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Abstract— This paper focuses on the dribbling control prob-
lem of an omnidirectional mobile robot. Because the movement ¥,
of the dribbled object must be considered, dribbling control
is more challenging than normal mobile robot motion control. omnidirectional
A new feedback control algorithm, which steers a reference
point to follow the desired movement and keeps the ball near
to this point simultaneously, is proposed. To dribble a rolling z,
ball along a given path, the robot should provide the ball with
appropriate force by consecutive pushing operations when they
travel in an environment with obstacles. Based on the analysis
of the forces acting on the ball with respect to the mobile
robot coordinate system, a constraint for robot movement in
the dribbling process is also introduced. The simulation and
real-world experiments address the performance of this control
algorithm.

wheel

Fig. 1. Kinematics diagram of the base of an omnidirectionabto
I. INTRODUCTION

Dribbling control is a challenging task in the RoboCup
Middle Size domain. As the rules only allow one third of thefrom each other. Each wheel is driven by a DC motor and
ball to be covered by the dribbler, the dribbling behavics hahas a same distande, to the robot’s center of mask.
high requirements to the robot motion control. Some teams Besides the fixed world coordinate systgi,,,Y,], a
fulfill the dribbling task by planning robot moving pathsmobile robot fixed frame[X,,,Y,,] is defined, which is
[1] or designing the behavior-based approach [2], whergarallel to the floor and whose origin locatesfatd denotes
the mobile robot is controlled towards the desired posturethe robot orientation, which is the direction angle of the
The postures are generated by a planner based on the robeis X,,, in the world coordinate systena: and ¢ denote
dynamic or kinematic model. However, how the robot carthe direction of the robot translation velocity; observed
travels without losing the ball is not considered. in the world and robot coordinate system, respectively. The

Considering the difficulty of determining the ball's mo- kinematic model with respect to the robot coordinate system
tion when it is in continuous contacts with a robot, manys given by :
RoboCup teams use neural networks ([3], [4]) and reinforce-

ment learning methods ([5], [6], [7]) to learn some basic V3/3 —V3/3 0 _
skills of the robot, such as kicking and dribbling. Although V= | 1/3 1/3 -2/3 14, @)
suitable simulation systems can support the learning befor 1/(Lw) 1/(3Lw) 1/(3Lw)

the experiments with a real robot, the skill learning needs o . .
P g wherev = [T 7 w]” is the vector of robot velocities

long time and high computational cost. . .
d g D pybserved in the robot coordinate systeitf; andyy; are the

In this paper we address the dribbling control proble . U . .
for an omnidirectional robot. With the analysis of the forcer.opOt translation velocitiesy is the robot rotation velocity.

Lt 0 . . T .‘ s
exerted on the ball inspired by [8], we obtain a constrainfl > the vector of wheel velocitief, gz ¢;]", and;(i =

: T . ,2,3) is the i-th wheel velocity, which is equal to the
of robot movement in the dribbling process for keeping wheel’'s radius multiplied by the wheel's angular velocity.

rolling ball. Under this constraint, the task of dribbling a Introducing th ¢ . i f h b
ball to follow a given path is completed by approaching a ntroducing the transformation matrix from the robot co-

reference point to the given path and steering the ball t%rdlnate system to the world coordinate system as
move around this point simultaneously. wp { cosf —sinf }
m T b

1. ROBOT KINEMATIC MODEL sinf  cosf

The mobile robot used in this dribbling task is an omnidi-  the kinematic model with respect to the world coordinate
rectional robot, whose base is shown in Fig. 1. It has threg/stem is deduced as:
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wherex = [ix 7 6]7 is the robot velocity vector with
respect to the world coordinate systeir; andyr are the
robot translation velocitied] is the robot rotation velocity§
refers to the wheel orientation in the robot coordinateesyst
and is equal to 30 degrees.

It is important to notice that the transformation matrix
in model 1 is full rank, which denotes that the translation
and rotation of the robot are decoupled, and guarantees the
separate control of these two movements.

For the high level control laws without considering the
wheel velocities, the kinematic model

Fig. 2. Ball's relative position in the robot coordinate t&ya. Three spongy
blocks are pasted on the robot’s front to increase the dricti

x=Gv (4)

is used in our control method, where the transformation
matrix G is equal to[* R,,, 0 ; 0 1]. Because&s is full rank,

the characteristics of decoupled movement is also kept. it results from the non-inertial observing coordinate eyst

but not from interactions with other bodies.
I1l. DRIBBLING ANALYSIS If the ball is moving along a curve with the clockwise

S e . turning shown in Fig. 2, it is only possible for the robot to
Dribbling is one of the most difficult skills of RoboCup keep the ball if the forc& has nonpositive projection on

robots. D_rlbbllng refers to the maneuvering O.f a ball thrknu_gﬂ]e line BL which is parallel to the left border of the robot’s
consecutive and short contacts with a robot in the dynamlcfa

obstacles environment. By dribbling, a robot can travelrom' That means that
through the opponents with the ball and shoot a goal. To m
dribble a ball from an initial position to the goal, the robot (FB)B_L’ = (Fp+ FM)B_L’ <0. (8)

needs to keep the ball without losing it. Therefore, it is As the ball follows a curve, the external forég; can

nek;:etssag/ tLO z;l)nﬁly\z/\?hthethrelitl\{le . movemdent dbetween tBS projected on the tangent and normal directions of the
robot an e ball. en the ball IS considered as a Magg o The tangent paR; determines the magnitude of the
point B locating at the sphere center, the relation betweeélan,s velocity which can be calculated & — mpa, with
ball’'s accelerations observed in the world coordinateesyst the acceleration parametey. The value ofa, is hard to

and the robot coordinate system is described in terms g termine, because it refers to the friction between thk bal

vectors as the robot and the floor. When the ball moves with constant
ap=ap+af+2wx vl +oxrl+wx (wxry), (5) Vvelocity,a is equal to zero. The normal pdff, contributes
to the ball's moving direction, which is pointing to the cent
whereay denotes the robot translation acceleratian; of curvature and has the magnituBg = m Bcvf, wherec
and aly are the ball's accelerations observed in the worlgs the curvature of the curve ang; is the ball’'s translation
and robot coordinate systems; w are the robot rotational velocity.
velocity and acceleration respectivelyy; andry; are the  The inertial force stems from the acceleration of the
ball's velocity and position observed in the robot coortina reference coordinate system, which is the robot coordinate
system. system here. In (5), the ter2w x v} is called Coriolis’
Multiplying (5) by the massnp of the ball, we get the acceleration; the terni x r7 is due to the robot rotation
extended Newton's second law in the robot coordinate systesgceleration; the termv x (w x r'}) is called centripetal
as acceleration, which always points toward the axis of robot
Fg =Fp+F;,, =mpa}, (6) rotation.

. Inequation (8) implies the constraint of robot movement
whereF 5 = mpagp. F is the vector sum of all the external ;o dribbling process, under which the robot can move
§n the obstacles environment along curved paths avoiding
efosing the ball. Above analysis assumes the robot rotates in
clockwise direction, but similar results can be obtained in
the non-clockwise case.

system.F 5 is composed of the force from the robot and th
friction between the ball and the flodr is the vector sum
of the forces referring to the robot coordinate systédy,

is the inertial force calculated as

Fin = —mpan —mp(2w X v +@ X P2 +w X (w X ). IV. DRIBBLING CONTROL

@) In the ideal situation described in Fig. 2, the ball’s center
Equation (6) implies that not only the external forces buimatches pointZ, which is always located at the front of
also the inertial force exerted on the ball when it is obsgrvethe robot with a distance. along the X,, axis. Since
in the robot coordinate system. Although the inertial forceve hope the ball is always in front of the robot, we can
manifests itself as a real force, it is not the real one whilsolve the dribbling problem by controlling poit to move



along the desired path and keeping the ball near to poir | Linearized system
E simultaneously, with the consideration of the decouplec X, u: Xm
translation and rotation of the omnidirectional robot. fiet —#Q Controllerk  (—{ Compensator G [~ System G [ Integral

next sections, we present the path following control of poin r
E based on its linearized kinematic equations and the bau
keeping method with a PD controller. Fig. 4. Closed-loop control system

A. Linearizing Kinematic Model

As point £ is taken as a fixed point (L,0) with respect tog  paih Following Control of PointZ
the robot coordinate system, its position can be transfdrme

to the world coordinate system by The path following problem is illustrated in Fig. ¥
denotes the given path. Poi@t is the orthogonal projection
rp =axr+ Lcost (9) of E on the pathP. x; andx,, are the tangent and normal

unit vectors atQ, respectively. The path coordinate system
z:Qx, moves along the pattP. 6p is the path tangent
where zr and yr denote the robot position in the world direction at pointQ). 6 denotesE’s moving direction. The
coordinate system;z andyyz denote the point E's position angular error is defined a5 = 0z — 0p .
in the world coordinate system. Based on the above definitions, the path following problem
By differentiating equations (9) and (10) with respect tds to find proper control values df’s linear velocityvy and
time and introducing (4), we get the velocities of paliitas  angular velocitydr such that the deviation distaneg and
angular erro; tend to zero.

ye = Yyr + Lsind, (10)

Tp =¥ cosf — Y sinf — Lwsin 0 (11) To solve this path following problem, a Lyapunov candi-
Yy = @ sinf + y cos @ + Lw cos 6, (12) date function

_ 1 2 1 n2
whereir and g are with respect to the world coordinate V= §de" + §K99E (14)

system.
Combining equations (11) and (12) with the robot rotatio
velocity, the kinematic model of point E is deduced as,

can be considered, whefé; and Ky are positive constants.
Yhe time derivation o results in

V = Kqtpin + KoOgplp. (15)
X =GV, (13)
A simple control law [9] is utilized here. It is only based
where . . on the deviation of poin&' to the given path, and controls
X=[ir yr 0], point £ moving along an exponential curve to converge to
cosf® —sinf —Lsind the axisz;. The exponential curve is expressed as
G=| sinf cosf  Lcosf |,
0 0 1 Ty = Tpgexp(—kaxt), (16)
X = [0 7 W] wherez,,, is the deviation and the positive constant k deter-

mines the convergence speed of the deviation. Differémgjat

Although this system is nonlinear because of the trigonq46) with respect tar,;, we get the tangent direction of the
metric functions of anglé, it can be linearized by inducing exponential curve as
a simple compensataf’ = G~!, because the matrig' is
full rank. The linearized system = u is shown in Fig. 3 Op = arctan(dl'n) = arctan(—kz,). (17)
and has a new input vector= [u; uy us]”. Tt ’

This linear system is completely decoupled and allows the
controlling of pointE to follow any reference path artito
track any desired orientation in a separate way.

When a controllerK is designed based on this simple
linear system, the controller for the nonlinear system is
generated as’' K. The overall control loop, which consists
of the nonlinear system, the compensator and the controller
is shown in Fig. 4.

m
—»| Compensator C |—#»| System G [—

Fig. 3. Linearized system by the componént Fig. 5. lllustration of the path following problem



Based on the centripetal acceleration}, we calculate
the angle deviation add = kecvg, whereky is the positive
parameter. Then the ideal robot orientatihnis given by

04 =0p + A0, (23)

A PD controller can be used to control the robot orienta-
tion to converge to the ideal one,

w=ky(0q—0) + ka(6a — 6), (24)

whered, and are the corresponding differential values of
04 andd; k, andky are the proportional and derivative gains,
Fig. 6. Forces analysis for ball following a curve respectively.
Although a suitable dribbler mechanics can play a great
role in providing friction for the robot keeping the balleth
Therefore, for a non-zero constant velocity, the velocity robot movement should satisfy the condition given by (8).

of point E in the coordinate system,Ox,, results in The required robot rotation velocity must be constrained
) - based on the required robot translation velocity coming
&y = vgsinbp, (18)  from the path following control of pointZ. Since point

(19) E is considered as a fix point on the robot, the movement
_ relationship between the robot and pofiitin vector notion
Substituting the time derivative &fg into (15), we get is as follows:

Ty = vgcoslg.

) —i, VE=VR+twX1hy, (25)
V = Kywnin + kKg arctan(—kl) “’”k 5 <0, (20) L
becausex,i, = z,Vy sin(arctan(—km.n)) < 0 and

&, arctan(kz,) < 0. This solution ofV guarantees the wherevg, vy are the translation accelerations of poifit

global stability of the equilibrium at:, — 0,05 — 0 and the robot with respect to the world coordinate system;

which means that this control law solves the path followin§7£ 'S the position vectq;from’% to £ with resﬁgl)-ec‘:t to the
problem. obot coor(jlnate systenty; is the derivative of’}; w is the
Transforming the velocity of pointF into the world robot rotation acceleration.

coordinate system, we get the control values of the linear If pomt Lis contrqlled with constant transiation velgcny
moving along the given path, the tangent acceleratipn

system as . . S

4 ur = vgcos(0p) 1) is equal to zero and the centripetal acceleration-vs,.
! d ED Substituting (26) into (7) and (8), the constraint of dribgl
uz = vgsin(fg), (22) becomes

wheredg = 0 + 0p. at+cv2]3—\'/E+cb><r’£+w><fE”—

The input of this controller is the relative distance betwee
point £ and the given path, which normally can be directly
obtained by the sensors on the robot. Moreover, the demiatio \y/hen the ball is near to poirdt, 7! approximates to zero
converges to zero smoothly with the speed controlled by pasng im approximates ta”?. Then the above constraint can
rameterk, which can be chosen according to the performangse reduced to
requirement.

Qwx Vv +wXxrp+wx (wxry)) <0. (27)

2 - m m

C. Ball Keeping Control Vb~ Ve~ Qv Fwx (wxr)) <0 (28)

As only two degrees of freedom are used to control point V. EXPERIMENTS
E to follow the given path, there is one remaining degree The control algorithm discussed above has been tested in
of freedom for the robot orientation which can be used foboth simulation and real-world environments, where thé bal
the ball keeping control. When a given pathperforms a is required to follow a sinusoidal pathh = 1.3sinx with
turning as shown in Fig. 6, the robot movement needs toonstant translation velocity; = 1.2 m/s.
be accurately controlled such that the force from the robot | ] )
Fr is enough to overcome the frictioRi; between the ball A- Simulation Experiment
and the floor and provide the ball with sufficient centripetal In our simulator, the movements of the robot and the
force F,,. Although the shape of the robot’s front can help thdall have been calculated from their kinematic equations.
robot to exert the suitable force, it is necessary to keep thighe pushing process is considered as a consecutive high
robot orientation having some deviatiakd to the tangent frequency and low magnitude compact process. We utilize
direction of the curve. the basic collision equations, which describe the coltisiof



Desired path y=1.3sin(x) Desired path y=1.3sin(x)
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(a) Simulation (b) Real-world experiment

Fig. 7. Ball follows the pathy = 1.3 sinx with vy = 1.2 m/s
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Fig. 8. Deviation from point& to the desired path
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Fig. 9. Relative deviation from ball to point E along the akis,

two rigid bodies, and Newton’s law of restitution to caldela degree due to the limited time; if they overlap, the simolati
the motion of the two objects after collisions. calculates n time steps backwards within the last cycle such
that the overlap disappears. Since the simulation cycle is
The difficulty in this collision simulation is the exact de-short enough, the accuracy of the collision detection is

termination of the collision moment. As a common methodsatisfiable. The parameters of our simulator, like theifrict
we detect whether the robot and the ball overlap by some



robot movement is presented, with which controller outputs
namely the required translation and rotation velocitiesjeh
been limited. With the Lyapunov stability theory, the glbba
stability of the path following control law has also been
proven.

The simulation and real-world experiments used a si-
nusoidal curve as the ideal path, and required a constant
translation velocity of the ball. The results show that this
control method can control the omnidirectional robot tolgpp
appropriate pushing operations such that the ball folldves t

Fig. 10. The real omnidirectional robot and ball

given path and does not slide away from the robot.
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of robot and ball are adapted to the real values.
The parameters of our control algorithm were chosen as
k =35, kg =009, k, = 10, kg = 6. These results
illustrated in Fig. 7(a), 8(a) and 9(a) show us that thelll
dribbling control method steers the point E converging to
the given path with little deviation. Meanwhile, the balledo
not slide away from the robot, because the ball's relativel?]
distance to pointt’ along the axisy,, is always less than
the maximum valuek15cm. [3

B. Real-world Experiment "

The real-world experiment was made in our robot labora-
tory having a half-field of the RoboCup middle-size league.
The ball's observation values come from our omnidirec- (5
tional viewing system and object detection process. Our
omniderectional viewing system consists of a AVT Marlin (]
F-046C color camera with a resolution ‘&0 x 580, which
outputs images up 50 times per second. In order to achieve
a complete surrounding map of the robot, the camera i§’)
assembled pointing up towards a hyperbolic mirror, which is
mounted on the top of our omnidirectional robot, as showns]
in Fig. 10. After obtaining the image from the camera, a fast
object detection algorithm is used to get the ball's reallevor
position, as described in [10]. [9]

The parameters of our control algorithm were chosen as
k=35, kg = 0.9, k, =5, kg = 3. Although measurement [1q
noise, environment disturbance and the actuator delayeof th
robot were induced, the experiment results illustratedign F
7(b), 8(b) and 9(b) demonstrate that the control method has
good performance.

VI. CONCLUSIONS

In this paper a new control method for an omnidirectional
robot dribbling a rolling ball is presented. This approach
solves the control problem of the consecutive mobile robot
pushing operation by introducing a reference point as the
controlled object, which is also regarded as a fixed point
of the robot itself. Feedback control methods are used to
steer the reference point to follow the given path and the
ball to move around the reference point simultaneously. In
order to keep the ball, the relative movement between the
robot and the ball has been analyzed and a constraint of

improved the quality of this manuscript.
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