the improvement using
pairwise t-tests. Combining the feature representation and
the PSD improved classificiation results in the seven-class
experiment but not in the three-class experiment. Between
the PSD and the FFT, we could not find any significant
difference. Preprocessing the data with PCA did not improve
the classification results.

We collected the acceleration data used in the experiments
on vehicle trajectories containing curves and different speeds.
As observed by Sadhukhan [12], classification depends on
the speed of the vehicle. Lower speeds result in decreased
classification rates. So in future work, we will evaluate the
influence of speed and curves on the classification more

systematically. Additionally, we will test our method on other
vehicles, for example on our RWI ATRV-Jr outdoor robot.
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