September 25,2006 17:29 Proceedings Trim Size: 9.75in x 6.5in apbc113

INFERRING GENE REGULATORY NETWORKS BY MACHINE LEARNING
METHODS

JOCHEN SUPPER, HOLGER FROHLICH, CHRISTIAN SPIETH, ANDREAS DRAGER,
ANDREAS ZELL*

Centre for Bioinformatics Tibingen (ZBIT), Sand 1, 72076 Tibingen
jochen.supper@uni-tuebingen.de

The ability to measure the transcriptional response after a stimulus has drawn much attention to the
underlying gene regulatory networks. Several machine learning related methods, such as Bayesian net-
works and decision trees, have been proposed to deal with this difficult problem, but rarely a systematic
comparison between different algorithms has been performed. In this work, we critically evaluate the
application of multiple linear regression, SVMs, decision trees and Bayesian networks to reconstruct
the budding yeast cell cycle network. The performance of these methods is assessed by comparing
the topology of the reconstructed models to a validation network. This validation network is defined
priori and each interaction is specified by at least one publication. We also investigate the quality of
the network reconstruction if a varying amount of gene regulatory dependencies is prayided.

1. Introduction

Transcriptional data sets provide valuable insight to cellular processes under various con-
ditions. These data sets can be analyzed by cluster analysis, thereby providing undirected
gene relations. In order to model gene regulatory networks (GRN) directed relations be-
tween genes have to be considered. Most GRNs can be represented as interconnections
between genes, each indicating that one gene influences the expression of another gene.

Today, modeling of GRNSs is guided by a rich flow of experimental data. The stream is
still widened by an increasing pool of measurement techniques. Despite of all this informa-
tion, detailed knowledge regarding network models is still almost exclusively collected by
biologists. They collect and integrate data, expand and refine their models and finally vali-
date them. For our modeling efforts, we will concentrate on the regulatory information that
can be extracted solely from transcriptional response data. The restriction to transcriptional
response data provides us with a large number of measured genes along with a small sam-
pling rate. This, of course, leads to a high level of ambiguity for every GRN reconstruction
method.

Several approaches for GRN reverse engineering have emerged during the last years.
These approaches include analytical methods such as Boolean né#ygris)-linear
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networks? and differential equatiofsout also machine learning methods such as decision
trees® and Bayesian networks

To reconstruct a GRN, a set of transcriptional response measurements has to be avail-
able. Given this data, one of the above mentioned reconstruction methods may be employed
to untangle the underlying topological structure of the interaction network. One problem
thereby is that it is very hard to validate the performance of the proposed approaches. This
makes it difficult to compare methods and even more to judge, if certain approaches are
helpful at all. In previous publications GRN models have been validated mostly by co-
citation'¢ or on artificial dat&®. Despite these efforts no general validation method has
emerged.

In this work, we present one network that has been investigated thoroughly and where
the interactions are known in many cases. This network is a subset containing 20 genes
involved in the budding yeast cell cycle defined by Ckeal? for which Spellmaret al.!”
and Choet al publicly provide time-series measurement data. This enables us to build a
validation network, for which the interactions can be specified. Additionally, it allows us to
systematically investigate, how prior knowledge on parts of the networks changes the va-
lidity of results obtained by an automatic GRN reconstruction. Thereby, we concentrate on
machine learning methods, such as Bayesian net®onksltiple linear regression, CART
decision treesand SVMS. For the last three we closely follow the framework proposed
by Soinovet al.'é. They used a so-called wrapper apprddch combination with decision
trees to learn the minimal subsets of genes, which best predict the up/down regulation of a
considered gene. By comparing these different approaches we build upon the work of Hus-
meieret al?, who performed a sensitivity and specificity analysis of GRN reconstruction
for Bayesian networks.

2. Materials and Methods
2.1. Data
2.1.1. Budding Yeast Cell Cycle

The biological model used for this research is the budding yeast cell cycle, which has been
thoroughly investigated over many years. Gitaal:* and Spellmaret al.!” contributed

to these investigations by publicly providing a large transcriptional data set. They mea-
sured the progression of the cell cycle with different synchronization techniques. Alto-
gether this results in 73 time point measurements. These measurements were performed on
microarray$, each consisting of 6178 data points, from which we select a subset contain-
ing 20 genes. This is done according to Cleéal2, who did an extensive literature search

to set up a system of differential equations to define the topology of the GRN. In addition
to the interactions provided by the differential equations we searched TRANSFEG-

trez Gené® and theSaccharomyce&enome Database (SG%) for known dependencies
between a pair of genes. The entire network contains 56 interactions and is depicted in
Figure 1. It will serve as our validation network for the studies performed in this paper.
Although this validation network might contain some false interactions or others, which
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were not active at the time the measurements were taken, we can nevertheless rank our
reconstructions with regard to their closeness to this network. That means, the closeness of
an inferred GRN to the validation network should not be understood in an absolute, but in
a relative sense.

2.1.2. Preprocessing and Availability of the Data

The data set is normalized by the averagg ratio, which implicitly describes a non-linear
relationship between the genes. We also performed pre-experiments without normalization
and with normalization through a sigmoidal function, but found the results to be inferior.

The data set as well as the described models are all available from public data sources.
An SBML version of the topological validation network is available on our homepage

2.2. Machine Learning Methods for GRN Reconstruction

Our starting point is a gene-expression malXixe R2°%73, where each row represents

a gene and each column represents a sample taken at a specific time step. That means,
an elementX;; of X indicates the expression level of geha samplej. We consider
Bayesian networks (BN), multiple linear regression (MLR), CART decision trees (CART)
and Support Vector Machines (SVMs) for GRN reconstruction from this data.

2.2.1. Bayesian Networks

For learning the GRN with a BN we discretized the data in the following way: For each
genei we distinguish only the two states "expressed above average" and "expressed below
average". That means we transform each efigyto an entryY;; , which is defined as:

1 X;; > X;, whereX, is the average
Y= expression level of gene
0 otherwise

This is done in accordance to Soinet/al.!®. We then learn the structure of a dynamic BN
using a MCMC search in the structure space as proposed by Husehalér Thereby we

use the MATLAB™ code provided on his homepageAfter training the dynamic BN we
construct a GRN by only considering those dependencies, for which the expected posterior
probability is above average.

2.2.2. Multiple Linear Regression

The GRN reconstruction by means of MLR resembles the framework by SeiraivV¢:
For each genéwe identify two prediction problems:

awww-ra.informatik.uni-tuebingen.de/mitarb/supper/ml/
bhttp:/iwww.bioss.sari.ac.uk/dirk
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e The prediction of the expression of geh@n samplej from all other genes in

samplej.
e The prediction of the expression of geh@n samplej from all other genes in
samplej — 1.

In both cases we search for a minimal combination of genes that allows to predict the
expression of genereliably. This is achieved by considering only those genes, for which
the Pearson correlation of the expression level with gesat least 60 %. These genes are
subsequently selected to train a MLR model that predicts the expression level af d¢fene
the 10-fold cross-validated mean correlation of the model output with the true expression
level of gene is above 60 %, then the MLR model is considered as reliable and the selected
genes are considered as probable regulators for g@néhe GRN reconstruction. The
bottom line is that the MLR reconstruction can be viewed as a correlation network with
directed edges.

2.2.3. Decision Trees

In case of the GRN inference by means of CART we formulate the two prediction tasks
from the last paragraph as classification rather than regression tasks. This allows to follow
the framework by Soinoet al. directly. More specifically, we now have three prediction
problems instead of the two stated above:

o the prediction of the stat¥;; of gene: in samplej from the expression levels of
all other genes in sample

o the prediction of the stat¥;; of gene: in samplej from the expression levels of
all other genes in sample— 1.

o the prediction of thechangeof stateY;; of gene: in samplej from the state
changes of all other genes in sample

The change of statg;; is either "equal”, "regulated up” or "regulated down". That means

in the first two cases we have a binary and in the last one a three-class classification prob-
lem. We use the CART implementation provided in the MATLAB7.0 statistics toolbox

with pruning turned on and the Gini diversity index as node split criterion. This way se-
lecting a good combination of genes, which allow forecasting the state ofigefiably,

is embedded into the learning of the decision tree. Similar to above, we set an accuracy
threshold of 75% beyond which we consider the predictions made by the CART model as
acceptable.

2.2.4. Support Vector Machines

SVMs have attracted a high interest within the bioinformatics community during the last
years due to their good prediction performance for various tasks. They rely on principles
from statistical learning theoty. The idea is to construct an optimal hyperplane between
two classes +1 and -1 such that the margin, i.e. the distance of the hyperplane to the point
closest to it, is maximized. To allow for nonlinear classification, so-called kernel functions
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are employed, which can be thought of as special similarity measures. They implicitly map
the original data into some high dimensional feature space, in which the optimal hyperplane
can be found.

In our case we consider linear kernélsc, x’) = (x,x’) as well as polynomial ker-
nels of degree 2(x,x’) = (x,x’)2, wherex andx’ are the expression levels of all genes
except of gene in samplej. The polynomial kernel implicitly computes all pairwise prod-
ucts between expression levels of two genes. This way not only linear, but also nonlinear
dependencies between gene expressions can be captured.

In addition to a kernel function, a soft margin paramétenas to be fixed. In our case
we chooseC' from the grid2—2...2'* by means of 5-fold cross-validation. To determine
for each gene, which genes are suited best to predict its state, we employ thé. RS
algorithm successively eliminates that gene, which influences the size of the margin least.
The termination of this procedure is determined by an additional 10-fold cross-validation.

Of course, a direct comparison of the different methods for GRN reconstruction intro-
duced is not unproblematic, because each algorithm depends on certain parameter settings
and different data formats are in use. Nevertheless, we think that a comparative study, even
if we should not forget about its limitations, might be useful to gain some insights.

2.3. Network Validation
2.3.1. Statistical Stability of The Solution

For validating all of the above approaches we are interested in those parts of the true net-
work, which are reconstructed insatistically stableway by each single method. That
means, we are interested in those inferred gene regulatory dependencies, which are not
sensitive to the respective training data, but to the underlying biological process. For this
purpose we use 10-fold cross-validation: We randomly split the measurement data into 10
parts, train our model on 9 parts and then test the model on the remaining part. This pro-
cedure is iterated until each part is left out exactly once for testing. At the end we only
use those connections consistently inferred during the 10-fold cross-validation. Hence, the
resulting network can be seen as a consensus model, integrating results from different data
splits.

2.3.2. Validating the Topology

We validate the network topologies obtained from the different consensus models for each
algorithm by calculating the following statistics:

(1) the fraction of correctly identified edges in the validation netwogkgveredcon-
nections)

(2) the fraction of correctly constructed edges in relationship to all constructed edges
(direct connections)

(3) the fraction of constructed edges connecting genes with topological distance 2 in
relationship to all constructed edgeaadirect connections): If in the validation
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network we havets — b — ¢ and we reconstruat — ¢, then the included edge
directly models an indirect regulatory influence.

(4) the same as 3. with distances2 (spuriousconnections).

(5) the graph edit distanc&sED) between the constructed and the correct GRN: The
graph edit distance describes the minimal number of edit operations (edge inser-
tion/edge removal) that transform one graph into another one. In our case we use
the algorithm by Kellyet al.'* to calculate this distance.

The first statistic can be viewed as a sensitivity measure for the GRN reconstruction al-
gorithm, whereas 2. - 4. describe the specificity. Discriminating between different types
of inferred edges here seems benefictial, because it allows a better insight into the quality
of the reconstruction. The graph edit distance, on the other hand, is a combined statistic
capturing both, the number of correctly recovered dependencies and the number of inferred
edges, which do not exist in the validation network. We think that the discrimination be-
tween sensitivity and specificity of the GRN reconstrucion is necessary, because, there is
a trade-off between the fraction of correctly identified relations in the validation network
and the fraction of all inferred connections, which are correct. A maximization of the first
goal could be achieved trivially by connecting every gene in the network, which would be
rather naive. In contrast, a pure maximization of the second goal would lead to an edge
free graph, obviously containing no false connection. A good GRN reconstruction should
therefore find a fair balance between a high number of inferred edges and a low number of
spurious connections.

3. Results
3.1. Comparison of Different Methods

We validated the machine learning methods introduced in the last section as described
above. The results in Table 1 show a relatively low statistical stability for all methods.
The Bayesian network reconstruction (Fig. 1) leads to the lowest number of inferred edges
(only 7) and hence to a very low sensitivity (only 1 connection of the true network was
recovered). At the same time the fraction of indirect and spurious dependencies among
these 7 was relatively high. Also the graph edit distance was the highest among all methods.

MLR, CART, linear and polynomial SVMs all recovered a substantially higher number
of relations of the validation network. Thereby the recovery rate of the validation network
was clearly highest for the linear SVM reconstruction and second highest for the MLR
reconstruction. At the same time the fraction of direct connections in the inferred GRN
was highest for the MLR reconstruction. The fraction of indirect connections was highest
in the CART model. The linear SVM had the highest fraction of spurious edges. However,
at the same time the graph edit distance was lowest for this model and second lowest for
the polynomial SVM model.

All in all we observe that the dynamic BN is outperformed by the other methods.
Among these we favor the linear SVM model, since it has the lowest graph edit distance,
indicating a fair trade-off between the number of recovered edges from the true validation
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Table 1. Validation of the GRN reconstruction with different meth-
ods. All statistics in % (see subsection 2.3 for explanation).

BN MLR  CART lin. SVM  poly. SVM

recov. 1.79 7.14 3.57 10.71 5.36
direct 1429 25.0 18.18 16.67 15.79
indir. 42.86 43.75 54.55 38.89 31.58
spur. 42.86 31.25 27.27 44.44 36.84
GED 35 32 32 30 31

network and spurious or false inferred dependencies.

3.2. Effect of Prior Knowledge

In a second study we concentrated on the linear SVM reconstruction method and investi-
gated the influence of incorporating prior knowledge of certain relations in the GRN. For
this purpose we modified the procedure described in the last section such that for a gene
k, which is known to influence genethe influence on the margin is explicitly setdo.

This way the RFE algorithm is forced to rank such a gene highest. Furthermore, known
relations are drawn in the GRN even if the classification accuracies forigamebelow

the prescribed threshold of 75%.

In Figure 2a we depict the influence of prior knowledge on the sensitivity and speci-
ficity statistics, if 10, 20, ..., 50% randomly selected relations of the validation network are
known. The results are averaged over 10 trials. As one can see the number of recovered
edges increases in a piecewise linear fashion with the increase of the prior knowledge. The
increase from no prior knowledge to 10% known edges is higher than e.g. from 10% to
20%. While at the beginning we have a gain of almost 15%, thereafter the gain decreases
to around 10% only and is hence at the same level as the number of edges additionally pro-
vided by prior knowledge. The fraction of direct edges increases parallel to the fraction of
recovered edges. The fraction of indirect and spurious connections decreases in a roughly
linear fashion with the fraction of known relations. While at the beginning the largest frac-
tion of all constructed edges is spurious, with 20% knowledge it is roughly at same level
and with 30% below the fraction of direct relations.

As expected, the total number of relations in the inferred GRN, which also includes
the connections drawn by prior knowledge, increases with the fraction of known edges
(Fig. 2b). In contrast, the number of newly inferred edges decreases with the increase of
prior knowledge, which seems surprising at the first glance. However, this phenomenon
might be due to a lower number of missing edges with an increasing number of already
known ones. In the graphs from Figure 2a we see the same piecewise linear behavior as
in Figure 2b. Again, the increase from 0 to 10% prior knowledge has a higher impact than
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Figure 1. Literature network and reconstructions by different methods.

(a) The validation network: An arrow — b indicates (b) The GRN reconstructed by the Bayesian network.
thatb is regulated by.. Edges with no arrows indicate aGray nodes indicate self-regulation.
mutual influencer — b andb — a.

(e) The GRN reconstructed by the linear SVM method(f) The GRN reconstructed by the polynomial SVM
method.
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e.g. from 20 to 30%.

Figure 2. Effect of incorporating prior knowledge on randomly selected edges

551 —&— total

— % —infered edges

—6— direct
~O - indirect
50 * - spurious
— & — recovered

*,
# constructed edges
@
8
[
i
|
|
I
|
|
'

S

NN
]
/
I
I

L e

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 3 40 45 50
% known edges 9% known edges

(a) Effect of incorporating prior knowledge on randomly(b) Effect of incorporating prior knowledge on randomly
selected edges: sensitivity and specificity statistics. Aveselected edges: total number and number of newly in-
age values over 10 trials{std. dev.). ferred edges. Average values over 10 trigtsstd. dev.).

4. Conclusion

In this paper we systematically compared different machine learning methods for GRN
reconstruction. We considered Bayesian networks, multiple linear regression, CART deci-
sion trees, linear and nonlinear SVMs. We developed a framework for evaluating the infer-
ence methods with regard to their statistical stability by using 10-fold cross-validation. A
well investigated biological data set from the literature served as our basis. This enabled
us construct a validation network against which we could compare our results by means
of sensitivity and specificity analysis. We found linear SVMs to produce slightly superior
reconstructions compared to the other methods, especially to dynamic Bayesian networks.
Thereby the inference scheme closely followed the method proposed by Saiabif

for decision trees. However, it has to be remarked that our results depend on the specific
parameter and data format settings for the individual algorithms.

We additionally investigated the influence of prior knowledge on the quality of the
learned network topology. We found that adding known connections has a relatively large
positive impact, when no prior knowledge existed before, whereas if further increasing the
prior knowledge the gain becomes smaller.

We think that the main benefit of this work lies in a first trial to compare different
machine learning methods for GRN reconstruction in a systematic manner, which to our
best knowledge has rarely been done before. In our future work we will extend our research
on different data sets from the one used here and evaluate the results in a similar manner.
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