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Abstract— This paper addresses the problem of object detec-
tion in a biosonar based mobile robot in a natural environment.
In our previous work [9] we presented a time resolved spec-
trum kernel to extract the similarities between subsequences
of the echoes reflected by different trees and we could get
higher accuracy than methods which used specific features in
all echoes. In this paper we present a more general kernel
called warped time-resolved spectrum kernel which considers
warping in the subsequences. Furthermore, having a set of those
kernels for different size of subsequences, we find the optimal
kernel selection via maximizing the Kernel Fisher Discriminant
criterion (KFD) to build the optimal linear combination of
kernels. We compare the obtained results with our previous
work.

I. INTRODUCTION

Bats can distinguish objects and their prey by emitting
a series of ultrasound signals (chirps) that generally sweep
covering frequencies from 22 to 100 kHz. They can sep-
arately perceive the delays of two concurrent echoes as
little as 2 ms apart and resolve reflecting points as close
together as 0.3 mm in range [5]. The acoustic image of
a sonar target is apparently derived from time-domain or
periodicity information processing by the nervous system.
Inspired by the bat biosonar system, researchers have utilized
ultrasonic sensing techniques for mobile robots (biomimetic
robots) and tried to classify different textures and landmarks
using received echo signals. Biosonar sensing involves the
production of chirps, the reception of echoes from targets,
signal analysis and target matching. By comparing the re-
turning echoes (which are individually the superposition
results of the reflected echoes) we aim at recognizing the
objects. Gao et. al [6] presented a deformable template
matching algorithm for classification of several types of
brick walls, picket fences and hedges using sonar echoes.
M. Wang et al. [8], [7] used different structural features in
the frequency domain and also cross correlation as template
matching algorithm for that task. In our previous work [9]
we suggested a kernel named Time-resolved spectrum kernel
for matching the subsequences of time series (sonar echoes)
and extracting the local similarities of echoes. The results
outperformed other matching techniques [8], [7]. The time-
resolved spectrum kernel simply measures the whole similar-
ities of all subsequences of the time series in consideration,
without considering warping and independent of their posi-
tions. The more two time series share similar subsequences,
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the more similar they are. A linear combination of kernels
with different subsequence size (p-spectrum kernels) was
a measure of similarity between two time series. In this
paper we present a more general kernel called warped time-
resolved spectrum kernel, which also considers all possible
warpings in subsequences. Furthermore, having a set of those
kernels, we find the optimal kernel selection via maximizing
the Kernel Fisher Discriminant criterion (KFD) to build
the optimal linear combination of kernels. We compare the
obtained results with our previous works.

II. BIOSONAR BASED ROBOT

A. Hardware

The implementation of the whole system consists of a
mobile robot (Robin) with two PCs, a digital signal process-
ing package, and a biosonar system (Fig. 1). The biosonar
system includes a National Instruments NI6110 analog I/O
card, a mini servo controller (module SSCII), a BNC2110
connector, and the biosonar head. The NI6110 card and the
BNC2110 connector transfer chirp signals and receive the
reflected echoes. The biosonar head (Fig. 2) consists of 3
Polaroid sensors in a triangular layout, similar to the layout
of a bat’s mouth and ears: two Polaroid 600 sensors spaced
12.5 cm apart as ears, a Polaroid 7000 sensor as mouth in
the middle between two ears. Each of the two ears has two
degrees of angular freedom provided by two servo motors.
These can be finely rotated to acquire local support. The
Polaroid ultrasonic ranging system is most commonly used
by the robotics research community. The emitted pulse was a
linearly frequency modulated chirp sweeping from 20kHz to
120kHz in 1 ms (Fig.2). The maximum sampling speed of the
NI6110 card is 5 MHz. We utilized 1 MHz in our research.
The NiMH charger box provides the sensors with a 150V
power supply. The mobile robot Robin is an autonomous
mobile service robot that has two PCs inside, one is in charge
of navigation control, the other one is responsible for signal
data processing, feature extraction and decision making.

B. Landmarks and sensing strategy

Through echolocation in darkness, a bat can perceive not
only the position of an object, but also its 3D structure [1].
The recognizable target in nature works as a landmark for
its navigation. For our sensory task – biosonar based mobile
robot navigation in natural environments – these landmarks
should be rich and easy to be found there. The criteria for
selecting natural landmarks include observability, frequent
occurrence, uniqueness, temporal stability, easy classifica-
tion, and lateral compactness [2]. Considering those aspects,



Fig. 1. Biosonar system configuration
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Fig. 2. Biosonar head (left). Emitted chirp signal and its frequency content
(right).

we selected three artificial trees with similar height of 1.7 m
as shown in Fig. 3.

Compared with other researchers [3], [4], we used a
different method for sensing the objects. We used a 0.5
degree angular stepsize for our scans, each tree was scanned
360 degrees in a circular movement of the robot and we
collected echoes from all orientations of leaves and tree. The
reflected echo contains the information about the geometry
of the tree and is the superposition of all reflections.

C. data processing

Fig. 4 shows the block diagram of the data acquisition
and preprocessing procedure of reflected echoes. We passed
the reflected echoes through a bank of 10 gammatone filters
between 20 kHz and 120 kHz. In order to extract the
envelope of the filtered signals, they were delivered to half-
wave rectifiers.

The next step is frame blocking. In this step the signal

Fig. 3. Three different trees as biosonar landmarks. From left to right:
Ficus, Bamboo, Schefflera.

Fig. 4. Block diagram of the preprocessing steps for reflected echoes.

blocked to frames of N samples, is separated from adjacent
frames by M (M < N) samples and has N −M overlaps.
Considering the sampling frequency of the data acquisition
part (1 MHz) and the minimum width of leaves of trees and
axial resolution of transducers, we selected N = 32 and 50%
overlap for frames. The next step in the data preprocessing is
to window each individual frame so as to minimize the signal
discontinuities at the beginning and end of each frame. We
used a Hamming window for this purpose. The last step is
to calculate the average energy of each band of gammatone
filter bank in each frame. The result is a feature matrix, where
each column is a vector showing the average energy of each
channel in one time frame. Fig. 5 shows the examples of the
preprocessed echoes of Ficus and Schefflera trees. We use
this feature matrix for our classification task.

As noted before, the problem is that the biosonar signals
are random and nonstationary in the temporal dimension. For
example, the location of leaves in the plant determines the
acoustic energy throughout the frames, and small changes
in the orientation of the plant result in changes in those
features along the frames of time. But, as we see in Fig.
5, despite the randomness of those signals there are some
local similarities (shown by p) in echoes from one tree.
Then, if we can find the sizes of windows in which we
have maximum similarity between data of one object it can
help us to classify that object from others. We consider the
output of the block diagram shown in Fig. 4, a time series in
which each point is a time frame and its value is a vector of
features (the average energy of each channel of gammatone
filter bank). We should find the subsequences of the time
series independent of the positions of occurrences that have
maximum similarities in echoes of each object. The intuition
behind our idea is that the structure of objects and, as an
example, the size of leaves or branches, should be considered
in the classification task. The size of the subsequence that
we are looking for can be related to the size of the leaves or
branches of the tree. In another way, the energy reflected by
the leaves or branches of the tree can be related to the size
of those similar subsequences of the time series.

III. ALGORITHMS

A kernel function can often be considered as a measure of
similarity. Different kernels correspond to different notions
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Fig. 5. The energy spectrum in each time frame for Ficus and Schefflera
trees (output of gammatone filter centered around 50 kHz). The time-
resolved spectrum kernel tries to find the local similarities in window of
size p in echoes of one object.

of similarity. The use of a kernel makes it possible to perform
the mapping into that feature space and to calculate the
inner product between those maps. But the main task here
is to find a map φ that reflects the suitable and common
features of those time series and gives a good indication
of the similarity we would like to capture. The warped
time-resolved spectrum kernel simply measures the whole
similarities of all warped non contiguous subsequences of the
two time series , independent of their positions. The more
two time series share similar subsequences, the more similar
they are.

A. Warped time resolved spectrum kernel

A time sequence s = s1...sn is a sequence of data points
at successive times with si ∈ �d, where 1 ≤ i ≤ n and d is
the dimension of data points. We denote |s| the length of s,
s(i− p + 1 : i) the p-length subsequence of s from position
i − p + 1 to position i, I|s|p the set of indices defining all
the p-long (contiguous or non-contiguous) subsequence of
s: Is

p = {i : i ∈ Np, 1 ≤ i1 < ... < ip ≤ |s|} and u = si as a
subsequence of s in positions given by i = (i1, ..., i|u|). The
number of gaps in the subsequence is gi = (i|u|−i1+1)−|i|.
For example, if we consider s = s1s2s3s4s5, u = s1s3s5 is
a subsequence of s in the positions i = (1, 3, 5) of length
|i| = 3 and gi = 2.

For u ∈ Σp×d, the infinite set of all subsequences with
size p and dimension d, the implicit embedding map φ
brings s to a vector space F (φ : s→ (φu(s)) ∈ F ) and the
u component of our feature vector is:

φp
u(s) =

∑
i∈I|s|p , u∈Σp×d

ϕu(si)γgi

where γ ∈ (0, 1) is a decay factor as a cost for warping
(non-contiguousity) in the time series and ϕ is an implicit
map that satisfies:

κp(si, tj) =< ϕu(si), ϕu(tj) > i ∈ Is
p, j ∈ It

p, u ∈ Σp×d

(1)

in which κp is a kernel function that measures the local
similarity between two p-length subsequences si and tj of
the time series in consideration. In words, φp

u(s) is a sum
over all similarities between p-long subsequences of s and
u. The dot product of those feature vectors represents the
warped-time resolved p-spectrum kernel:

Kp(s, t) = 〈φp
u(s), φp

u(t)〉 =
∫
Rd×p φp

u(s)φp
u(t)du

=
∑

i∈Is
p

∑
j∈It

p

γgiγgj
∫

Rd×p ϕu(si)ϕu(tj)du

=
∑

i∈Is
p

∑
j∈It

p

κp(si, tj)γgi+gj

As we see from the above equation, the kernel adds
all similarity scores between subsequences, considering all
possible degrees of warping. Needless to say, the calculation
of that kernel has a very high computational cost. We use
dynamic programming to calculate it in an efficient manner
and justifiable time.

Considering the definitions of Is
p and It

p, we express the
kernel using a suffix version of that:

Kp(s, t) =
|s|∑
i=1

|t|∑
j=1

∑
(i,j)∈Is(1:i)

p ×I
t(1:j)
p

κp(si, tj)γgi+gj

Considering the suffix kernel as:

KS
p (s(1 : i), t(1 : j)) =

∑
(i,j)∈Is(1:i)

p ×It(1:j)
p

κp(si, tj)γgi+gj

(2)
we have:

Kp(s, t) =
|s|∑
i=1

|t|∑
j=1

KS
p (s(1 : i), t(1 : j) (3)

We consider s′ = s(1 : |s′|), t′ = t(1 : |t′|), 1 ≤ |s′| ≤ |s|
and 1 ≤ |t′| ≤ |t| (prefixes of s and t). If we add a new data
point x to the time series s′, using the above equation we
can calculate Kp(s′x, t′):

Kp(s
′x, t′) =

|s′x|∑
i=1

|t′|∑
j=1

KS
p (s′x(1 : i), t′(1 : j))

=
|s′|∑
i=1

|t′|∑
j=1

KS
p (s′(1 : i), t′(1 : j)) +

|t′|∑
j=1

KS
p (s′x, t′(1 : j))

Then,

Kp(s
′x, t′) = Kp(s

′, t′) +
|t′|∑
j=1

KS
p (s′x, t′(1 : j)) (4)

We accept a constraint on choosing the kernel function
κp(si, tj) (Equation 1), we suppose:

κp(si, tj) =
∏p

i=1 κ∗(sii, tji)

in which κ∗ is an arbitrary function that measures the similar-
ity between two data points of the time series. In this study, as
a suitable and arbitrary selection we consider κ∗(sii, tji) =

exp −(sii−tji)
2

2σ2 to measure the similarity between two data



points, then:

κp(si, tj) =
p∏

i=1

κ∗(sii, tji) = exp
(
−||si − tj||2

2σ2

)
(5)

That, κp(si, tj) is a gaussian kernel of width σ and suitable
for measuring the local similarity of subsequences in time
series. Then, if we add another new data point y to the time
series t′, considering the assumption for κp and the above
definition of KS

p (Equation 2), it can be shown:

KS
p (s′x, t′y) = κ∗(x, y)

|s′|∑
i=1

|t′|∑
j=1

γ|s′|−i+|t′|−jKS
p−1(s

′(1 : i), t′(1 : j))

(6)
It means when new points are added, to measure the new p-
suffix kernel, we must calculate similarities of p− 1 length
subsequences in the suffixes considering all possible degree
of warping. To evaluate KS

p recursively, we define:

KSw
p (k, l) =

k∑
i=1

l∑
j=1

γk−i+l−jKS
p−1(s

′(1 : i), t′(1 : j))

Then equation 6 becomes:

KS
p (s′x, t′y) = κ∗(x, y)KSw

p (|s′|, |t′|) (7)

to express the above kernel recursively, we use the relation:

a∑
i=1

b∑
j=1

f(i, j) = f(a, b) +
a−1∑
i=1

b∑
j=1

f(i, j) +
a∑

i=1

b−1∑
j=1

f(i, j)

−
a−1∑
i=1

b−1∑
j=1

f(i, j)

let f(i, j) = γk−i+l−jKS
p−1(s

′(1 : i), t′(1 : j)) , a = k and
b = l, we have:

Algorithm: Recursive computation of the warped time re-
solved spectrum kernel.

KSw
p (k, l) = KS

p−1(s
′(1 : k), t′(1 : l)) + γKSw

p (k, l − 1)

+γKSw
p (k − 1, l)− γ2KSw

p (k − 1, l − 1) (8)

KS
p (s′x, t′y) = κ∗(x, y)(x, y)KSw

p (|s′|, |t′|)
Kp(s′x, t′) = Kp(s′, t′) +

∑|t′|
j=1KS

p (s′x, t′(1 : j))

KS
0 (s′, t′) = 1 for all s′, t′,
KS

i (s′, t′) = 0, if min(|s′|, |t′|) < i,

Ki(s′, t′) = 0, if min(|s′|, |t′|) < i,

The computation of the kernel follows a dynamic pro-
gramming technique with the order of O(p|s||t|). We have
recursions over the prefixes of the time series and the lengths
of the subsequences and we do the routine above until
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Fig. 6. Kernel score between two echoes of Ficus tree with different
warping costs

x = s|s| and |t′| = |t|. As we see from the above pseudo-
code, the evaluation of the Knorm

i is of order O(|s||t|) and
the overall complexity of our algorithm to calculate a linear
combination of all p-spectrum kernels is O(p|s||t|).

Algorithm Warped Time resolved spectrum kernel
Input : Time series s and t of length n and m, max

subsequence length l and warping cost γ;
Output: Array of spectrum kernel K[] with different

sizes of subsequence-length from 1 to l);

KPSw(0 : n, 0 : m) = 0;1

for i← 1 to n do2

for j ← 1 to m do3

KPS(i, j) = κ∗(si, tj);4

K[1] = K[1] + KPS(i, j);5

end6

end7

for p← 2 to l do8

for i← 1 to n do9

for j ← 1 to m do10

KPSw(i, j) =11

KPS(i− 1, j − 1) + γKPSw(i, j − 1) +
γKPSw(i− 1, j)− γ2KPSw(i− 1, j − 1);
KPS(i, j) = κ∗(si, tj)KPSw(i− 1, j − 1);12

K[p] = K[p] + KPS(i, j);13

end14

end15

end16

return K[]17

To prevent that with larger sizes of subsequences the
kernel achieves a higher similarity score we normalize the
kernel, Knorm

i (s, t) = Ki(s,t)√
Ki(s,s)Ki(t,t)

. This operation scales

the similarities in the range [0,1].
Fig. 6 plots the kernel score of two samples of echoes

reflected by a Ficus tree with different values of warping
cost. We see that as the gamma parameter gets closer to
1 we let subsequences of two time series warp more and
the similarity score (kernel score) increases. When gamma
is equal to zero, the kernel is equal to the time-resolved
spectrum kernel [9].



In practice and especially in our classification task, it
makes sense to consider the similarity of subsequences
having different sizes and calculate a linear combination of
different i-spectrum kernels with different weighting θi ≥ 0.
The weighted kernel is:

K(s, t) =
p∑

i=1

θiKnorm
i (s, t) (9)

B. Optimal kernel selection

Finding suitable values of the parameters θi in Eq. 9 is
a case of more general problem known as optimal kernel
selection. For this task we selected the optimal kernels via
maximizing the Kernel Fisher Discriminant (KFD) criterion
[10] through the method of Kim et. al [11]. In their method
the task is considered as a convex optimization problem and
the objective function (KFD) is converted to the shape of
standard form of Semi Definite Programming (SDP) (interior
point method). To solve this optimization problem we used
the SDP solver of SeDuMi [12].

IV. EXPERIMENT AND RESULTS

We gathered the sonar data, 720 echoes for each tree
shown in (Fig. 3). After the preprocessing steps for each
echo (Fig. 4), we have a time series in which each point
is a time frame and its value is an array of the average
energy of each channel of gammatone filter. We selected
randomly 100 echoes of each tree and then calculated
Knorm

i (s[m], s[n]) for i ∈ [1, l], m,n ∈ [1, 100] and
σ(Eq.5) ∈ {1, 10, 100, 1000} where s[m] and s[n] are the
m-th and n-th of pre-processed echoes and l is the length
of the time series (in our experiment 90). Using the optimal
kernel selection noted above, we found the optimal value for
θi in Eq. 9 and calculated the matrix K:

K(i, j) = K(s[i], s[j]) =
l∑

k=1

θopt
i Knorm

l (s[i], s[j])

in which i, j ∈ [1, 300] and s[i] is i-th echo, for Ficus echoes
i ∈[1,100], for Bamboo i ∈ [101,200] and for Schefflera
i ∈[201,300]. In this study, we found that suitable value for
σ (Eq. 5) is in the range [10,100].

A SVM learns a classification function f(x) of the form:

f(x) =
∑

i;xi∈χ+

λiK(x, xi)−
∑

i;xi∈χ−

λiK(x, xi) (10)

where non-negative λi weights are computed during train-
ing by maximizing a quadratic objective function and K(., .)
is the kernel. Given this function, a new data x is predicted to
belong to the positive dataset, if the value of f(x) is positive,
otherwise it belongs to the negative dataset. After training
the classifier, we used the remaining data (1860 echoes) for
testing.

Figure 7 shows the accuracy of the classifier for those
trees with different warping costs (γ) and σ = 100, based
on the number of echoes as observation. It shows a high
accuracy even for a low number of echoes. We see that

Fig. 7. The accuracy of the classifier using our suggested kernel with
different warping costs (σ = 100) for a) ficus, b) Bamboo and c)Schefflera.
When γ = 0 the kernel is similar to time-resolved spectrum kernel [9].

the parameter γ can affect the accuracy of the classifier
and the accuracy of the time-resolved spectrum kernel [9]
increases in each tree by changing the parameter γ. Table
1 shows the accuracy of classifier when it decides based
on only one observation. Best accuracy for Ficus, Bamboo
and Schefflera trees are gained for γ = 0.1, γ = 0.3 and
γ = 0.2, respectively. This parameter lets the kernel to
consider a warping (with a cost) for the subsequences of
the time series and extract their similarity. Considering that
parameter in our classification task is justifiable, because the
echoes reflected by the adjacent leaves of each tree can have
somehow similar patterns but not exactly the same, so we
need to have a parameter (γ) that can let the kernel capture
those similarities, too. The optimal value of that parameter
for each tree can be related to the physical specification of
each tree. As we see if the γ gets closer to 1 (no cost for
warping) the accuracy decreases.

Comparing with the previous works of our group (Wang
et al. [7]), it shows a notable improvement in accuracy.
The best result for classification gained before was through
template matching in 2D biosonar acoustic images (using a
2D Discrete Cosine Transform). The classification was made



γ Ficuss Bamboo Schefflera
γ = 0 86.2 89.5 90.2
γ = 0.1 89.1 90.1 91.3
γ = 0.2 88.6 91.4 93.8
γ = 0.3 87.6 93,1 91,1
γ = 0.5 80.1 81.3 82.1
γ = 0.1 59.2 67.4 58.1

TABLE I

CLASSIFICATION RATE BASED ON DIFFERENT VALUES OF γ
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Fig. 8. The accuracy of classifiers using different numbers of echoes
for testing with the Warped Time-resolved spectrum kernel (γ =
0.2).

via extracting the maximum normalized cross correlation
between the acoustic templates (Fig. 9). As shown in Fig.
8, we could get higher accuracy in both single and repeated
observations (even with fewer echoes) compared with Fig. 9
(note the different horizontal and vertical axes).
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[10] S. Mika, G. Rätsch, J.Weston, B. Schölkopf, and K.-R. Müller, ”Fisher
discriminant analysis with kernels”. In Y.-H. Hu, J. Larsen, E. Wilson,
and S. Douglas, editors, Neural Networks for Signal Processing IX,
pp. 41-48. IEEE, 1999.

[11] S.-J. Kim, A. Magnani and S. Boyd, ”Optimal Kernel Selection in
Kernel Fisher Discriminant Analysis”, in Proceeding of the 23th Int.
Conf. on Machine Learning (ICML), pp. 465-472,2006.

[12] J. Strum, ”Using SeDuMi 1.02, a Matlab toolbox for optimization over
symmetric cones”,Available from sedumi.macmaster.ca/.


