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Abstract— This paper focuses on the dribbling control prob-
lem of an omnidirectional mobile robot. Because the movement
of the dribbled object must be considered, dribbling control
is more challenging than normal mobile robot motion control.
A new feedback control algorithm, which steers a reference
point to follow the desired movement and keeps the ball near
to this point simultaneously, is proposed. To dribble a rolling
ball along a given path, the robot should provide the ball with
appropriate force by consecutive pushing operations when they
travel in an environment with obstacles. Based on the analysis
of the forces acting on the ball with respect to the mobile
robot coordinate system, a constraint for robot movement in
the dribbling process is also introduced. The simulation and
real-world experiments address the performance of this control
algorithm.

I. INTRODUCTION

Dribbling control is a challenging task in the RoboCup
Middle Size domain. As the rules only allow one third of the
ball to be covered by the dribbler, the dribbling behavior has
high requirements to the robot motion control. Some teams
fulfill the dribbling task by planning robot moving paths
[1] or designing the behavior-based approach [2], where
the mobile robot is controlled towards the desired postures.
The postures are generated by a planner based on the robot
dynamic or kinematic model. However, how the robot can
travels without losing the ball is not considered.

Considering the difficulty of determining the ball’s mo-
tion when it is in continuous contacts with a robot, many
RoboCup teams use neural networks ([3], [4]) and reinforce-
ment learning methods ([5], [6], [7]) to learn some basic
skills of the robot, such as kicking and dribbling. Although
suitable simulation systems can support the learning before
the experiments with a real robot, the skill learning needs
long time and high computational cost.

In this paper we address the dribbling control problem
for an omnidirectional robot. With the analysis of the force
exerted on the ball inspired by [8], we obtain a constraint
of robot movement in the dribbling process for keeping a
rolling ball. Under this constraint, the task of dribbling a
ball to follow a given path is completed by approaching a
reference point to the given path and steering the ball to
move around this point simultaneously.

II. ROBOT KINEMATIC MODEL

The mobile robot used in this dribbling task is an omnidi-
rectional robot, whose base is shown in Fig. 1. It has three
Swedish wheels mounted symmetrically with 120 degrees
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Fig. 1. Kinematics diagram of the base of an omnidirectional robot

from each other. Each wheel is driven by a DC motor and
has a same distanceLw to the robot’s center of massR.

Besides the fixed world coordinate system[Xw, Yw], a
mobile robot fixed frame[Xm, Ym] is defined, which is
parallel to the floor and whose origin locates atR. θ denotes
the robot orientation, which is the direction angle of the
axis Xm in the world coordinate system.α and ϕ denote
the direction of the robot translation velocityvR observed
in the world and robot coordinate system, respectively. The
kinematic model with respect to the robot coordinate system
is given by :
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wherev = [ẋm
R ẏm

R ω]T is the vector of robot velocities
observed in the robot coordinate system;ẋm

R and ẏm
R are the

robot translation velocities;ω is the robot rotation velocity.
q̇ is the vector of wheel velocities[q̇1 q̇2 q̇3]

T , and q̇i(i =
1, 2, 3) is the i-th wheel velocity, which is equal to the
wheel’s radius multiplied by the wheel’s angular velocity.

Introducing the transformation matrix from the robot co-
ordinate system to the world coordinate system as

wRm =
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the kinematic model with respect to the world coordinate
system is deduced as:
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where ẋ = [ẋR ẏR θ̇]T is the robot velocity vector with
respect to the world coordinate system;ẋR and ẏR are the
robot translation velocities;̇θ is the robot rotation velocity;δ
refers to the wheel orientation in the robot coordinate system
and is equal to 30 degrees.

It is important to notice that the transformation matrix
in model 1 is full rank, which denotes that the translation
and rotation of the robot are decoupled, and guarantees the
separate control of these two movements.

For the high level control laws without considering the
wheel velocities, the kinematic model

ẋ = Gv (4)

is used in our control method, where the transformation
matrix G is equal to[wRm 0 ; 0 1]. BecauseG is full rank,
the characteristics of decoupled movement is also kept.

III. DRIBBLING ANALYSIS

Dribbling is one of the most difficult skills of RoboCup
robots. Dribbling refers to the maneuvering of a ball through
consecutive and short contacts with a robot in the dynamical
obstacles environment. By dribbling, a robot can travel
through the opponents with the ball and shoot a goal. To
dribble a ball from an initial position to the goal, the robot
needs to keep the ball without losing it. Therefore, it is
necessary to analyze the relative movement between the
robot and the ball. When the ball is considered as a mass
point B locating at the sphere center, the relation between
ball’s accelerations observed in the world coordinate system
and the robot coordinate system is described in terms of
vectors as

aB = aR +am
B +2ω×vm

B + ω̇× rm
B +ω× (ω× rm

B ), (5)

whereaR denotes the robot translation acceleration;aB

and am
B are the ball’s accelerations observed in the world

and robot coordinate systems;ω, ω̇ are the robot rotational
velocity and acceleration respectively;vm

B and rm
B are the

ball’s velocity and position observed in the robot coordinate
system.

Multiplying (5) by the massmB of the ball, we get the
extended Newton’s second law in the robot coordinate system
as

Fm
B = FB + Fin = mBam

B , (6)

whereFB = mBaB . FB is the vector sum of all the external
forces acting on the ball referring to the world coordinate
system.FB is composed of the force from the robot and the
friction between the ball and the floor.Fm

B is the vector sum
of the forces referring to the robot coordinate system.Fin

is the inertial force calculated as

Fin = −mBaR −mB(2ω×vm
B + ω̇×rm

B +ω× (ω×rm
B )).

(7)
Equation (6) implies that not only the external forces but
also the inertial force exerted on the ball when it is observed
in the robot coordinate system. Although the inertial force
manifests itself as a real force, it is not the real one while

Fig. 2. Ball’s relative position in the robot coordinate system. Three spongy
blocks are pasted on the robot’s front to increase the friction

it results from the non-inertial observing coordinate system
but not from interactions with other bodies.

If the ball is moving along a curve with the clockwise
turning shown in Fig. 2, it is only possible for the robot to
keep the ball if the forceFm

B has nonpositive projection on
the line

−→
BL which is parallel to the left border of the robot’s

front. That means that

(Fm
B )−→

BL
= (FB + Fin)−→

BL
≤ 0. (8)

As the ball follows a curve, the external forceFB can
be projected on the tangent and normal directions of the
curve. The tangent partFt determines the magnitude of the
ball’s velocity which can be calculated asFt = mBat with
the acceleration parameterat. The value ofat is hard to
determine, because it refers to the friction between the ball,
the robot and the floor. When the ball moves with constant
velocity, at is equal to zero. The normal partFn contributes
to the ball’s moving direction, which is pointing to the center
of curvature and has the magnitudeFn = mBcv2

b , wherec
is the curvature of the curve andvB is the ball’s translation
velocity.

The inertial force stems from the acceleration of the
reference coordinate system, which is the robot coordinate
system here. In (5), the term2ω × vm

B is called Coriolis’
acceleration; the terṁω × rm

B is due to the robot rotation
acceleration; the termω × (ω × rm

B ) is called centripetal
acceleration, which always points toward the axis of robot
rotation.

Inequation (8) implies the constraint of robot movement
in the dribbling process, under which the robot can move
in the obstacles environment along curved paths avoiding
losing the ball. Above analysis assumes the robot rotates in
clockwise direction, but similar results can be obtained in
the non-clockwise case.

IV. DRIBBLING CONTROL

In the ideal situation described in Fig. 2, the ball’s center
matches pointE, which is always located at the front of
the robot with a distanceL along the Xm axis. Since
we hope the ball is always in front of the robot, we can
solve the dribbling problem by controlling pointE to move



along the desired path and keeping the ball near to point
E simultaneously, with the consideration of the decoupled
translation and rotation of the omnidirectional robot. In the
next sections, we present the path following control of point
E based on its linearized kinematic equations and the ball
keeping method with a PD controller.

A. Linearizing Kinematic Model

As point E is taken as a fixed point (L,0) with respect to
the robot coordinate system, its position can be transformed
to the world coordinate system by

xE = xR + L cos θ (9)

yE = yR + L sin θ, (10)

where xR and yR denote the robot position in the world
coordinate system;xE andyE denote the point E’s position
in the world coordinate system.

By differentiating equations (9) and (10) with respect to
time and introducing (4), we get the velocities of pointE as

ẋE = ẋm
R cos θ − ẏm

R sin θ − Lω sin θ (11)

ẏE = ẋm
R sin θ + ẏm

R cos θ + Lω cos θ, (12)

where ẋR and ẏR are with respect to the world coordinate
system.

Combining equations (11) and (12) with the robot rotation
velocity, the kinematic model of point E is deduced as,

ẋ = Gv, (13)

where
ẋ = [ẋE ẏE θ̇]T ,

G =




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
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ẋm = [ẋm
R ẏm

R ω]T .

Although this system is nonlinear because of the trigono-
metric functions of angleθ, it can be linearized by inducing
a simple compensatorC = G−1, because the matrixG is
full rank. The linearized systeṁx = u is shown in Fig. 3
and has a new input vectoru = [u1 u2 u3]

T .
This linear system is completely decoupled and allows the

controlling of pointE to follow any reference path andθ to
track any desired orientation in a separate way.

When a controllerK is designed based on this simple
linear system, the controller for the nonlinear system is
generated asCK. The overall control loop, which consists
of the nonlinear system, the compensator and the controller,
is shown in Fig. 4.

Fig. 3. Linearized system by the componentC

Fig. 4. Closed-loop control system

B. Path Following Control of PointE

The path following problem is illustrated in Fig. 5.P
denotes the given path. PointQ is the orthogonal projection
of E on the pathP . xt andxn are the tangent and normal
unit vectors atQ, respectively. The path coordinate system
xtQxn moves along the pathP . θP is the path tangent
direction at pointQ. θE denotesE’s moving direction. The
angular error is defined as̃θE = θE − θP .

Based on the above definitions, the path following problem
is to find proper control values ofE’s linear velocityvE and
angular velocityθ̇E such that the deviation distancexn and
angular errorθ̇E tend to zero.

To solve this path following problem, a Lyapunov candi-
date function

V =
1

2
Kdx

2

n +
1

2
Kθ θ̃

2

E (14)

can be considered, whereKd andKθ are positive constants.
The time derivation ofV results in

V̇ = Kdxnẋn + Kθ θ̃E
˙̃
θE . (15)

A simple control law [9] is utilized here. It is only based
on the deviation of pointE to the given path, and controls
point E moving along an exponential curve to converge to
the axisxt. The exponential curve is expressed as

xn = xn0
exp(−kxt), (16)

wherexn0
is the deviation and the positive constant k deter-

mines the convergence speed of the deviation. Differentiating
(16) with respect toxt, we get the tangent direction of the
exponential curve as

θ̃E = arctan(
dxn

dxt

) = arctan(−kxn). (17)

Fig. 5. Illustration of the path following problem



Fig. 6. Forces analysis for ball following a curve

Therefore, for a non-zero constant velocityvd, the velocity
of point E in the coordinate systemxtOxn results in

ẋn = vd sin θ̃E , (18)

ẋt = vd cos θ̃E . (19)

Substituting the time derivative of̃θE into (15), we get

V̇ = Kdxnẋn + kKθ arctan(−kl)
−ẋn

xn + (kxn)2
< 0, (20)

becausexnẋn = xnVd sin(arctan(−kxn)) < 0 and
ẋn arctan(kxn) < 0. This solution of V̇ guarantees the
global stability of the equilibrium atxn = 0, θ̃E = 0,
which means that this control law solves the path following
problem.

Transforming the velocity of pointE into the world
coordinate system, we get the control values of the linear
system as

u1 = vd cos(θE), (21)

u2 = vd sin(θE), (22)

whereθE = θ̃E + θP .
The input of this controller is the relative distance between

point E and the given path, which normally can be directly
obtained by the sensors on the robot. Moreover, the deviation
converges to zero smoothly with the speed controlled by pa-
rameterk, which can be chosen according to the performance
requirement.

C. Ball Keeping Control

As only two degrees of freedom are used to control point
E to follow the given path, there is one remaining degree
of freedom for the robot orientation which can be used for
the ball keeping control. When a given pathP performs a
turning as shown in Fig. 6, the robot movement needs to
be accurately controlled such that the force from the robot
FR is enough to overcome the frictionFf between the ball
and the floor and provide the ball with sufficient centripetal
forceFn. Although the shape of the robot’s front can help the
robot to exert the suitable force, it is necessary to keep the
robot orientation having some deviation∆θ to the tangent
direction of the curve.

Based on the centripetal accelerationcv2

d, we calculate
the angle deviation as∆θ = kθcv

2

d, wherekθ is the positive
parameter. Then the ideal robot orientationθd is given by

θd = θP + ∆θ, (23)

A PD controller can be used to control the robot orienta-
tion to converge to the ideal one,

ω = kp(θd − θ) + kd(θ̇d − θ̇), (24)

where θ̇d and θ̇ are the corresponding differential values of
θd andθ; kp andkd are the proportional and derivative gains,
respectively.

Although a suitable dribbler mechanics can play a great
role in providing friction for the robot keeping the ball, the
robot movement should satisfy the condition given by (8).
The required robot rotation velocityω must be constrained
based on the required robot translation velocity coming
from the path following control of pointE. Since point
E is considered as a fix point on the robot, the movement
relationship between the robot and pointE in vector notion
is as follows:

vE = vR + ω × rm
E , (25)

v̇E = v̇R + ω̇ × rm
E + ω × ṙm

E , (26)

where v̇E , v̇R are the translation accelerations of pointE
and the robot with respect to the world coordinate system;
rm

E is the position vector fromR to E with respect to the
robot coordinate system;ṙm

E is the derivative ofrm
E ; ω̇ is the

robot rotation acceleration.
If point E is controlled with constant translation velocity

moving along the given path, the tangent accelerationat

is equal to zero and the centripetal acceleration iscv2

E .
Substituting (26) into (7) and (8), the constraint of dribbling
becomes

at + cv2

B − v̇E + ω̇ × rm
E + ω × ṙm

E−

(2ω × vm
B + ω̇ × rm

B + ω × (ω × rm
B )) < 0. (27)

When the ball is near to pointE, ṙm
E approximates to zero

and ṙm
B approximates tȯrm

B . Then the above constraint can
be reduced to

cv2

B − v̇E − (2ω × vm
B + ω × (ω × rm

B )) < 0. (28)

V. EXPERIMENTS

The control algorithm discussed above has been tested in
both simulation and real-world environments, where the ball
is required to follow a sinusoidal pathy = 1.3 sin x with
constant translation velocityvd = 1.2 m/s.

A. Simulation Experiment

In our simulator, the movements of the robot and the
ball have been calculated from their kinematic equations.
The pushing process is considered as a consecutive high
frequency and low magnitude compact process. We utilize
the basic collision equations, which describe the collisions of



(a) Simulation (b) Real-world experiment

Fig. 7. Ball follows the pathy = 1.3 sin x with vd = 1.2 m/s

(a) Simulation (b) Real-world experiment

Fig. 8. Deviation from pointE to the desired path

(a) Simulation (b) Real-world experiment

Fig. 9. Relative deviation from ball to point E along the axisYm

two rigid bodies, and Newton’s law of restitution to calculate
the motion of the two objects after collisions.

The difficulty in this collision simulation is the exact de-
termination of the collision moment. As a common method,
we detect whether the robot and the ball overlap by some

degree due to the limited time; if they overlap, the simulation
calculates n time steps backwards within the last cycle such
that the overlap disappears. Since the simulation cycle is
short enough, the accuracy of the collision detection is
satisfiable. The parameters of our simulator, like the friction



Fig. 10. The real omnidirectional robot and ball

coefficient and the restitution coefficient, are adopted as
experience values. The masses and the moment of inertia
of robot and ball are adapted to the real values.

The parameters of our control algorithm were chosen as
k = 3.5, kθ = 0.9, kp = 10, kd = 6. These results
illustrated in Fig. 7(a), 8(a) and 9(a) show us that the
dribbling control method steers the point E converging to
the given path with little deviation. Meanwhile, the ball does
not slide away from the robot, because the ball’s relative
distance to pointE along the axisYm is always less than
the maximum value±15cm.

B. Real-world Experiment

The real-world experiment was made in our robot labora-
tory having a half-field of the RoboCup middle-size league.
The ball’s observation values come from our omnidirec-
tional viewing system and object detection process. Our
omniderectional viewing system consists of a AVT Marlin
F-046C color camera with a resolution of780× 580, which
outputs images up 50 times per second. In order to achieve
a complete surrounding map of the robot, the camera is
assembled pointing up towards a hyperbolic mirror, which is
mounted on the top of our omnidirectional robot, as shown
in Fig. 10. After obtaining the image from the camera, a fast
object detection algorithm is used to get the ball’s real world
position, as described in [10].

The parameters of our control algorithm were chosen as
k = 3.5, kθ = 0.9, kp = 5, kd = 3. Although measurement
noise, environment disturbance and the actuator delay of the
robot were induced, the experiment results illustrated in Fig.
7(b), 8(b) and 9(b) demonstrate that the control method has
good performance.

VI. CONCLUSIONS

In this paper a new control method for an omnidirectional
robot dribbling a rolling ball is presented. This approach
solves the control problem of the consecutive mobile robot
pushing operation by introducing a reference point as the
controlled object, which is also regarded as a fixed point
of the robot itself. Feedback control methods are used to
steer the reference point to follow the given path and the
ball to move around the reference point simultaneously. In
order to keep the ball, the relative movement between the
robot and the ball has been analyzed and a constraint of

robot movement is presented, with which controller outputs,
namely the required translation and rotation velocities, have
been limited. With the Lyapunov stability theory, the global
stability of the path following control law has also been
proven.

The simulation and real-world experiments used a si-
nusoidal curve as the ideal path, and required a constant
translation velocity of the ball. The results show that this
control method can control the omnidirectional robot to apply
appropriate pushing operations such that the ball follows the
given path and does not slide away from the robot.
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