
1

Swarm-supported Outdoor Localization with Sparse

Visual Data
Marcel Kronfeld∗ Christian Weiss∗ Andreas Zell∗

∗Department of Computer Science, University of Tübingen, Tübingen, Germany

Abstract—The localization of mobile systems with video data is
a challenging field in robotic vision research. Apart from artificial
environmental support technologies like GPS localization, a self-
sufficient visual system is desirable. In this work, we introduce
a new heuristic approach to outdoor localization in a scenario
where no odometry readings are available. In an earlier work,
we employed SIFT features and a common particle filter method
in the scenario. A modification of Particle Swarm Optimiza-

tion, a popular optimization technique especially in dynamically
changing environments, is developed and fit to the localization
problem, including self-adaptive mechanisms. The new method
obtains similar or better localization results in our experiments,
while requiring a fraction of SIFT comparisons of the standard
method, indicating an all-over speed-up by 25%.

I. INTRODUCTION

Localization with mobile robots may be achieved through

a number of ways. Besides environmentally installed support

architectures like radio beacons or GPS, the usage of uni-

versal visual features is an appealing approach to increase

independence and robustness of mobile systems. Cameras may

serve as relatively small, cheap, and yet powerful sensors

for various surroundings and deliver a large amount of data,

which, as biological organisms show, are highly valuable for

orientation in natural environments. For visual localization,

widely used techniques consist in combining a feature-based

image similarity measure with a nonlinear particle filter (PF).

The paper at hand takes a closer look at a scenario with

sparse visual data and without odometry, and a typical PF

localization approach using the Scale Invariant Feature Trans-

form (SIFT) [15]. Video data can easily be produced, but are

very memory-consuming if densely collected. Also, sparse

visual data can be easier maintained and updated, e.g. by

driving through the streets of a city environment and taking

relatively few, linearly ordered pictures.

The task of visual localization consists in finding a matching

location by visual features in a database containing the envi-

ronmental map. SIFT produces relatively reliable local image

features based on structural interest points and may be used

to recognize objects or locations in visual images with some

robustness under changing illumination and direction of view.

Visual applications employ SIFT in an increasing number, but

comparing SIFT features is an expensive operation and often

a bottleneck when the database is large. Some researchers

compare a trial image to all images in the database and

keep the database slim using pruning methods [5, 4]. Another

approach uses a particle filter to concentrate the comparisons

on a smaller subset of the features in the database, for which a

match is expected with high probability [22]. Database tuning

can be done offline, while the latter method may still reduce

the number of online SIFT comparisons.

Localization with SIFT is also addressed e.g. in [2] for

indoor and in [16] for outdoor environments. Different ap-

proaches for outdoor localization mainly use other types of

local features like specialized histograms [6] or employ global

features, e.g. PCA-based [11] or Integral Invariant features

[23]. In [18], Tamimi presents a wide overview of visual

features for robot localization.

Particle filters have been used for robot localization for

some time [19], and numerous instances have been proposed

[10], mainly differing in the resampling strategy. For visual

tracking, Soto employed a PF with adaptive particle count

[17], while Zhou et al. presented an approach in which motion

velocities and noise level are adapted dynamically [24]. The

Kernel Particle Filter (KPF) has been proposed by Chang

et al. in [7] and lately been successfully combined with a

heuristic called Genetic Evolution by Wang et al. [21]. A

number of evolutionary extensions to the more general Markov

chain Monte Carlo method are presented in [9]. Heuristically

augmented particle filters have also been proposed by Treptow

[20] and shown to be effective in reducing the particle count

in real-time object tracking.

Considering swarm methods, the original Particle Swarm

Optimization method (PSO) was proposed by Kennedy and

Eberhart [12] and shown to be a valuable technique in different

areas, of which optimization in dynamic environment is most

related to our work, see e.g. [13]. Random perturbation within

particle swarms has been proposed by Liu et al. [14].

The rest of the paper is organized as follows: Section II

gives a short introduction to particle filters and points out some

of their properties with respect to localization. In Section III,

the basic Particle Swarm Optimization method is explained,

and Section IV suggests a formulation of the localization

problem in the context of optimization. Section V details

our adaptations to PSO for the localization approach, also

called Dynamic PSO (DPSO). Section VI introduces the

experimental setup, the results are presented in Section VII.

We finally conclude with Section VIII.

II. PARTICLE FILTER-BASED LOCALIZATION

Particle filters essentially represent the probability density

function (pdf) of the estimated system state with a set of so-

called “particles”, each one encoding a single possible state.

The particles are iteratively propagated using control input

2

(motion model) and weighted based on new measurements

(measurement model). The weighted sum of the particles

represents the estimated state. In visual localization, a particle

represents a hypothesis on the system’s position (and possibly

its orientation) and is associated with a training image. The

pdf then estimates the pose in the environment at a time. The

estimation is improved iteratively by incorporating new test

images and weighing the importance of the particles by the

similarity to the test image.

Theoretically, if the number of particles is very large, the

particle filter estimate approaches the optimal Bayesian state

estimate [1], which is optimal with respect to the system mod-

els. In practice, however, the number of particles is restricted

by computational effort, and thus often only relatively few

particles can be used, a fact from which some problems arise.

As the variance of the importance weights can only increase

over time [8], it is unavoidable that after some iterations most

of the particles grow “impossible” in that their importance

weights tend to zero, and much of the computational time

is spent propagating highly improbable states. This may be

avoided by using an importance resampling step, in which

the particles are drawn anew from the currently estimated

pdf at each iteration to keep particles within smaller regions

of reasonable probability. Thereby, at iteration t, only those

regions – and thus training images – are regarded which have

a high probability given the information of t − 1 earlier test

images and the system models.

This diversity loss, however, abets localization failure in

scenarios where jumps in the state space may occur – the so-

called kidnapped-robot problem. To counter this, a common

technique is to reinitialize a small ratio of particles randomly

in each turn to keep the state space thinly covered (random

injection). Other approaches try to detect kidnapping situations

and handle them in a specialized way, facing the problems of

possible misdetection and applying appropriate recovery.

In the scenario we are looking at, jumps in the state space

are – to some extent – part of the underlying method, namely

visual localization with sparse visual images of the environ-

ment. Also, no odometry information has been made available,

which typically poses problems for particle filter approaches.

Large numbers of particles are required to cover the state

space and allow for good localization, while comparing visual

images usually requires expensive computational operations,

so that a reduction of the particle count is essential for

quick localization. Then again, using visual features allows for

making some helpful assumptions, such as their relatively high

information density, which we try to exploit by interpreting

localization as a dynamic optimization problem.

III. PARTICLE SWARMS

One branch of heuristic methods called Particle Swarm

Optimization (PSO) is especially useful in dynamically chang-

ing domains [13, 3]. PSO takes as basic idea the flocking

behaviour of animals like birds and searches for the solution

using a population of potential solutions, called “particles” or

“individuals”. In a generational loop similar to Evolutionary

Optimization, the individuals are iteratively updated using

problem-specific knowledge to evaluate their current positions,

resulting in a “fitness” value. Each individual I has a position

~x(t) and is assigned a travel velocity ~v(t). The individuals

are arranged in a logical topology, by which for each I a

neighborhood NI of other individuals is defined. For the

iteration at time t, the velocity vector of an individual is then

attracted to the best location ~ph in the individual’s history

HI =
⋃t

t′=0
{~x(t′)} on the one hand, and to the best location

~pn found by its neighbors in NI on the other hand, see Eqs. 1

and 2, defined by components of ~x and ~v. The parameters

φ1 and φ2 control the impact of the two attractors ~ph and

~pn, while r1 and r2 are uniform random samples within the

interval [0, 1] used as stochastic components. The factor ω

is called inertia and controls the impact of the past velocity

at a time. For this work, we use a simple star topology as

neighborhood relation, implying that all particles are neighbors

and are attracted to the currently “fittest” position known to

the population.

vi(t + 1) = ωvi(t) + φ1r1(p
h

i − xi) + φ2r2(p
n

i − xi) (1)

xi(t + 1) = xi(t) + vi(t + 1) (2)

In typical PSO implementations, the velocity vector is

limited to a maximum velocity vmax by ensuring that ‖−→v ‖ ≤
vmax. A number of extensions have been introduced to im-

prove PSO for dynamic optimization problems, of which we

use the following:

• Invalidation of ~ph at changes of the environment. When

expecting the “worst case”, which is continuous move-

ment, ~ph is replaced by a random perturbation term;

• “Quantum particles”, similar to random injection used

with PF. Quantum particles have no speed but are stochas-

tically distributed over an area around the last position

estimate within which movements are typically expected;

• “High-energy particles”, which are allowed higher speeds

than usual ones and have the same properties otherwise.

A heuristic approach reduces the system complexity, and PSO

typically needs only few particles for good results, which is

what we want to achieve for visual localization.

IV. VISUAL LOCALIZATION AS OPTIMIZATION PROBLEM

Presuming a training set of images corresponding to known

positions as given world map, the goal of localization is to

deduce a position estimate based on test images taken online

with respect to the training set. Our formulation of visual

localization as optimization problem is in analogy to the

resampling criterion of a PF: If a particle has a high probability

of fitting the measurement, it also has a high value or “fitness”

in the sense of optimization. The target function value of a

particle with position ~x at time t may be expressed by

f(~x, t) = m(pictr(~x), pic(t)) · pen(d(~x, pic(~x))), (3)

where m is the SIFT comparison function [15], compar-

ing the nearest training image pictr(~x) corresponding to the

particle to the current test image pic(t). m delivers a value

in [0, 1] indicating image similarity by calculating the ratio

3

of single feature matches to all possible matches. A single

feature of image a is said to match a feature of image b if

its euclidian distance to the closest neighbor in b divided by

the distance to the second closest in b is above a threshold δ,

typically δ ≈ 0.6− 0.8. The penalty function pen reduces the

fitness for particles far away from the training data, because

localization is feasible only where there is training information

available. This is done similarly to [22] in terms of a gaussian

function.

The problem of tracking a position now corresponds to a dy-

namic optimization problem, aiming for finding the optimum

~x∗(t′) of f at time t′ and then following it while ensuring

a plausible path. A dynamic optimization method therefore

needs to predict potential future optima, while keeping them

related to the current state. The velocity components assigned

to PSO particles may be interpreted as multiple motion models

with respect to a PF and allow for just that. The actual position

estimate can be deduced from the swarm by calculating the

weighted swarm center or by just picking out the k best

particles and calculate their center.

V. ADAPTING PSO FOR VISUAL LOCALIZATION

In scenarios with sparse visual data, the particle filter ap-

proach is not effective, mainly because it requires a relatively

large number of particles compared to the number of available

images. As PSO is known to perform well in dynamic environ-

ments, we adapted PSO to this class of localization problems.

Our dataset did not contain odometry, so the velocity of

particles could also be used to estimate the robot’s speed.

The fitness of an individual at time t depends on the robot’s

view at that time and is calculated as the SIFT similarity

between the current test image and the training image closest

to the individual’s position, modified by a penalty function if

the individual is far away from the training image position

(Eq. 3). The resampling is replaced by the PSO formula,

adapted to the dynamic localization case in the following way:

vi(t + 1) = ωvi(t) + φ0r0δiv0 + φ2r2(p
n
i (t) − xi(t)),(4)

xi(t + 1) = xi(t) + vi(t + 1). (5)

The ~ph-component is herein replaced by a random term,

because we expect a continuously changing environment,

where historically good positions lose their relevance quickly.

φ0 is the weight of the random perturbation, the additional

parameters δi and v0 stand for the range of axis i and the

maximum randomized velocity of a particle, respectively. The

velocity v0 is expressed relative to the range and also suits

as scaling factor to keep φ0 in similar dimension as φ1 and

φ2. Effectively, the main attractor ~pn is thereby turned into an

area of attraction around ~pn of dimensions ρi = φ0

φ2

δiv0 .

For the fraction q̂r of quantum particles, the update takes

the following form:

xi(t + 1) = pn
i (t) + δiN(0, q̂d). (6)

The parameter q̂d defines the standard deviation of the quan-

tum particles around ~pn. The formula is similar to the default

gaussian motion model employed with the PF. The quantum

ratio q̂r is set to 10% by default, q̂d to 0.15. The inertia

is usually set < 1 to allow for convergence. For dynamic

tracking, however, it needs to be high to stress correlation

of movement, so we set it to 0.99. Standard settings for φ0

and φ2 were φ0 = 0.3 and φ2 = 0.6. The trade-off between

the φ-values in Eq. 4 remains of similar importance as for

standard particles, now trading between random exploration

and local exploitation. Random perturbation is necessary for

particle diversity, but reduces the overall tracking quality if too

dominant. A fraction of particles ĥr = 10% is allowed a ve-

locity three times v0, supporting quick optimum tracking. We

simply use the best individual at a time as position estimate,

following the typical methodology in heuristic optimization.

The full algorithm is termed “Dynamic PSO” (DPSO) for the

rest of this paper.

Self-adaptive parameters

We introduce two self-adaptive mechanisms, one of which

dynamically adapts v0 by calculating the speed vswarm of

the swarm’s center of mass and holding the relation v0 ≈
2vswarm. This enables the method to react to speed changes

while providing robust tracking at any speed. When tracking

the location, vswarm also gives a good estimate of the robot’s

speed in absence of or in addition to odometry.

The SIFT features offer robust image similarity information

in outdoor areas, yet some situations still are ambiguous.

To counter this and to ease the handling of the kidnapped-

robot problem, we also include a mechanism to dynamically

adapt the swarm diversity. We therefore exploit the property

of SIFT delivering a quasi-absolute measure of similarity

between images. If the best SIFT match of the best position

guess is still bad, e.g. matching less than 5% of the features, it

may be an ambiguous position or the localizer lost track of the

real position. If this happens for several iterations in a row, we

start a recovery phase and boost particle diversity by increasing

φ0, v0 and the quantum ratio q̂r up to predefined maximum

values. As soon as the best matches increase in quality again,

the recovery phase ends and the parameters are decreased to

the initial values. Experiments have shown that adapting v0

improves tracking and adapting diversity improves robustness

plus it solves the kidnapped-robot situation, cf. Section VII-A.

VI. EXPERIMENTAL SCENARIO

In the experiments in [22], we used images collected by

our RWI ATRV-JR outdoor robot, Arthur (Fig. 1). We took

one 320×240 pixel grayscale image per second with the

left camera of the Videre Design SVS stereo camera system

mounted on top of the robot. As we used a constant velocity

of about 0.6 m/s, the positions of subsequent images are about

0.6 meters away from each other. The robot is also equipped

with a differential GPS (DGPS) system, which we used to

get ground truth data for the position of each image. Under

ideal conditions, the accuracy of the DGPS is below 0.5 m.

However, due to occlusion by trees and buildings, the GPS

path sometimes significantly deviated from the real position

or contained gaps. As we know that we moved the robot on

4

Fig. 1. Arthur, an RWI ATRV-JR outdoor robot.

a smooth trajectory, we eliminated some wrong GPS values

manually. As we also used a constant velocity, we closed gaps

by linearly interpolating between the positions before and after

the gap. In our experiments, we used two different datasets,

each consisting of three rounds around a big building. One

round is 260 m long and contains about 400 images. The first

three rounds were collected under sunny conditions. However,

there are some short sections (about 5 to 10 s long) during

which the sun was covered. Six weeks later, we collected

the other three rounds on a cloudy day. The images contain

artifical objects like buildings, streets and cars as well as some

vegetation. Additionally, there are dynamic objects like cars

and people passing by. We also traversed a parking lot, where

different cars were parked on the two days. As in [22], we

reduced the number of SIFT features by comparing each image

to the two neighboring images in the series beforehand and

discarding the “noisy” features which could not be discovered

in either of the direct neighbors. This speeds up the SIFT

comparison drastically, as about 50% to 80% of the features

are left out, while not affecting later localization performance.

From the two datasets “sunny” and “cloudy”, three kinds

of experiments have been carried out. Using one round as

environmental map and treating another as online data, we

tested sunny vs. sunny, cloudy vs. cloudy, and sunny vs.

cloudy. We did not test a round against itself, so there are

six cases for the sunny and cloudy only experiments and nine

for the sunny vs. cloudy experiment. We calculated the mean

error for the three experiments distinctly. For each case, we

repeated the localization run n times, where n is the number

of test images. For each of these runs, we used a different test

image as initial image for the localization.

VII. RESULTS

A. Parameter Comparison

To demonstrate the effects of the settings for DPSO, we

contrast localization rounds for a single localization case,

namely localizing sunny (round 1) vs. cloudy (round 1), which

0 20 40 60 80 100
0

20

40

60

80
robot path, GPS data

easting (m)

n
o

rt
h

in
g

 (
m

)

sunny rounds

cloudy rounds

Fig. 2. GPS round data.

Fig. 3. Example images of the datasets, sunny (left) and cloudy (right).

is one of the difficult cases for the PF. Where not stated

otherwise, DPSO is used with a swarm size of 80 particles.

We varied the simulated speed of the mobile system, see

Tab. I. Here, the standard speed 1 corresponds to the original

data collection speed of about 0.6 m/s. For speeds k times

the normal we use every k-th image for localization only,

resulting in the simulation hurrying around the loop at higher

speed. In analogy, a speed of 1

2
or 1

4
corresponds to localizing

against each image twice or four times consecutively. In the

non-adaptive version in Tab. I, we set the maximum speed

parameter manually to roughly fit the standard speed case

(v0 = 0.015). The fact that repeating the same image several

Sim. Speed 1/4 1/2 1 2 3 4

Non-adaptive 2.48 2.51 2.54 2.73 5.89 9.59

Adaptive 2.57 2.59 2.50 2.68 3.20 3.75

TABLE I

AVERAGE ERROR (M) WHEN VARYING THE SIMULATED ROBOT’S SPEED

Condition Standard case Kidnapped case
avg. err. (m) avg. err. (m)

Non-adaptive 2.56 ± 0.71 11.55 ± 7.23

Adaptive 2.50 ± 0.35 6.10 ± 2.34

TABLE II

COMPARING ADAPTIVE DPSO IN STANDARD AND KIDNAPPED CASE

5

Method DPSO-40 DPSO-60 DPSO-80 DPSO-100 DPSO-120 PF-100 PF-300

Avg.err. (m) 2.84 2.60 2.54 2.50 2.46 3.95 3.39

Avg.comp./image 17.9 22.3 25.9 29.1 32.0 40.8 62.4

TABLE III

VARYING THE NUMBER OF PARTICLES FOR DPSO

PF-100 PF-300 DPSO-80
Avg. err. (m) Avg. comp. Avg. err. (m) Avg. comp. Avg. err. (m) Avg. comp.

Experiment per img. per img. per img.

Sunny vs. sunny 3.1649±0.8907 40.0 2.1510 ± 0.2885 60.8 1.9862± 0.3612 21.4

Cloudy vs. cloudy 3.4555±1.2783 36.5 2.0556 ± 0.5561 55.3 1.4698 ± 0.3507 20.5

Sunny vs. cloudy 3.9260±0.6635 40.4 3.2723 ± 0.2749 60.9 2.7651 ± 0.4036 22.3

TABLE IV

COMPARISON OF PARTICLE FILTER TO DPSO

 2

 3

 4

 5

 6

 7

 8

 9

 10

43211/21/4

A
v

er
ag

e
er

ro
r

(m
)

Simulated speed

Adaptive DSPO
Non-adaptive DPSO

Fig. 4. Localization error at different simulated speeds

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300 350 400

D
is

ta
n

ce
 (

m
)

Iteration step

Kidnapped-robot scenario

Kidnapping
event

Online localization error
Average error

Fig. 5. DPSO in the kidnapped-robot scenario

times worsens the localization performance for the adaptive

version seems counterintuitive. It can be explained when

thinking about ambiguous views: Their interference is the

higher the more often they are presented. The non-adaptive

variant is less affected by this because it does not converge as

closely. For higher speeds, however, the non-adaptive method

clearly fails without manual tuning of the speed limit, cf.

Fig. 4.

In Tab. II, the self-adaptive diversity mechanism comes into

play when a kidnapped-robot scenario is simulated. To do

this, the virtual position in each simulated round is set to the

opposite of the round by adding n/2 to the current test image

index modulo n, where n is the number of test images. This

means that the localization method is forced to jump to the

opposite side of the playground after converging for half of

the run. The simulated kidnapping takes place at iteration 182,

which is
⌊

n
2

⌋
of n = 365 and causes an abrupt localization

error of about 63 m at that instant. Of course the kidnapping

reduces performance, but the adaptive method is clearly able to

find and retrack the position. The average online localization

error of the experiment is plotted in Fig. 5. The averaged

localization error of all n runs is also shown.

Tab. III shows results for different numbers of particles,

demonstrating that even low population sizes are able to

perform well. The largest population tested here still requires

much less of the number of SIFT comparisons needed by

the particle filter, cf. Section VII-B. Smaller populations,

admittedly, have more problems recovering in a kidnapped-

robot case. We therefore use a swarm size of 80 for the final

comparison with PF as well.

B. Comparison to Particle Filter

In the final test runs for the comparison with a PF approach,

we used the self-adaptive mechanisms and default settings

described in Section V. As our dataset did not contain odom-

etry, the particle filter was employed with a random gaussian

motion model with a standard deviation of 4 m, while the

sampling weight is calculated in analogy to Eq. 3.

From Tab. IV it can be seen that the DPSO approach with

80 particles is superior to both the PF using 100 and the

PF using 300 particles. Concerning the localization error, PF-

100 performs considerably worse than the other methods. The

6

average number of training images a test image is compared

to is also significantly lower with DPSO. More precisely, it is

decreased by about 35-45% compared to the PF-100 and by

60-65% compared to the PF-300 method. This can be directly

projected onto the real system runtime, as SIFT comparison

is the most expensive operation of the method.

The DPSO iteration with self-adaption can be done in two

loops over the particle population and is therefore comparable

to a PF with resampling, yet having a much smaller population.

A SIFT comparison of the considered dataset took 0.015 s

on average on our test system, a 2.4 GHz dual core AMD

Opteron. An iteration of PF-300 therefore takes between 0.8

and 0.9 s on average and a reduction by 60% implies saving

about 0.5 s per test image. With regard to [22], where SIFT

comparisons took about 40% of the computation time using

the PF-300 method for localization, an all-over speed-up by

25% can be expected.

VIII. CONCLUSION

In the work at hand, we have proposed a PSO-based method

replacing a standard particle filter for localization with SIFT

features on sparse outdoor visual data. As in standard PSO,

the particles are attracted to the best global particle, allowing

for fast convergence. The particles have a velocity component

with high inertia, thus the dynamically changing position can

be tracked without requiring an explicit motion model. This

is a major advantage e.g. for the augmentation of black-box

systems with independent visual trackers.

By taking advantage of the fact that SIFT provides a

quasi-absolute measure of image similarity, a good guess can

be made whether the position has been lost. In that case,

particle diversity is boosted until a good position estimate is

rediscovered. In addition to that, dynamic speed adaptation

makes the system robust with regard to manual parameter

settings and the robot’s velocity.

Our experiments where based on visual images ordered

linearly within an urban outdoor environment using GPS

ground truth. Similar data can be obtained without much effort

in large scale, whereby the plausibility of the GPS annotations

must be verified. Given that, we are confident that the DPSO

for localization scales well to large datasets. However, in

highly ambiguous or dynamic environments like e.g. forests,

we expect that the swarm approach loses accuracy compared

to a particle filter, at least while employing the rather greedy

star topology for the swarm. We intend to test a multi-swarm

approach to counter this effect in ambiguous scenarios.

The use of visual sensory and robust features is the basis

for our localization method. The exact kind of features,

however, needs not to be predefined. SIFT is a popular choice

and serves well for comparisons to further approaches, e.g.

by using iterative SIFT, additional geometric constraints or

hybrid feature sets. We plan to analyze the swarm-supported

localization with hybrid features and in larger scenarios in the

near future.

REFERENCES

[1] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial
on particle filters for on-line non-linear/non-gaussian bayesian tracking.
IEEE Transactions on Signal Processing, 50(2):174 – 188, 2002.

[2] M. Bennewitz, C. Stachniss, W. Burgard, and S. Behnke. Metric
localization with scale-invariant visual features using a single camera. In
Proceedings of European Robotics Symposium (EUROS-06), volume 22,
pages 143–157, Palermo, Italy, March 2006.

[3] T. Blackwell and J. Branke. Multi-swarm optimization in dynamic
environments. In EvoWorkshops, pages 489–500, 2004.

[4] O. Booij, B. Terwijn, Z. Zivkovic, and B. Kröse. Navigation using an
appearance based topological map. In IEEE International Conference
on Robotics and Automation (ICRA), pages 3927–3932, 2007.

[5] O. Booij, Z. Zivkovic, and B. Kröse. Sparse appearance based mod-
eling for robot localization. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 1510–1515, 2006.

[6] D. M. Bradley, R. Patel, N. Vandapel, and S. M. Thayer. Real-time
image-based topological localization in large outdoor environments. In
Proc. of the IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 3062 – 3069, Edmonton, Canada, 2005.
[7] C. Chang and R. Ansari. Kernel particle filter for visual tracking. IEEE
Signal Processing Letters, 12(3):242–245, March 2005.

[8] A. Doucet. On sequential monte carlo sampling methods for bayesian
filtering. Statistics and Computing, 10:197–208, 2000.

[9] M. M. Drugan and D. Thierens. Evolutionary Markov chain Monte
Carlo. Technical report, Institute of Information and Computing Sci-
ences, Utrecht University, 2003.

[10] S. Godsill and T. Clapp. Improvement strategies for monte carlo particle
filters. In A. Doucet, N. De Freitas and N. Gordon, editors, Sequential
Monte Carlo Methods in Practice. New York: Springer-Verlag, 2000.

[11] M. Jogan, M. Artac, D. Skocaj, and A. Leonardis. A framework for
robust and incremental self-localization. In Proc. of the 3rd International
Conference on Computer Vision Systems (ICVS), pages 460–469, Graz,
Austria, 2003.

[12] J. Kennedy and R. Eberhart. Particle swarm optimization. In IEEE Int.
Conf. on Neural Networks, Perth, Australia, 1995.

[13] X. Li, J. Branke, and T. Blackwell. Particle swarm with speciation and
adaptation in a dynamic environment. In GECCO ’06: Proceedings of
the 8th annual conference on Genetic and evolutionary computation,
pages 51–58, New York, NY, USA, 2006. ACM Press.

[14] H. Liu and A. Abraham. Fuzzy adaptive turbulent particle swarm
optimization. In HIS ’05: Proceedings of the Fifth International
Conference on Hybrid Intelligent Systems, pages 445–450, Washington,
DC, USA, 2005. IEEE Computer Society.

[15] D. Lowe. Distinctive image features from scale-invariant keypoints. Int.
Journal of Computer Vision, 60(2):91–110, 2004.

[16] S. Se, T. Barfoot, and P. Jasiobedzki. Visual motion estimation and
terrain modelling for planetary rovers. In Proceedings of the Interna-
tional Symposium on Artificial Intelligence for Robotics and Automation
in Space (iSAIRAS), Munich, Germany, 2005.

[17] A. Soto. Self adaptive particle filter. In International Joint Conference
on Artificial Intelligence (IJCAI’05), 2005.

[18] H. Tamimi. Vision-based Features for Mobile Robot Localization. PhD
thesis, University of Tübingen, Tübingen, Germany, 2006.

[19] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust monte carlo
localization for mobile robots. Artificial Intelligence, 128(1-2):99–141,
2000.

[20] A. Treptow. Optimization Techniques for Real-Time Visual Object

Detection and Tracking. PhD thesis, University of Tübingen, Tübingen,
Germany, 2007.

[21] Q. Wang, J. Liu, and Z. Wu. Object tracking using genetic evolution
based kernel particle filter. In Combinatorial Image Analysis: 11th
International Workshop, IWCIA 2006, Proceedings, pages 466–473,
2006.

[22] C. Weiss, A. Masselli, H. Tamimi, and A. Zell. Fast outdoor robot
localization using integral invariants. In Proc. of the 5th International
Conference on Computer Vision Systems (ICVS), Bielefeld, Germany,
March 21 - 24 2007.

[23] J. Wolf, W. Burgard, and H. Burkhardt. Robust vision-based localization
by combining an image retrieval system with monte carlo localization.
IEEE Transactions on Robotics, 21(2):208–216, 2005.

[24] S. Zhou, R. Chellappa, and B. Moghaddam. Appearance tracking using
adaptive models in a particle filter. In Asian Conference on Computer
Vision, 2004.

