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Abstract

Volumetric data is one of the most frequently generated type of data in modern med-
ical imaging. Technical advances in the respective scanning technologies also increase
the amount of data that is generated by a typical scanner. Since 1971 with the introduc-
tion of the first CT scanner, the space requirements for representing data have increased
rapidly, in essence at an exponential rate.

In this paper, we examine various compression methods for their applicability for
volume data, focusing on the reduced space requirements of the approaches. We ap-
ply these methods to a wide range of 8bit and 10-12bit volume datasets, thus exposing
strengths and weaknesses of the compression methods. In summary, significant dif-
ferences in compression performances clearly indicate which compression techniques
should be used.
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1 Introduction
Since the introduction of the first Computed Tomography (CT) in 1971, volumetric datasets
have their common place in medical imaging and other applications fields (eg., non-
destructive material testing). Ever since, many other volume scanners have been introduced,
such as Magnetic Resonance Imaging (MRI), 3D X-Ray (ie., rotational angiography), 3D
ultrasound, and many more.
While volume datasets in their early years were quite small by today’s standards – first
commercial CT scanners produced volumetric resolutions of 643 voxels –, they always
posed a challenge at the time for processing, storage and data transfer. Datasets in current
clinical practice can consist of 512×512×1200 voxels1 and are expected to increase more
than sixteen-times to 20483 in the next few years. Overall, medical imaging (and similar
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application fields) faces an exponential growth of dataset sizes, which generates increasing
difficulties for the installed base of medical processing workstations.
An akin situation can be observed in scientific computing, where volumetric datasets from
simulations grow at a similar rate.
In order to address the huge size requirements, several approaches have been examined.
Body-centered grids provide an approximately 30% more compact voxel representation
than cartesian grids [25]. Out-of-core methods provide a special main memory manage-
ment, where only currently examined data partitions are held in main memory [4]. Compres-
sion methods reduce redundancy in volume data to provide a significantly more compact
representation [11]. Last but not least, hierarchical methods, which can be combined with
most other methods, provide processing means on different levels of detail, thus trading
space requirements (and also computational costs) with data representation quality [10, 32].
In this paper, we focus on lossless data compression methods2 that represent volume
datasets at their full data fidelity, without reducing quality. While the presented compres-
sion methods are frequently combined, eg., hierarchical techniques and with out-of-core
techniques, we concentrate on straight-forward compression methods of volume datasets
with standard voxel addressing.
In the following, we present related work in the context of compression for volumetric
datasets (Section 2) and provide a rather brief introduction in the examined compression
methods in Section 3, where we also briefly discuss the usage of the presented approaches
in our study. In Section 4, we introduce the examined datasets and present our compression
results. Finally, we conclude our paper in Section 5.

2 Related Work
Several approaches in computer graphics and visualization employ compression techniques
for a more efficient data representation. In most cases, it is used for geometry compression
[23, 24] and the compression of volumetric datasets. In this paper, we focus on the latter
application of compression.
Probably the first use of compression techniques for volumetric datasets employed the Run-
Length-Encoding scheme (RLE), where sequences of voxels with identical intensity values
were combined into one entry, which contained the intensity value and the length of the
sequence. Although this scheme has been used before, first uses for volume datasets are ref-
erenced in Stony Brook’s SLC file format for VolVis [2] and in Lacroute’s volren package
[15]. Recently, Schneider et al. have presented a technique for hierarchical quantization,
where the levels of a multiresolution representation are represented through vector quanti-
zation, where the input vectors are encoded by indices from a codebook (dictionary) [21].
Another compression approach was presented by Fowler and Yagel, which is based on dif-
ferential pulse-code modulation and Huffman encoding [8]. Yeo et al. presented a volume
rendering approach that handles scalar volume datasets that are compressed by the discrete
cosine transformation (DCT) [30]. The DCT scheme is also used in the JPEG image stan-

2Several of the discussed methods allow also for lossy compression. However, we used only a lossless param-
eter setting.

2



dard, which in turn is used as compression scheme in the DICOM standard for medical
imaging [6]. Cochran et al. extended fractal image compression to provide a more com-
pact representation of volumetric datasets [5, 20]. Note that both DCT and fractal-based
approaches are not examined in this paper.
Many approaches use wavelets as a basis for a more compact representation for volumetric
data, an idea which was introduced by Muraki [17]. A similar scheme for time sequences
(animated) of volume datasets was presented by Westermann [28]. Ihm and Park presented
another Wavelet-based compression scheme for volumetric data in 1999 [13]. In 2001,
Guthe et al. used the Wavelet transformation combined with the Huffman encoding as
access function for an encoding and decoding of animated volume datasets in order to
provide high rendering performance [11]. Very recently, this approach has been extended
into a hardware implementation for efficient memory management in a FPGA-based archi-
tecture [29] and on a GPU-based system [7]. However, we focus here only on lossless data
compression for fully maintained data accuracy.
Other approaches for lossless image compression have been examined by Sahni et al. [19,
26].

3 Volumetric Compression Methods
In this section, we examine the compression methods that are discussed in this paper. Since
we examine only compression methods for scalar volume datasets, we use the term voxel
value interchangeably with data element of an alphabet (or dataset).

Huffman Coding and Arithmetic Encoding
The general idea of an entropy encoder is to represent frequent voxel values with a short
code, and infrequent voxel values with a longer code. Huffman encoding [12] generates
a binary tree, where one branch represents the current voxel value, and the other branch
represents the remaining voxels values. Therefore, this binary tree actually re-samples a
list of voxel values, sorted according to their appearance probability. For each branch a ’0’
or ’1’ code is assigned such that all voxel values can be represented by a prefix free binary
number. Frequent voxel values are coded by a short code and infrequent voxel values are
coded with longer codes. Some variations of Huffman encoding generate a balanced tree to
optimize the average code length.
Arithmetic encoding functions [16] follow a similar principle, where the voxel values are
encoded into a half-open interval [0; 1) according to their appearance probability. Voxel val-
ues with a high probability occupy a large interval, and voxel values with a low probability
occupy a short interval, thus requiring more bits for its representation. Usually, arithmetic
encoding is considered to generate near optimal entropy encoding (in contrast to Huffman
encoding), but usually at higher computational costs.
In the context of volumetric image data, both approaches performed somewhat better if
they compressed slice-by-slice instead of the whole data volume. Furthermore, they usually
provided a better compression if the image data was provided as sequence of voxel value
differences to the previous voxels (difference buffer).
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Run Length Encoding
One of the simplest and oldest compression schemes is Run-Length-Encoding (RLE). A
data stream is compressed such that a run of equal voxel values is represented the voxel
value and a number how often it appears in one continuous run. Since codes in the encoded
data stream have a limited bit size, a sequence of identical voxel value longer than a max-
imum size is split into several RLE packages. Note that the original data from volumetric
scanners does contain noise, therefore these original data does not contain long runs of
identical voxel values.
RLE benefited most if the whole volume was compressed, instead of individual slices. This
is in particular not surprising, since this enables RLE to also compress the right and left
background voxels of neighboring slices with the same intensity. In contrast to most other
cases, RLE did not benefit from a difference buffer.

Variable Bit Length Encoding
Not all voxel values require the same number of bits. Low intensity 8bit voxels (0..15) for
example require a significantly smaller number of bits than high intensity voxel values (128-
255) [19, 26]. Consequently, we can save bits per voxels for low intensity voxel values,
but need to invest bits to represent the code size for the voxels. Instead of storing that
information for every voxel, we generate a run-length-encoded representation of segments
of the same bit length. This is a reasonable assumption for scanned volumetric data, since
most of background voxels will have low intensity noise voxel values that require a smaller
number of bits than the actual voxels of the scanned object.
In total, we need three data buffers that contain the segment lengths (segments of more than
28 elements are split in two segments), the number of bits required for the voxel values of
the segments, and finally the actual voxel value stream, encoded in variable bit length. In
order to further reduce the space requirements, each of the data buffers is encoded with an
entropy encoder [19].
VBL allowed the best compression rates if the image data was provided through a differ-
ence buffer and in some cases if the whole data volume was compressed.

Dictionary-based Encoding
Dictionary-based encoding schemes are among the most popular schemes in data compres-
sion, where the encoded data is represented by codes that represent sequences that occur
in the dataset. In our investigation, we employed the LZ77 compression approach [31], its
variation, the LZW approach [27], and the commercially available ZIP package.
The older LZ77 scheme provides two different-sized buffers; the look-ahead-buffer (LA)
and the much larger search buffer (SB). The LA represents the current window into the char-
acter stream that will be encoded, while the SB represents the stream of already processed
characters. The LZ77 scheme traces appearances of character streams of the LA window in
the SB, from the end to the start in the SB. This reference is then stored as a token instead
of the traced voxel sequence.
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While the alphabet of codes in the LZ77 scheme is generated in the process of reading the
character stream, an initial alphabet is already created with the LZW approach [27]. If for
example an extended alphabet of 12 bits is used, the first 256 positions are filled with the
ASCII code, and the remaining 3840 positions are available for longer codes. A character
sequence (initially of one character) is searched in the already filled code book. If it is
found, the next character is appended, and the search is continued. If an appropriate code
is not found, the code of the previous found code (with one character less) is written to the
output stream, and the current sequence is stored as code into the next available dictionary
position. While the standard implementation of the LZW algorithms uses a hash table (4096
entries), other variations use different data structures, like a ring buffer.
The advantage of the LZ77 and LZW approaches lies in the implicitly stored dictionaries,
that do not require space for an explicitly stored one. Typical examples for LZ77 compres-
sion schemes are gzip (combined with Huffman coding) [9] and ZIP. Unix’s compress uses
LZW.
All dictionary-based compression algorithms clearly benefited, if the dataset was com-
pressed as a whole volume and if a difference buffer was used for compression.

Burrows-Wheeler Transformation-based Algorithms
The Burrows-Wheeler transformation (BWT) represents the basis for a whole family of
compression algorithms. The BWT itself is a (reversible) permutation scheme that (re-)
sorts a block of data according to the context [3, 18, 1], eg., they are sorting after the
occurrence of characters. After this re-sorting, the data blocks are organized in a more
compression-friendly type. For the popular BZIP2 compression algorithm, the BWT is
combined with a Huffman coding, which encodes the permuted input block [22].
Similar to the previous approaches, BZIP2’s compression rate increased if the whole vol-
ume was compressed instead of single image slices. In this case, it also benefited from a
difference buffer.

Wavelet-Transformation
Wavelet transformations are the basis for many the state-of-the-art compression algorithms,
including the JPEG-2000 standard [14]. Essentially, a coarse representation of a data block
(scaling functions) is successively refined by various scaled and translated detail functions,
the wavelets. In essence, this scheme splits the data in a low-pass part (scaling function)
and high-pass details (wavelets). For volume datasets, this low-pass part represents a lower
resolution dataset.
A major criterion for the compression quality is the type of wavelet base-functions that
are used. Typical examples are the Haar-wavelets (usually only used for description of the
principle) or B-Spline functions. In our investigation, we use Haar-wavelets, C6/2 wavelets,
and quadratic and cubic B-splines as base-functions for the different datasets (always the
one with the best compression performance), while the JPEG-2000 standard uses D5/3
base-functions.
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Typically, wavelet-based compression schemes can exploit three-dimensional structures
and thus provide a better compression rate if the whole volume dataset is compressed.
While this assumption was correct for most datasets, it turned out to be not true for the
sparse vessel dataset, where a slice-by-slice compression allowed better compression rates.
In case of the used JPEG-2000 library [14], only an image-based implementation was pro-
vided, hence only this mode is used.

Dataset/ Resolution Modality
Bits/voxel
Skull / 8 256x256x256 3D Xray
Engine / 8 256x256x128 CT
Teapot / 8 256x256x178 CT
Vessel / 8 256x256x256 3D Xray
Head / 10 512x512x55 MRI
Thorax / 12 512x512x169 CT
Colon/prone / 12 512x512x463 CT
Head Aneuryrism / 12 512x512x512 3D Xray

Table 1: Examined datasets - four 8bits-per-voxel datasets, one 10bits-per-voxel, and three
12bits-per-voxel dataset.

4 Results
In our examination, we employ the compression approaches described in the previous sec-
tion (Section 3) to encode a variety of volume datasets, which are described in Table 1.
These datasets represent a wide diversity of different types of dataset, representing different
scanning modalities (3D Xray, CT, MRI), different bit depths (8, 10, 12 Bits/voxel), differ-
ent sizes (ranging from the rather small Engine dataset to rather large Head Aneuyrism
dataset). While most of the datasets are of medical origin, two (Engine, Teapot) and
from industrial applications or were modeled. Note that the Vessel dataset is already pre-
classifed to remove background noise. This results in an extra sparse dataset, while the
Head Aneuyrism still provides that background noise which must be represented by each
lossless compression approach.
We examined various compression schemes, each with several parameters to optimize. In
fact, the number of individual experiments for each dataset could be as large 560 depending
on data size and bit depth. Since we don’t have the space to elaborate on each in detail,
we only present results with parameter settings (see Section 3) that generated the highest
compression rates (Eq. 1) shown in Table 2, where the best method is highlighted in bold
faces. The results of a subset of tested methods are presented in Figures 1- 3 and discussed
in the following paragraphs.

compressionRate =
OriginalDataSize

CompressedDataSize
(1)
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Dataset Entropy Enc. RLE VBL Dictionary-based BWT JPEG WAV
Arith/Huff LZ77/LZW/ZIP BZ2 (C6/2)

Skull 1.90/1.88 1.07 1.57 1.66/1.72/1.76 1.96 2.15 2.08
Engine 2.88/2.70 1.54 2.43 2.67/2.87/2.86 3.39 3.75 4.46
Teapot 6.68/4.85 5.15 6.45 8.48/8.35/8.75 14.58 9.96 15.94
Vessel 40.61/7.14 30.95 28.19 51.24/56.04/52.27 74.77 19.64 19.74
Head 2.70/n.a. 1.96 2.10 n.a./2.40/2.65 2.83 3.60 2.68
Thorax 2.44/n.a. 1.90 2.20 n.a./1.90/2.53 2.94 3.77 3.53
Colon
/prone 2.32/n.a. 2.10 2.23 n.a./2.26/2.35 2.56 3.24 2.50
Head
Aneur’ 2.68/n.a. 2.35 2.84 n.a./2.85/3.05 4.49 10.53 5.53

Table 2: Best compression rates for the various compression schemes and datasets. The best
performing algorithm is marked in bold faces. BWT - Burrows-Wheeler transformation,
JPEG - JPEG-2000, Arith - Arithmetic Encoding, Huff - Huffman Encoding, RLE - Run-
Length-Encoding, VBL - Variable Bit Length, LZ77 - Lempel-Ziv 1977, LZW - Lempel-
Ziv-Welch, BZ2 - BZIP2, WAV - Wavelets.

Specifically, we looked into arithmetic and Huffman-coding, run-length-encoding (RLE),
variable bit length encoding (VBL), LZ77, LZW, ZIP, BZIP2, (lossless) JPEG-2000, and
the wavelet transformation. For practical reasons and since Huffman-encoding was out-
performed by arithmetic encoding of 8bits dataset, the 10 and 12 bits datasets were not
compressed with Huffman-encoding. Furthermore, the compression performance of LZ77
is already reflected by ZIP, which uses LZ77. Therefore, we omitted the results for Huffman

(a) (b)

Figure 1: Graph of compression rates for the skull (a) and engine (b) datasets. Huffman and
LZ77 results are omitted, due to page limitations.
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(a) (b)

Figure 2: Graph of compression rates for the teapot (a) and sparse vessel (b) dataset. Huff-
man and LZ77 results are omitted, due to page limitations.

and LZ77 in the graphs (Fig. 1- 3) for similar reasons (and due to page size limitations).
Overall, we found very little influence of the data origin (modality) on the compression
method. More important is the characteristic of the dataset that is not necessarily deter-
mined by its origin. A typical example are 3D Xray datasets, which can be very sparse if
pre-classified (Vessel), or rather dense if it includes the background noise (Skull and Head
Aneuyrism).
We observed that for the whole dataset variety, BZIP2 performe well and it always achieved
one of the three highest compression rates. Only for dense datasets (Figs. 1, 2a, 3) it was
exceeded by JPEG-2000 and the wavelet transformation. However, these two approaches

(a) (b)

Figure 3: Graph of compression rates for the head (a) and thorax (b) dataset. Huffman and
LZ77 results are omitted, due to page limitations.
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provided a very poor performance for sparse datasets, like the 3D Xray angiography dataset
“vessel” (Fig. 2b).

(a) (b)

Figure 4: Graph of compression rates for the colon/prone (a) and head aneuyrism (b) dataset.
Huffman and LZ77 results are omitted, due to page limitations.

In contrast, JPEG-2000 provided the best results for 10 and 12bits datasets (Fig. 3). Please
note that all wavelet schemes (including lossless JPEG-2000) achieved the best perfor-
mance with different base-functions. On the skull, engine, and teapot datasets, quadratic
B-spline wavelets achieved the best results, while the thorax dataset has the best result with
cubic B-spline wavelets. The head dataset was compressed best with C6/2 wavelets. The
above mentioned poor performance for the vessel dataset was achieved with Haar-wavelets,
while all other used wavelet functions performed even worse.
Entropy encoding schemes like arithmetic and Huffman-coding also performed poorly on
rather sparse datasets (teapot and vessel, Fig. 2), and only reached average compression
rates for the dense datasets. However, for 10 and 12bits datasets, it reached a compression
performance close to BZIP2 (Fig. 3).
RLE and VBL always provided only a poor performance for all datasets. In particular RLE,
however, is a simple and fast algorithm, which is among the oldest compression schemes.
Dictionary-based approaches like LZ77, LZW, and ZIP provided only an average compres-
sion rate for all datasets. In terms of encoding and decoding speed, dictionary-based ap-
proaches have a clear advantage to most other compression schemes (ZIP in Fig. 5). Only
RLE and in many cases BZIP2 could reach a similar decoding speed. In particular ZIP
provided a very high speed, while the significantly lower speed of LZ77 (not documented
in Fig. 5) and LZW is due to the non-optimized implementation. Wavelet-based coding
approaches (Wavelets and JPEG-2000) are together with the Huffman implementation (en-
coding only) among the slowest encoding and decoding schemes. Compared to BZIP2 –
which achieves a comparable compression rate in most cases – they are about an order of
magnitude slower.
In summary, the important criterion to select a compression approach is the characteristic
of the dataset. A sparse dataset may be compressed more efficiently with BZIP2 than with
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(a) (b)

Figure 5: Log-scale graph of average encoding (a) and decoding (b) time. LZ77 results are
omitted.

wavelet-based approaches, as we could see for the Vessel dataset. However, the somewhat
less sparse Teapot dataset showed reasonable results for BZIP2 and Wavelets (but not for
JPEG-2000). For dense datasets, wavelet-based approaches, in particular JPEG-2000, per-
formed very well.
In Figures 6 and 7, we examine the local compression rate at voxel level to visualize areas
of high and low compression rate for the vessel and the thorax datasets. We mapped the
compression rate to a clamped hue range (see Fig. 6d for legends of the colormap) to
visualize areas of high and low compression rate for the vessel and the thorax datasets.
To enable a better discrimination, the hue range did not include magenta values. In order
to allow the inspection of the compression rate of interior voxels in the volume rendered
representation of the vessel dataset (upper two rows), we assigned high transparency values
to high compression rates, and high opacities to low compression rates. This results in a
highly transparent representation of highly compressible boundary areas. Note that a voxel-
oriented representation of the compression rate is not possible for all compression schemes.
Hence. and due to page size restrictions, we show only the results for arithmetic encoding
(ARITH), run length encoding (RLE), variable bit length encoding (VBL), and Lempel-
Ziv-Welch (LZW).

5 Conclusions
In this paper, we presented results on the suitability of various compression algorithms for
volumetric datasets. As we showed in Section 4, the choice of the optimal compression
algorithms depends on the type of datasets. For dense datasets, wavelet-based schemes pro-
vide an excellent compression rate, while JPEG-2000 is in particular suited for datasets
with a higher voxel accuracy (10bits and more). In contrast, the compression performance
for sparse datasets exposed a clear weakness of wavelet-based compression, where its per-
formance was more than three times worse than for the BZIP2 performance. Furthermore,
wavelet-based methods have significant computational costs for the encoding and decoding.
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If nothing is known on the nature and structure of the datasets, BZIP2 is the clear winner
of all examined compression schemes. Its compression performance was always among
the top three for all datasets (surpassed only by wavelet-transformation and JPEG-2000 in
some cases). Furthermore, BZIP2 is also a fast compression method, in particular for the
decoding of the data stream. It was only slower than ZIP and RLE decoding.
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